Given P(1,-4,-3), convert to cylindrical and spherical values;

Similar documents
MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

Trigonometry and modelling 7E

I, SUMMATIVE ASSESSMENT I, / MATHEMATICS X / Class X

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- MARCH, 2013

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Two dimensional polar coordinate system in airy stress functions

Two Posts to Fill On School Board

D Alembert s principle of virtual work

POISSON S EQUATION 2 V 0

OWELL WEEKLY JOURNAL

Math 104 Midterm 3 review November 12, 2018

Implicit Differentiation and Inverse Trigonometric Functions

Chapter 4: Christoffel Symbols, Geodesic Equations and Killing Vectors Susan Larsen 29 October 2018

Collection of Formulas

On the Eötvös effect

INVERSE TRIGONOMETRY: SA 4 MARKS

NOTES ON INVERSE TRIGONOMETRIC FUNCTIONS

13.5. Torsion of a curve Tangential and Normal Components of Acceleration

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES)

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l

Section 7.1 Exercises

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0

Section 7.1 Exercises

of Technology: MIT OpenCourseWare). (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike.

Chapter 7, Continued

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E

Introduction and Vectors

Modeling and nonlinear tracking control of novel multi-rotor UAV

u(r, θ) = 1 + 3a r n=1

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 4

1 Using Integration to Find Arc Lengths and Surface Areas

Math 3335: Orthogonal Change of Variables., x(u) =

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

Transweb Educational Services Pvt. Ltd Tel:

Trig Equations PS Sp2016

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 1

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

Trigonometric Identities. Sum and Differences

Optimization. x = 22 corresponds to local maximum by second derivative test

CHAPTER 1 Systems of Linear Equations

LOWELL WEEKLY JOURNAL

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 21 (LEARNER NOTES)

4.3 Inverse Trigonometric Properties

Inverse Trigonometric Functions

Honors Calculus II [ ] Midterm II

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

Write your Name, Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57

16 Inverse Trigonometric Functions

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

AMB121F Trigonometry Notes

Phys 201A. Homework 5 Solutions

MATH 151, SPRING 2013 COMMON EXAM II - VERSION A. Print name (LAST, First): SECTION #: INSTRUCTOR: SEAT #:

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

Lecture 11: Potential Gradient and Capacitor Review:

B.A. (PROGRAMME) 1 YEAR MATHEMATICS

ALL INDIA TEST SERIES

4.3 Area of a Sector. Area of a Sector Section

Ma 227 Final Exam Solutions 12/22/09

Math 209 Assignment 9 Solutions

1. The sphere P travels in a straight line with speed

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital.

14.7: Maxima and Minima

THE CONE THEOREM JOEL A. TROPP. Abstract. We prove a fixed point theorem for functions which are positive with respect to a cone in a Banach space.

Incompressible Viscous Flows

Chapter 22 The Electric Field II: Continuous Charge Distributions

Problem 1: Multiple Choice Questions

Electric Potential. and Equipotentials

This immediately suggests an inverse-square law for a "piece" of current along the line.

GEOMETRY Properties of lines

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Practice Exam 1 Solutions

The minus sign indicates that the centroid is located below point E. We will relocate the axis as shown in Figure (1) and take discard the sign:

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Radial geodesics in Schwarzschild spacetime

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

The Double Sum as an Iterated Integral

Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION

FUNCTIONS AND MODELS

Some relations between the radiation patterns in the two main planes and the whole radiation pattern. *

Time Allowed : 3 hours Maximum Marks : 90. jsuniltutorial


Mechanics and Special Relativity (MAPH10030) Assignment 3

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Preview from Notesale.co.uk Page 2 of 42

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

Physics 604 Problem Set 1 Due Sept 16, 2010

Chapter 28 Sources of Magnetic Field

Series Solutions of Differential Equations

Example 2: ( ) 2. $ s ' 9.11" 10 *31 kg ( )( 1" 10 *10 m) ( e)

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force

Transcription:

CHAPTER 1 Poblems Pob. 1.1 Pob. 1.2 () Given P(1,-4,-3), convet to cylindicl nd spheicl vlues; 4

x y = + = + = = 1 ( 4) 17 4.123. 1 y 1 4 = tn = tn = 284.04. x 1 P(,, ) = (4.123, 284.04, 3). Spheicl : x y 1 16 9 5.099. 2 = + + = + + = 1 1 4.123 = tn = tn = 126.04. 3 P (,, ) = P(5.099, 126.04, 284.04 ). (b) (c ) 1 y 1 0 = 3, = tn = tn = 0 x 3 o Q(,, ) = Q(3,0,5) o 1 1 3 = 9 + 0 + 25 = 5.831, = tn = tn = 30.96 5 o o Q (,, ) = Q(5.831,30.96,0 ) = 4 + 36 = 6.325, = tn = 108.4 2 o R(,, ) = R(6.325,108.4,0) 1 6 1 1 6.325 = = 6.325, = tn = tn = 90 0 o o R (,, ) = R(6.325,90,108.4 ) o o o Pob. 1.3 5

6

Pob. 1.4 () x = cos, y = sin, 2 V = cos sincos + sin (b) U = x + y + + y + 2 2 = + sin sin + 2 cos = [1+ sin sin + 2 cos ] Pob. 1.5 7

8

9

10

11

Pob. 1.6 () x + F cos sin 0 y F sin cos 0 = + F 0 0 1 4 + F F F 1 = + = + + [ cos sin ] ; 1 = [ cossin+ cossin ] = 0; + = 4 + 1 F = ( + 4 ). + ; In Spheicl: x sin cos sin sin cos F y F coscos cossin sin = F sin cos 0 4 4 2 4 F = sin cos + sin sin + cos = sin + cos ; 4 4 F = sin cos cos + sincos sin sin = sincos sin ; F = sincos sin + sinsincos = 0; 2 4 4 F = (sin + cos ) + sin (cos ). 12

(b) 2 x + G cos sin 0 2 y G = sin cos 0 + G 0 0 1 2 + G G G 2 3 = [ cos + sin ] = ; + + = 0; = 2 + 2 G = ( + ). + ; Spheicl : Pob. 1.7 2 G = ( xx + yy + ) = = sin sin 13

14

15

Pob. 1.8 () D cos sin 0 0 D = sin cos 0 x + D 0 0 1 0 D = ( x + ) sin = ( cos + ) sin D = ( x+ ) cos = ( cos + ) cos D = ( cos + )[sin + cos ] Spheicl : Since D = D = 0, we my leve out the fist nd x thid column of the tnsfomtion mtix. Thus, D... sinsin... 0 D... cossin... x = + D... cos... 0 D = ( x+ )sinsin = (sincos+ cos )sinsin. D = ( x+ )cossin = (sincos + cos )cossin. D = ( x+ )cos = (sincos+ cos ) cos. D= (sincos+ cos )[sinsin + cossin + cos ]. (b) Cylindicl: E cos sin 0 y x E sin cos 0 = xy E 0 0 1 x E = y x + xy ( )cos sin = (sin cos ) cos + cos sin 2 = cos 2 cos + sin cos. 2 E = y x + xy ( )sin cos 2 = cos 2 sin + sin cos. 2 E = x = cos. 2 E = cos ( sin cos 2 ) + sin ( cos + cos 2 ) + ( cos ). 16

In spheicl: E E = y x + xy + x E sincos sinsin cos y x E coscos cossin sin = xy E sin cos 0 x ( )sincos sinsin ( )cos ; but x= sincos, y = sinsin, = cos ; 2 3 = sin (sin cos + (sin cos cos ) cos ; 3 3 2 )cos + sin cos sin cos E = ( y x )coscos + xy cossin ( x )sin ; 3 2 = sin cos2coscos + sin cos sin cos (sin cos 2 cos 2 ) sin ; E = ( x y )sin + xy cos 3 = sin cos2sin + sin cos sin cos ; 2 3 3 3 2 [ sin cos 2 cos sin cos sin cos (sin cos cos ) cos ] E = + + + 3 2 [ sin cos 2coscos + sin cos sin cos sin (sin cos cos )] 3 [ sin cos 2 sin sin cos sin cos ] + + + Pob. 1.9 () H cos sin 0 3 H sin cos 0 2 = H 0 0 1 4 H = 3cos + 2sin, H = 3sin + 2cos, = 4 H H = (3cos + 2sin ) + ( 3sin + 2cos ) 4 o (b) At P, = 2, = 60, = 1 H = (3cos60 + 2sin60 ) + ( 3sin60 + 2cos60 ) 4 o o o o 3.232 1.598 4 = 17

Pob. 1.10 () 18

19

Pob. 1.11 () = 2 x + y + = +. 1 = tn ; =. o = x + y = sin cos + sin sin. = sin ; = cos ; =. (b) Fom the figues below, - cos sin sin ( ) = sin + cos ; = cos sin ; = Hence, sin 0 cos = cos 0 sin 0 1 0 Fom the figues below, = cos + sin ; = cos sin ; =.. 20

sin ( ) cos cos sin sin cos cos sin = 0 0 0 1 0 Pob. 1.12 21

Pob. 1.13 Using eq. (1.32), d = 2 + 1 212cos( 2 1) + ( 2 1) o o 2 = 10 + 5 2(5)(10)cos(60 30 ) + ( 4 2) = 74.4 d = 74.4 = 8.625 Pob. 1.14 2 () d = ( 6 2) + ( 1 1) + ( 2 5) = 29 = 5. 385 (b) d = 3 + 5 2()()cos 3 5 π + ( 1 5) = 100 d = 100 = 10 22

(c) d π π π π π π = 10 + 5 2(10)(5)cos cos 2(10)(5)sin sin cos(7 ) 4 6 4 6 4 4 π π π π o = 125 100(cos cos sin sin ) = 125 100 cos75 = 99.12 4 6 4 6 2 3 d = 99.12 = 9.956. Pob. 1.15 A x Ay A cos sin 0 A = sin cos 0 A 0 0 1 A x y 0 x + y x + y y x = 0 x + y x + y 0 0 1 A A A Ax sincos coscos sin A = Ay sin sin cos sin cos A A cos sin 0 A x x y x + y + x + y x + y + x + y y y x = x + y + x + y x + y + x + y x + y 0 x + y + x + y + A A A 23

Pob. 1.16 24

Pob. 1.17 () A B = (5,2, 1) (1, 3,4) = 5 (b) (c ) 5 2 1 AxB= = 5 21 17 1 3 4 A B 5 cosab = = = 0.179 AB = 100.31 AB 25 + 4 + 1 1+ 9 + 16 o 25

(d) n AB x (5, 21, 17) (5, 21, 17) = = = AB x 2 5 + 21 + 17 755 = 0.182 0.7643 0.6187 ( A BB ) 5B (e) AB = ( A B) B = = = 0.1923 + 0.5769 0.7692 ` 2 B 26 Pob. 1.18 26

Pob. 1.19 () At Q, = 10, = π / 2, = π / 3 x = sin cos = 10sin π / 2cos π /3 = 10(1)(1/ 2) = 5 y = sinsin = 10sin π / 2 sin π / 3 = 10(1)( 3 / 2) = 8.66 = cos = 10 cos π / 2 = 0 Q(x,y,) = Q(5,8.66,0) (b) At P, = 9+ 16+ 4 = 5.385 2 o cos = = = 0.3714 = 68.2 5.385 cos = x 3 o = = 0.6 = 306.87 x + y 5 o o P (,, ) = P (5.385,68.2,306.87 ) (c ) d = ( x x ) + ( y y ) + ( y y ) = 2 + 12.66 + 2 = 168.2756 2 p Q p Q p Q d = 12.97 Pob. 1.20 () An infinite line pllel to the -xis. (b) Point (2,-1,10). (c) A cicle of dius sin = 5, i.e. the intesection of cone nd sphee. (d) An infinite line pllel to the -xis. (e) (f) A semi-infinite line pllel to the x-y plne. A semi-cicle of dius 5 in the y- plne Pob. 1.21 27

Pob. 1.22 3 ( ) At T, x = 3, y = 4, = 1, = 5,cos = 5 3 A= 0 5(1)( ) + 25(1) 5 = 3 + 25 5 1 = 26, sin = cos = 26, 26 3 5 B = 26( ) + 2( 26) 5 26 = 15.6 + 10 28

( b) In cylindicl coodintes, B B B sin cos 0 15.6 B = 0 0 1 0 B cos sin 0 10 5 = 15.6 sin = 15.6( ) = 15.3 26 = 10, B = 15.6 cos = 3.059 B(,, ) = ( 15.3,10, 3.059) AB = ( A B) B = ( A B) B 1 (30 76.485)( 15.3,10, 3.059) = 2 343.45 B = 2.071 1.354 + 0.4141. () c In spheicl coodintes, A sin 0 cos 0 A = cos 0 sin 3 A 0 1 0 25 25 A = 25cos = = 4.903 26 5 A = 25 sin = 25( ) = 24.51 26 A = 3 A B = 4.903 24.51 3 = 245.1 95.83 382.43 15.6 0 10 ± A B AxB = = ± + (0.528 0.2064 0.8238. 464.23 29

Pob. 1.23 At P( 02,, 5), = 90 ; B B B x y cos sin 0 = sin cos 0 0 0 1 0 1 0 5 = 1 0 0 1 0 0 1 3 B = 5 3 x y B B B ( ) A+ B = ( 2410,, ) + ( 1, 5, 3) = + 7 x y A B 52 ( b) cosab = = AB 4200 1 52 AB = cos ( ) = 143.36. 4200 A B 52 () c AB = A B = = = 8. 789. B 35. 30

Pob. 1.24 cossin 2 G= cos x + y+ (1 cos ) sin = cos + 2 cot sin + sin x y 2 G sin cos sin sin cos cos = G cos cos cos sin sin 2 cot sin 2 G sin cos 0 sin 3 G = sincos + 2cossin + cossin G G 3 2 = sincos + 3cos sin 3 = coscos + 2cotcossin sinsin 2 = sincos + 2cotsincos 3 2 G = [sin cos + 3 cos sin ] 3 + [ cos cos + 2 cot cos sin sin sin ] + sincos (2cot cos ) 31