Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Similar documents
Introduction to Seismology Spring 2008

Fundamentals of Linear Elasticity

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Relationships between the velocities and the elastic constants of an anisotropic solid possessing orthorhombic symmetry

A short review of continuum mechanics

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

Understand basic stress-strain response of engineering materials.

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

An acoustic wave equation for orthorhombic anisotropy

Receiver. Johana Brokešová Charles University in Prague

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

Introduction to Polarization

Basic Equations of Elasticity

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Electromagnetic Waves Across Interfaces

Basic concepts to start Mechanics of Materials

2.2 Relation Between Mathematical & Engineering Constants Isotropic Materials Orthotropic Materials

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

Physical Properties. Reading Assignment: 1. J. F. Nye, Physical Properties of Crystals -chapter 1

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

3D and Planar Constitutive Relations

Contents. Physical Properties. Scalar, Vector. Second Rank Tensor. Transformation. 5 Representation Quadric. 6 Neumann s Principle

Surface force on a volume element.

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

AA242B: MECHANICAL VIBRATIONS

3D Elasticity Theory

Borehole Geophysics. Acoustic logging measurements

PEAT SEISMOLOGY Lecture 3: The elastic wave equation

Mechanics PhD Preliminary Spring 2017

Lecture Notes #10. The "paradox" of finite strain and preferred orientation pure vs. simple shear

Part II Materials Science and Metallurgy TENSOR PROPERTIES SYNOPSIS

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

7 Optical modulators. 7.1 Electro-optic modulators Electro-optic media

Part 7. Nonlinearity

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T

Reflection of quasi-p and quasi-sv waves at the free and rigid boundaries of a fibre-reinforced medium

SEISMOLOGY I. Laurea Magistralis in Physics of the Earth and of the Environment. Elasticity. Fabio ROMANELLI

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer

Elements of Rock Mechanics

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

where d is the vibration direction of the displacement and c is the wave velocity. For a fixed time t,

LECTURE 5 - Wave Equation Hrvoje Tkalčić " 2 # & 2 #

Lecture 8. Stress Strain in Multi-dimension

Constitutive Equations

Lecture notes Models of Mechanics

Macroscopic theory Rock as 'elastic continuum'

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam

Research Article Dispersion of Love Waves in a Composite Layer Resting on Monoclinic Half-Space

Physics of Continuous media

Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property

Mathematical Background

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles

PART A. CONSTITUTIVE EQUATIONS OF MATERIALS

8 Properties of Lamina

PROPAGATION OF WAVES AT AN IMPERFECTLY

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

1 Hooke s law, stiffness, and compliance

Waveform inversion and time-reversal imaging in attenuative TI media

Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal

1.1 Stress, strain, and displacement! wave equation

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Elastic Fields of Dislocations in Anisotropic Media

Chap. 4. Electromagnetic Propagation in Anisotropic Media

4: birefringence and phase matching

COMPARISON OF OPTICAL AND ELASTIC BREWSTER S ANGLES TO PROVIDE INVUITIVE INSIGHT INTO PROPAGATION OF P- AND S-WAVES. Robert H.

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Stress, Strain, Mohr s Circle

2.3 BASIC EQUATIONS OF CONTINUUM MECHANICS

CVEN 5161 Advanced Mechanics of Materials I

Mechanics of solids and fluids -Introduction to continuum mechanics

The Kinematic Equations

11/29/2010. Propagation in Anisotropic Media 3. Introduction. Introduction. Gabriel Popescu

3D Stress Tensors. 3D Stress Tensors, Eigenvalues and Rotations

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Dispersion relation for transverse waves in a linear chain of particles

Introduction to Seismology Spring 2008

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CRACK-TIP DIFFRACTION IN A TRANSVERSELY ISOTROPIC SOLID. A.N. Norris and J.D. Achenbach

LASER GENERATED THERMOELASTIC WAVES IN AN ANISOTROPIC INFINITE PLATE

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

Elastic Wave Theory. LeRoy Dorman Room 436 Ritter Hall Tel: Based on notes by C. R. Bentley. Version 1.

Dr. Parveen Lata Department of Basic and Applied Sciences, Punjabi University, Patiala, Punjab, India.

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Juan E. Santos a,b,c, Gabriela B. Savioli a and Robiel Martínez Corredor c a

FROM DIFFRACTION TO STRUCTURE

Quasi-Harmonic Theory of Thermal Expansion

Constitutive Relations

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

Lecture 7: The Beam Element Equations.

Development and application of time-lapse ultrasonic tomography for laboratory characterisation of localised deformation in hard soils / soft rocks

Continuum mechanism: Stress and strain

Continuum Mechanics Fundamentals

Far-field radiation from seismic sources in 2D attenuative anisotropic media

Introduction to Condensed Matter Physics

CH.6. LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics

Transcription:

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Review of Fundamentals displacement-strain relation stress-strain relation balance of momentum (deformation) (constitutive equation) (Newton's Law) equation of motion (Christoffel's equation) Notation: position vector x ( e11 x + e2x2 + e 3x3) displacement vector u strain matrix ε stress matrix τ stiffness tensor C

Displacement-strain relation: Three-Dimensional Problem vector notation ε su indicial notation ε ij ½ ( ui, j + uj, i) differential notation ε ij ½ u u j ( i + ) x j xi u1 u2 u ε 3 11, ε 22, ε 33, x1 x2 x3 ε 12 ε 21 ½ u ( 1 u + 2) x2 x1 ε 23 ε 32 ½ u ( 2 u + 3 ) x3 x2 ε 31 ε 13 ½ u ( 3 u + 1) x1 x3 Stress-strain relation: vector notation τ C : ε indicial notation τ ij Cijkl ε kl τ C ε + C ε + C ε ij ij11 11 ij12 12 ij13 13 + C ε + C ε + C ε ij21 21 ij22 22 ij23 23 + C ε + C ε + C ε ij31 31 ij32 32 ij33 33

Abbreviated Notation ε ε ε ε ε ε ε ε ε ε 11 12 13 21 22 23 31 32 33 τ τ τ τ τ τ τ τ τ τ 11 12 13 21 22 23 31 32 33 Stiffness matrix τ11 C11 C12 C13 C14 C15 C16 ε11 τ 22 C12 C22 C23 C24 C25 C 26 ε 22 τ33 C13 C23 C33 C34 C35 C36 ε33 τ23 C14 C24 C34 C44 C45 C46 2ε23 τ C C C C C C 2ε 31 15 25 35 45 55 56 31 τ12 C16 C26 C36 C46 C56 C66 2 ε12 Stress-strain relations for isotropic materials (Hooke's Law) In indicial notation, τ ij λεkk δ ij + 2με ij Kronecker delta δ 1ifi j andδ else ij ij τ11 λ+ 2μ λ λ ε11 τ 22 2 ε λ λ+ μ λ 22 τ33 λ λ λ+ 2μ ε33 τ23 μ 2ε23 τ 31 μ 2ε31 τ μ 2ε 12 12

Stress-Displacement Relation τ 11 λ ( + + ) + 2μ u1 u2 u3 u1 x1 x2 x3 x1 τ 22 λ ( + + ) + 2μ u1 u2 u3 u2 x1 x2 x3 x2 τ 33 λ ( + + ) + 2μ u1 u2 u3 u3 x1 x2 x3 x3 τ 12 τ 21 μ ( + ) u1 u2 x2 x1 τ 23 τ 32 μ ( + ) u2 u3 x3 x2 τ 31 τ 13 μ ( + ) Traction and Body Forces: x 3 B 3 dx 1 dx 2 dx 3 u3 u1 x1 x3 traction forces body forces τ 33 dx 1 dx 2 τ 31 dx 1 dx 2 τ 13 dx 2 dx 3 τ 32 dx 1 dx σ 2 x τ 23 dx 1 dx 3 τ 22 dx 1 dx 3 B 2 dx 1 dx 2 dx 3 τ 11 dx 2 dx 3 τ 12 dx 2 dx 3 τ 21 dx 1 dx 3 x 2 B 1 dx 1 dx 2 dx 3 x 1

Equilibrium Equations τ τ τ + + + B1 11 21 31 x1 x2 x3 τ τ τ + + + B2 12 22 32 x1 x2 x3 τ τ τ + + + B3 13 23 33 x1 x2 x3 x 1 -direction: [ τ 11( x1 + dx1) τ 11( x1 )] dx2dx3 + [ τ 21( x2 + dx2) τ21( x2)] dx1 dx3 + [ τ 31( x3 + dx3) τ 31( x3)] dx1 dx2 + B1 dx1 dx2 dx3 τ 11( x1 + dx1 ) τ11( x1 ) τ 21( x2 + dx2) τ21( x2) τ 31( x3 + dx3) τ31( x3) + + + B1 dx1 dx2 dx3 τ11 τ21 τ + + 31 + B1 x1 x2 x3 τ12 τ22 τ + + 32 + B2 x1 x2 x3 τ13 τ23 τ + + 33 + B3 x1 x2 x3 B ρu Balance of Momentum: τ ρu

Wave Equation ε s u τ C : ε C: u ρu s For isotropic materials: ( λ+μ) u + μ 2 u ρu indicial notation ( λ+μ ) uj ji+ μ ui jj ρ ui,, detailed differential equation form 2u 2 2 2 2 2 2 1 u2 u3 u1 u1 u1 u ( λ+μ )( + + ) + μ ( + + ) ρ 1 x2 x 2 2 2 2 1 1 x2 x1 x3 x1 x2 x3 t 2u 2 2 2 2 2 2 1 u2 u3 u2 u2 u2 u ( λ+μ )( + + ) + μ ( + + ) ρ 2 x 2 2 2 2 2 1 x2 x x 2 2 x3 x1 x2 x3 t 2u 2 2 2 2 2 2 1 u2 u3 u3 u3 u3 u ( λ+μ )( + + ) + μ ( + + ) ρ 3 x 2 2 2 2 2 1 x3 x2 x3 x3 x1 x2 x3 t

Plane Wave Solutions u Ap ei ( kx ωt) amplitude A angular frequency ω polarization unit vector p wave vector k d k propagation unit vector d wave number k k2 + k2 + k2 sound velocity c ω k 1 2 3 u i t ik( d11 x d2x2 d3x3) 1 Ap1e ω e + + u i t ik( d11 x d2x2 d3x3) 2 Ap2e ω e + + u i t ik( d11 x d2x2 d3x3) 3 Ap3e ω e + + ( λ+μ ) dd 2 1 1+ ( μ ρc) ( λ+μ) dd 1 2 ( λ+μ) dd 1 3 p1 ( λ+μ) dd 2 1 2 ( λ+μ ) d2d2+ ( μ ρc) ( λ+μ ) d2d3 p 2 ( ) dd 2 λ+μ 1 3 ( λ+μ) d2d3 ( λ+μ ) dd 3 3+ ( μ ρc) p3

Christoffel's Equation p1 Γ p 2 p 3 [ ] Γ Since the material is isotropic, d e 1 ( d1 1, d2 d3 ) can be assumed without loss of generality. λ+ 2μ ρc2 p1 μ ρ c2 p 2 c2 μ ρ p3 Longitudinal (or dilatational) wave cd λ+ 2μ ρ and p2 p3 Shear (or transverse) wave c s μ ρ and p 1

Symmetry Considerations lack of rotation Cijkl Cjikl Cijlk Cjilk reciprocity C ijkl C klij Independent elastic constants most general anisotropic 21 orthorhombic 9 cubic symmetry 3 isotropic 2 ABBREVIATED NOTATION ε11 ε12 ε13 ε ε21 ε22 ε23 ε31 ε32 ε33 τ τ11 τ12 τ13 τ21 τ22 τ23 τ31 τ32 τ33 Stiffness matrix: τ11 C11 C12 C13 C14 C15 C16 ε11 τ 22 C12 C22 C23 C24 C25 C 26 ε 22 τ33 C13 C23 C33 C34 C35 C36 ε33 τ23 C14 C24 C34 C44 C45 C46 2ε23 τ 31 C15 C25 C35 C45 C55 C56 2ε31 τ12 C16 C26 C36 C46 C56 C66 2 ε12

Simplest Anisotropy, Cubic Symmetry [1] [111] [1] [1] [11] τ11 C11 C12 C12 ε11 τ 22 C12 C11 C12 ε 22 τ33 C12 C12 C11 ε33 τ23 C44 2ε23 τ 31 C44 2ε31 τ12 C44 2ε12

Isotropic Material τ11 C11 C12 C12 ε11 τ 22 C12 C11 C12 ε 22 τ33 C12 C12 C11 ε33 τ23 C44 2ε23 τ 31 C44 2ε31 τ12 C44 2ε12 2C44 C11 C12 C11 λ+ 2 μ, C12 λ, C44 μ, λ and μ are Lame's constants τ11 λ+ 2μ λ λ ε11 τ 22 2 ε λ λ+ μ λ 22 τ33 λ λ λ+ 2μ ε33 τ23 μ 2ε23 τ 31 μ 2ε31 τ12 μ 2 ε12

Transformation of Tensors Rotation of Rectangular Coordinate Axes First-Rank Tensor [ u'] [ a][ u ] [a] denotes the transformation matrix cosθx ' x cosθxy ' cosθxz ' [ a] cosθy' x cosθyy ' cosθyz ' cosθzx ' cosθzy ' cosθzz ' z z' u z u' z u u' y u y θ y' y x u x θ x' u' x cosθ sin θ [ a] sinθ cosθ 1

Rotation of Second-Rank Tensors Symmetric strain tensor: [ du] [ ε ][ dx] [ du'] [ a][ du ] [ dx'] [ a][ dx ] [ du'] [ a][ ε ][ dx] [ dx][ a 1][ dx'][ a] T [ dx'] [ du '] [ a][ ε ][ a] T [ dx'] [ ε'] [ a][ ε ][ a] T Symmetric stress tensor: [ τ'] [ a][ τ ][ a] T

Bond Transformation [ C'] [ M][ C][ M ] T [M] is the so-called Bond transformation matrix [ M ] a2 2 2 11 a12 a13 2a12 a13 2a13 a11 2a11a12 a2 2 2 21 a22 a23 2a22 a23 2a23 a21 2a21a22 2 2 2 a31 a32 a33 2a32 a33 2a33 a31 2a31a32 a 21a31 a22 a32 a23 a33 a22 a33 + a23 a32 a21a33 + a23 a31 a22 a31+ a21a 32 a31a11 a32 a12 a33 a13 a12 a33 + a13 a32 a13 a31+ a1 1 a 33 a 11 a 32 + a 12 a 31 a11a21 a12 a22 a13 a23 a12 a23 a13 a22 a13 a21 a11a23 a11a22 a12 a + + + 21 The Bond method can be applied directly to elastic constants given in abbreviated notation!

Simple Rotation by angle θ around the z axis [ M ] cos2θ sin2θ sin 2θ sin2θ cos2θ sin 2θ 1 cosθ sinθ sinθ cosθ -½ sin 2θ ½ sin 2θ cos 2θ [ C'] [ M][ C][ M ] T ' C11 C C 12 2 11 C11 ( C44)sin 2θ 2 ' C11 C C 12 2 12 C12 + ( C44)sin 2θ 2 C C ' 13 C12 C C ( )sin2θcos2θ 2 ' 11 12 16 C44 C' 33 C11 C ' 44 C44 ' C11 C C 12 2 66 C44 + ( C44)sin 2θ 2 the other matrix elements are zero

Coupled Normal Stress and Shear Stain C C C ( )sin2θcos2θ 2 ' 11 12 16 C44 τ11 C11 C12 C13 C14 C15 C16 ε11 τ 22 C12 C22 C23 C24 C25 C 26 ε 22 τ33 C13 C23 C33 C34 C35 C36 ε33 τ23 C14 C24 C34 C44 C45 C46 2ε23 τ 31 C15 C25 C35 C45 C55 C56 2ε31 τ12 C16 C26 C36 C46 C56 C66 2 ε12 C16 symmetry direction (or isotropic) τ 11 1 τ11 2 ε12 off symmetry direction τ 11 ε 12 ε 12 /

Christoffel's Equation for an Anisotropic Solid ( C 2 ijk dj d c ρδ ik ) pk λ 2 11 ρc λ12 λ13 p1 λ 2 12 λ22 ρc λ 23 p 2 2 λ p 13 λ23 λ33 ρc 3 It is customary in the literature to denote the direction cosines d1, d2,and d3 by, m,and n. λ 2 2 2 11 C11 + m C66 + n C55 + 2mnC56 + 2n C15 + 2m C16 λ 2 2 2 22 C66 + m C22 + n C44 + 2mnC24 + 2n C46 + 2m C26 λ 2 2 2 33 C55 + m C44 + n C33 + 2mnC34 + 2n C35 + 2m C45 λ 2 2 2 12 C16 + m C26 + n C45 + mn( C46 + C25) + n ( C14 + C56) + m ( C12 + C66) λ 2 2 2 13 C15 + m C46 + n C35 + mn( C45 + C36) + n ( C13 + C55) + m ( C14 + C56) λ 2 2 2 23 C56 + m C24 + n C34 + mn( C44 + C23) + n ( C36 + C45) + m ( C25 + C46) Pure mode longitudinal waves: p d Pure mode shear waves: pi di (i 1,2,3) p d pd ( pd 1 1 + p 2 d 2 + pd 3 3 ) i i

Cubic Crystals Christoffel's equation: λ 2 11 ρc λ12 λ13 p1 λ 2 12 λ22 ρc λ 23 p 2 2 p 13 23 33 c 3 λ λ λ ρ λ 2 2 2 11 C11 + ( m + n ) C44 λ 22 m2c 2 2 11 + ( + n ) C44 λ 33 n2c 2 2 11 + ( + m ) C44 λ m ( C + C ) 12 12 44 λ 13 n ( C12 + C44) λ mn( C + C ) 23 12 44 three axes of symmetry: [1], [11] and, [111]

Pure Modes Along Symmetry Axes Sound Wave Propagating along the [1] Direction: 1, m n C 2 11 ρc p1 C 2 44 ρ c p 2 C 2 p 44 c 3 ρ Characteristic equation: ( C 2 2 2 11 ρc )( C44 ρ c ) Wave speeds (eigenvalues): c 1 C11 ρ c2 c3 C44 ρ (no birefringence) Polarizations (eigenvectors): p 2 1( C11 ρ c ) p 2 2( C44 ρ c )

p 2 3( C44 ρ c ) For c1 p1 1andp2 p3 (pure longitudinal wave) For c2 or 2 2 c3 p and p + p 1 (pure transverse waves) 1 2 3 [1] [1] [1] c 1 c 2 c 3 Sound Wave Propagating along the [11] Direction: m 1/ 2 and n 11 44 2 12 44 1 C12 C44 C11 C44 c2 p2 C 2 p 44 ρc 3 ½ ( C + C ) ρ c ½ ( C + C ) p ½ ( + ) ½ ( + ) ρ Characteristic equation: 2 2 2 2 11 44 12 44 44 [( C + C 2 ρc ) ( C + C ) ]( C ρ c )

Wave speeds (eigenvalues): c1 C11 + C12 + 2C44 2ρ c2 C11 C12 2ρ c 3 C44 ρ Polarizations (eigenvectors): Forc c1 : ½ ( C12 + C44) ½ ( C12 + C44) p1 ½ ( C12 + C44) ½ ( C12 + C44) p 2 ½ ( C11 + C12) p3 p1 p2 ( 1/ 2) and p3 (pure longitudinal wave) Forc c2 : ½ ( C12 + C44) ½ ( C12 + C44) p1 ½ ( C12 + C44) ½ ( C12 + C44) p 2 C44 ½ ( C11 C12) p3 C44 ½ ( C11 C12) / / p 3 and p1 p2 (. eg., p1 1 2and p2 1 2) pure shear wave polarized in the [11]

Forc c3 : ½ ( C11 C44) ½ ( C12 + C44) p1 ½ ( C12 + C44) ½ ( C11 C44) p 2 p 3 p1 p2 and p3 1 pure shear wave polarized in the [1] direction. [1] [1] c 2 c 3 c 1 [1] [11] Sound Wave Propagating along the [111] Direction: m n 1/ 3 λ 2 11 ρc λ12 λ12 p1 λ 2 12 λ11 ρc λ 12 p 2 2 λ p 12 λ12 λ11 ρc 3 1 11 C 11 C 44 λ 3 ( + 2 ) 1 12 C 12 C 44 λ 3 ( + )

Adding the three rows ( λ 2 11 + 2 λ12 ρ c1 )( p1 + p2 + p3) Characteristic equation: λ 2 11 + 2λ12 ρ c1 Wave speed (eigenvalue): c 1 λ + 2λ C + 2C + 4C ρ 3ρ 11 12 11 12 44 Polarization (eigenvector): p 1 p 2 p 3 ( 1/ 3) pure longitudinal mode Shear modes: p1 + p2 + p3 For example, p1 p2 and p3 ( p 1 is either 1/ 2 or 1/ 2). Characteristic equation: λ 2 11 λ12 ρ c

Wave speeds (eigenvalues): c C C C λ11 λ12 11 12 + 44 2 c3 ρ 3ρ (no birefringence) Polarization (eigenvector): p p p 1 2 and 3 in the (111) plane [1] [111] c 1c2 c 3 [1] [1] For Nickel, the pure longitudinal wave velocities are: [1] c 1 5,299 m/s [11] c 1 6,27 m/s [111] c 1 6,251 m/s isotropic c d 6,32 m/s

Anisotropy Factor for Cubic Crystals A 2C C 44 11 C12 Δ A 1 (zero for isotropic materials) For isotropic materials: A 1 3 Anisotropy Factor 2 1 Sodium Fluoride Yttrium Iron Garnet Fused Silica (Isotropic) Tungsten Aluminum Diamond Silicon Iron Nickel Gold Silver

Velocity Distributions in the (1) Plane Aluminum [1] longitudinal shear Nickel [1] [1] [1] (1 km/s per division)

Anisotropic Phenomena orientation-dependent acoustic velocity Specimen Longitudinal Transducer d A d B polarization-dependent transverse velocity (birefringence) Specimen Shear Transducer p B p A d skewed polarizations (quasi-modes) deviation between phase and energy directions (beam skewing), etc.

Birefringence "Fast" Mode "Slow" Mode o 22.5 o 45 o 67.5 o 9 o 2 2() cos ( θ2) ( ) c2 S t u t 2 3() cos ( θ3) ( ) c3 S t u t cos( θ 3) sin( θ 2) d St ut ut () cos 2( θ) ( ) + sin 2( θ) ( ) c2 c3 d d d

Quasi-Modes, Skewed Polarizations isotropic medium (no skewing, no birefringence) anisotropic medium (skewing, birefringence) y p L y p QL p QS2 p S p QS1 d x d x z z Particle orientations are always mutually orthogonal.

Huygens' Principle, Isotropic Case y θ P ( r, θ) x Time delay to P(r,θ) from source point at x: (,; r θ x) tr (,; θ x) (,; rθ xsr )(,; θ x) cr (,; θ x) tr (,; θ x) (,; rθ xs ) tr (,; θ x) ( r xsin θ ) s tr (,; θ x) x sin θ s θ (no skewing)

Huygens' Principle, Anisotropic Case xcosθ tr (,; θ x) (,; rθ xsr )(,; θ x) ( r xsin θ)( sθ ) r xcosθ s tr (,; θ x) ( r xsin θ)[() sθ ] r θ s tr (,; θ x) s() θ r xs()sin θ θ xcosθ θ tr (,; θ x) s s( θ)sinθ cosθ x θ 1 tan θ s s( θ ) θ θ (skewing) ray (group) direction Δθs( θ) d Δθ slowness curve s Δθ θ wave (phase) direction

Slowness Diagrams Velocity: c propagation distance propagation time Slowness: s propagation time propagation distance s c 1 Applications: wave direction is determined by the wave speed (group velocity, refraction, diffraction, scattering) velocity diagram Nickel slowness diagram [1] quasi-longitudinal true shear quasi-shear [1] [1] [1]

Wave (Phase) Direction vs Ray (Group) Direction 2D-case RQS2 wave direction RQS1 RQL In general, the three group directions (solid arrows) are different from the wave direction!

Ray Direction Analogy with dispersion: f f( ωt kx ) Phase velocity: c p ω k Group velocity: c g ω k x 3 c g c p γ slowness surface d x 2 x 1 Transmitter Beam Contour Phase Plane Phase Direction Ray Direction