Exact Duality and Magic Circles of the Dissipative Hofstadter Model

Similar documents
Boundary String Field Theory at One-loop

FREE FERMION REPRESENTATION OF A BOUNDARY CONFORMAL FIELD THEORY

TESTING ADS/CFT. John H. Schwarz STRINGS 2003

Exercise 1 Classical Bosonic String

Lecture 9: RR-sector and D-branes

8.821 F2008 Lecture 18: Wilson Loops

Lecturer: Bengt E W Nilsson

TOPIC V BLACK HOLES IN STRING THEORY

Quantum impurities in a bosonic bath

Planar diagrams in light-cone gauge

Topological insulator part II: Berry Phase and Topological index

Lecturer: Bengt E W Nilsson

Dynamics of heavy quarks in charged N = 4 SYM plasma

e θ 1 4 [σ 1,σ 2 ] = e i θ 2 σ 3

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates

Topological DBI actions and nonlinear instantons

Holographic study of magnetically induced QCD effects:

HIGHER SPIN CORRECTIONS TO ENTANGLEMENT ENTROPY

BFT embedding of noncommutative D-brane system. Abstract

Anomalies, Gauss laws, and Page charges in M-theory. Gregory Moore. Strings 2004, Paris. Related works: Witten , , ,

The Phase Diagram of the BMN Matrix Model

UNIVERSITY OF TOKYO. UTMS May 7, T-duality group for open string theory. Hiroshige Kajiura

Boundary States in IIA Plane-Wave Background

Théorie des cordes: quelques applications. Cours II: 4 février 2011

arxiv:hep-th/ v3 24 Apr 2007

t Hooft loop path integral in N = 2 gauge theories

S-Duality for D3-Brane in NS-NS and R-R Backgrounds

Problem Set 1 Classical Worldsheet Dynamics

Landau s Fermi Liquid Theory

Boundary conformal field theory and D-branes

Applications of AdS/CFT correspondence to cold atom physics

t Hooft Loops and S-Duality

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

Collective T-duality transformations and non-geometric spaces

Tachyon Condensation in String Theory and Field Theory

Spectrum of Holographic Wilson Loops

Cold atoms and AdS/CFT

Quantization of the open string on exact plane waves and non-commutative wave fronts

Spinning strings and QED

Introduction Calculation in Gauge Theory Calculation in String Theory Another Saddle Point Summary and Future Works

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi

Chapter 6. Boundary Conformal Field Theory. 6.1 The Free Boson with Boundaries Boundary Conditions

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator.

Cosmological solutions of Double field theory

Symmetries, Fields and Particles 2013 Solutions

Holographic Entanglement Entropy for Surface Operators and Defects

PCE STAMP. Physics & Astronomy UBC Vancouver. Pacific Institute for Theoretical Physics

1 Canonical quantization conformal gauge

Counting Schwarzschild and Charged Black Holes

D-Branes at Finite Temperature in TFD

Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up 2.2. The Relativistic Point Particle 2.3. The

Half BPS solutions in type IIB and M-theory

On Flux Quantization in F-Theory

Wilson Lines and Classical Solutions in Cubic Open String Field Theory

Lecture 2: Open quantum systems

Symmetries, Fields and Particles 2013 Solutions

Introduction to string theory 2 - Quantization

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Quantization of gravity, giants and sound waves p.1/12

On the world sheet we have used the coordinates τ,σ. We will see however that the physics is simpler in light cone coordinates + (3) ξ + ξ

Exact Quantization of a Superparticle in

Properties of monopole operators in 3d gauge theories

PhD in Theoretical Particle Physics Academic Year 2017/2018

Exact partition functions for the effective confining string in gauge theories

Holographic Wilsonian Renormalization Group

towards a holographic approach to the QCD phase diagram

γγ αβ α X µ β X µ (1)

Lecture 8: 1-loop closed string vacuum amplitude

AdS/CFT duality, spin chains and 2d effective actions

Elements of Topological M-Theory

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

AdS/CFT Correspondence and Entanglement Entropy

String/gauge theory duality and QCD

1 Polyakov path integral and BRST cohomology

Introduction to String Theory Prof. Dr. Lüst

Phase transitions in separated braneantibrane at finite temperature

Branes in Flux Backgrounds and Dualities

On gauge invariant observables for identity-based marginal solutions in bosonic and super string field theory

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21

New Phenomena in 2d String Theory

Théorie des Cordes: une Introduction Cours VII: 26 février 2010

Snyder noncommutative space-time from two-time physics

Covariant Gauges in String Field Theory

Covariant quantization of a relativistic string

CP n supersymmetric mechanics in the U(n) background gauge fields

Lecture 7 SUSY breaking

Cold atoms and AdS/CFT

1 Covariant quantization of the Bosonic string

arxiv:hep-th/ v3 16 May 1996

1 Classical free string

M-Theory and Matrix Models

N = 2 heterotic string compactifications on orbifolds of K3 T 2

Topological Ward Identity and. Anti-de Sitter Space/CFT Correspondence

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Knot Contact Homology, Chern-Simons Theory, and Topological Strings

Non-associative Deformations of Geometry in Double Field Theory

Generalized N = 1 orientifold compactifications

Kangwon National University

Introduction to defects in Landau-Ginzburg models

Transcription:

Exact Duality and Magic Circles of the Dissipative Hofstadter Model Taejin Lee 1,2, G. Semenoff 3, P. Stamp 3 Seungmuk Ji 1, M. Hasselfield 3 Kangwon National University 1 CQUeST 2 PiTP (UBC) 3 Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 1 / 32

References T. Lee and G. W. Semenoff Fermion representation of the rolling tachyon boundary conformal field theory, JHEP 0505, 072 (2005) [hep-th/0502236]. M. Hasselfield, Taejin Lee, G.W. Semenoff, P.C.E. Stamp Critical Boundary Sine-Gordon Revisited in press, Ann. Phys. (2006) [hep-th/0512219] Seungmuk Ji, Ja-Yong Koo and T. Lee Dissipative Hofstadter Model at the Magic Points and Critical Boundary Sine-Gordon Model in press, Jour. Korean Phys. Soc. (2006) Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 2 / 32

I. Introduction Classical dissipative system: EQ of motion M d 2 q dt 2 + η dq dt + dv dq = 0 η: friction coefficient Microscopic action by Calderia-Leggett [ ( ) M dq 2 S = dt V (q) 2 dt ( + 1 (dxα ) ) 2 m α ω 2 2 dt αxα 2 α q α C α x α ] x α : bath of an infinite number of degrees of freedom or an environment (Calderia-Leggett, 1981, 1983) Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 3 / 32

Classical equation of motion M d 2 q dt 2 = dv dq α C α x α, m α d 2 x α dt 2 = m α ω 2 αx α C α q Solving for x α, (Fourier transformed) Mω 2 q(ω) = dv dq (ω) + K (ω) q(ω) K (ω) = α C 2 α ω 2 m α ωα 2 ω 2 ωα 2 Density of states J(ω) = π 2 α C 2 α m α ω α δ(ω ω α ), J(ω) = Im K (ω). Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 4 / 32

Ohmic condition J(ω) = ηω Frictional term Mω 2 q(ω) dv = (ω) + iηω q(ω) dq Quantum Mechanics: Non-local interaction [ ] dω S CL = dtdt ω t q(t) J(ω)e q(t ) 2π Imposing the Ohmic condition S CL = η 4π dtdt (q(t) q(t )) 2 (t t ) 2 Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 5 / 32

II. Dissipation and Boundary State String (boundary) theory: t σ [ π, π] S η [X] = = 1 4 π π π dσ π dσ π π dσ (X(σ) X(σ )) 2 (σ σ ) 2 dσ (X(σ) X(σ )) 2 sin 2 (σ σ ) 2 = 4π 2 α n x n x n where α 1 X(σ) = x + (x n e inσ + x n e inσ), 2 n n=1 Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 6 / 32

Boundary State X = n { exp 1 } 2 x n x n a nã n + a nx n + x n ã n 0 0 X = e Sη[X] Partition Function Z = ( D[X] exp S η + ) dσv [X] = Z Disk = 0 B, ( B = D[X] exp ) dσv [X] X (Callan and Thorlacius, 1990) Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 7 / 32

Boundary State Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 8 / 32

III. Schmid Model Caldeira-Leggett model with a periodic potential S SM = η T /2 4π dtdt (X(t) X(t )) 2 (t t ) 2 T /2 T /2 V 0 T /2 dt cos 2πX a. String theory where t = T 2π σ, X a 2π X S SM = η ( a ) 2 π 4π 2π V 0 T 2π π π (X(σ) X(σ ))2 dσdσ (σ σ ) 2 π dσ 1 2 ( e ix + e ix ). Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 9 / 32

Comparison: η ( a ) 2 1 = 4π 2π 8π 2 α, V 0 T 2π = g 2, 1 α = α Renormalization Critical Point: ( µ 1/α 1 g 0 (µ) = g 0 (Λ) Λ) α = α = 1 This is also the self-dual point of the duality (Schmid 1983) α 1/α At the critical point S SM coincides with the full brane action of the rolling tachyon Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 10 / 32

IV. Schmid Model at Critical Point: Fermionization Fermion in terms of boson ψ L (0, σ) = : e i 2φ L : = e P n=1 1 n einσ α n e ix L e iσ(p L+ 1 2 ) e P n=1 1 n e inσ α n In order to rewrite the potential using fermion fields, we need to introduce an auxiliary boson φ 1 = 1 2 (X + Y ), φ 2 = 1 2 (X Y ) (Polchinski and Thorlacius (1994) for open string) Fermions: ψ 1L (z) = ζ 1L : e 2iφ 1L (z) : ψ 2L (z) = ζ 2L : e 2iφ2L (z) : ψ 1R ( z) = ζ 1R : e 2iφ1R ( z) : ψ 2R ( z) = ζ 2R : e 2iφ 2R ( z) : where ζ L/R are co-cycles (Lee and Semenoff (2005): boundary state formulation) Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 11 / 32

Boundary condition for bosons: [ 1 2π τ X(0, σ) + i g 2 eix(0,σ) i ḡ ] 2 e ix(0,σ) B, D = 0 Y (0, σ) B, D = 0 Note: B, D = Boundary state for X Boundary state for Y. Boundary condition for fermions: [ ( : ψ L σ3 ψ L : : ψ R σ3 ψ R : +πgψ L 1 + σ 3) ψ R πḡψ L (Hasselfield, Lee, Semenoff and Stamp, 2006) (1 σ 3) ψ R ] B, D = 0 Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 12 / 32

V. Exact Boundary State for Schmid Model at Critical Point Gluing condition = Boundary condition ( ) ψ R (0, σ) + iσ 1 Uψ L (0, σ) BD > = 0 ( ψ R (0, σ) + ψ L (0, σ)u 1 iσ 1) BD > = 0 If we choose ( U = e 2πiA 1 π 2 gḡ iπḡ iπg e 2πiA 1 π 2 gḡ ) where A is topological parameter. U is unitary when A is real, ḡ = g, g < 1/π Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 13 / 32

Exact Boundary State in the NS-sector BD > NS = ] exp [ψ r U 1 iσ 1 ψ r ψ r iσ1 Uψ r 0 > r= 1 2 and in the R-sector BD > R = n=1 ] exp [ψ n U 1 iσ 1 ψ n ψ n iσ1 Uψ n ] exp [ψ 0 U 1 iσ 1 ψ0 + + > Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 14 / 32

VI. Exact Calculation of Mobility Mobility: 0 X (σ)x (σ ) B, D where X = J 3 L + J3 R We choose B, D = B, D NS since 0 belongs to the NS-sector Some exact calculations: 0 JL 3 (σ)j3 R (σ ) B, D = 1 16 tr(σ3 U 1 σ 1 σ 3 σ 1 U) sin 2 (σ σ ) 2 [ ] 0 JL 3 (σ)j3 L (σ ) + JR 3 (σ)j3 R (σ ) B, D = 1 (σ 4 sin 2 σ ) 2 Exact Result 0 X (σ)x (σ ) B, D = 1 2 (1 π2 gḡ) sin 2 (σ σ ) 2 Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 15 / 32

Remarks The mobility does not depend on the topological parameter A The result does not agree with the previous works of Callan and Freed (1991) and Callan, Felce and Freed (1992) which employed the bosonic theory. The mobility has been also calculated by Callan, Klebanov, Maldacena and Yegulalp (1995). But the renomalization effect due to the ordering of operators has been ignored. If it is properly renormalized, their result reduces to the exact result obtained here e R ( g 2 ψ 1 L 2 (1+σ3 )ψ R + ḡ 2 ψ L 1 2 (1 σ3 )ψ R ) ND > = e χ(g,ḡ ) e i R ( g 2 ψ L σ+ ψ L + ḡ 2 ψ L σ ψ L ) ND > sin 2 π ḡ g = π 2 g ḡg, ḡ = ḡ g Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 16 / 32

VII. Dissipative Hofstadter Model The Dissipative Hofstadter Model (Wannier-Azbel-Hofstadter (WAH) Model): Electron moving in two dimensions subjects to a magnetic field, a square lattice potential and dissipative force Phase transitions between localized and delocalized long-time behavior of the electron: Phase diagram is fractal Applications: Quantum dynamics of SQUID, Josephson junction, Polaronic motion through conductors, Tunneling in QM Hall System, New solutions of open string theory in non-trivial background of tachyons and gauge fields String theory (Rolling Tachyon): Decay of unstable D-brane in the presence of NS B-field. Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 17 / 32

Dissipative Hofstadter Model The Action Choosing S DHM = η T /2 4π + ieb H 2 c V 0 T /2 T /2 T /2 T /2 T /2 t = T 2π σ, ( X dtdt i (t) X i (t ) ) 2 (t t ) 2 dt ( t X 1 X 2 t X 2 X 1) dt (cos 2πX 1 a X i a 2π X i, and introducing dimensionless parameters 2πα = ηa2, 2πβ = eb H c a2, + cos 2πX 2 ). a g = V 0T π Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 18 / 32

VIII. Boundary State for DHM we get where α = 1/α, S DHM = α π 8π 2 β +i 4π g 2 β = 2πB π π π π π ( X dσdσ i (σ) X i (σ ) ) 2 (σ σ ) 2 dσ ( σ X 1 X 2 σ X 2 X 1) dσ ( cos X 1 + cos X 2). It appears in string theory as an action for the open string in the background of the magnetic field and the tachyon potential Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 19 / 32

String Theory S = 1 4πα i gπ 2 d 2 ξe ij ( τ + σ )X i ( τ σ )X j dσ (e ) ix i + e ix i 2π M i where E ij = (g + 2πα B) ij. Boundary State { } B = D[x, x] exp S DHM [x, x] a nã n + a nx n + x n ã n 0 α where X(σ) = x + 2 n=1 1 ( xn n e inσ + x n e inσ). Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 20 / 32

In the absence of the periodic potentials B reduces to B E which satisfies (δ ij τ X j βα ɛ ij σ X j ) B E = 0. B E = det E exp ( n=1 1 ( ) ) n αi n g(e) 1 E T α j n 0 ij Boundary state in the presence of the tachyon potential [ dσ ( B = exp gπ e ix 1 + e ix 1 + e ix 2 + e ix 2)] B E M 2π ( g ) n 1 n = dσ 1... dσ n exp [ iq j X(σ j ) ] B E 2 n! n=0 q j =±i,±j j=1 Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 21 / 32

IX. Magic Circles O(2, 2, R) Transformation: T-dual Transformation α i n = (G(E) 1) i jβn, j α n i = (G(E T ) 1) i j β j n In terms of the new oscillator basis the boundary condition for B E is transcribed into the Neumann condition ( ) β n i + β n i B E = 0. The oscillators {β, β} respect the world-sheet metric G ( ) 2 G = E T E = 1 + β α 0 ( ) 2 0 1 + β α [ ] βn, i βm j = (G 1 ) ij nδ(n + m), [ β n, i β m] j = (G 1 ) ij nδ(n + m) Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 22 / 32

L = = 1 4πα E ij ( τ + σ ) X i ( τ σ ) X j 1 4πα G ij ( τ + σ ) Z i ( τ σ ) Z j where α Z i (0, σ) = x i + ω i 1 ( ) σ + i βn i β n i e inσ 2 n n 0 Relation between two oscillator bases is summarized as X i (σ) = (δ ij βα ) ɛij Z (δ jl (σ) + ij + βα ) ɛij Z j R (σ) Boundary state B E B E = det E n=1 exp ( 1 ) n βi ng ij β j n 0. Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 23 / 32

Note B = n 1 ( g ) n n n! 2 j=1 dσ j exp [ iq j X(σ j ) ] B E Using the Baker-Hausdorff Lemma, e A e B = e B e A e [A,B], n exp [ iq j X(σ j ) ] B E j=1 = exp [iq n X(σ n )]... exp [iq 1 X(σ 1 )] B E = exp iπq i (2πα 2 BG 1 ) q j sign(σ i σ j ) i>j n exp [ iq j Z(σ j ) ] B E j=1 Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 24 / 32

By some algebra exp i>j iπq i (2πα 2 BG 1 ) q j sign(σ i σ j ) = exp i>j = exp i β ( ) iπ α 2 + β 2 qi 1 qj 2 qi 2 qj 1 sign(σ i σ j ) β 2πi α 2 + β 2 q1 i. σ i >σ j q 2 j Magic circles: Since qi 1, qi 2 = 0, ±1 for i = 1, 2, if is an α 2 +β 2 integer, this phase due to the magnetic field reduces to 1. ( α 2 + β 1 ) 2 ( ) 1 2 =, n Z 2n 2n β Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 25 / 32

On the magic circles, the dissipative Hofstadter model can be mapped into the boundary sine-gordon model. exp ( S DHM ) = D[Z ] [ exp 1 4πα dτdσg ij ( τ + σ ) Z i ( τ σ ) Z j M + g ( dσ e iz 1 + e iz 1 + e iz 2 + e iz 2)]. 2 M Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 26 / 32

X. Critical Circle It may be convenient to scale β i, β i and G such that β i n α β i n, β i α β i, G 1 α G = ( α 2 +β 2 α 0 α 0 2 +β 2 α ). The points where the effective world-sheet metric becomes a unit metric forms a circle called the critical circle"; α 2 + β 2 α = 1. Magic Points: The points where the magic circles meet the critical circle, are magic points. At the magic points the DHM is equivalent to a set of two independent critical boundary sine-gordon models. Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 27 / 32

Figure: Critical Circles Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 28 / 32

XI. Exact Duality Two DH models are equivalent if the following conditions are satisfied: exp β 2πi α 2 + β 2 q1 i q 2 j i σ i >σ j = exp β 2πi ᾱ 2 + β 2 q1 i q 2 j i σ i >σ j or Same metric β α 2 + β 2 β = n, n Z ᾱ 2 + β 2 αg(α, β) ij = ᾱg(ᾱ, β) ij or α 2 + β 2 α = ᾱ2 + β 2 ᾱ Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 29 / 32

T-Dual Transformation Both conditions can be summarized as 1 z = 1 + ni, where z = α + βi, z = ᾱ + βi z O(2, 2, R) Transformation ( a b c d E = (ae + b)(ce + d) 1 ) T ( ) ( ) 0 I a b = I 0 c d ( 0 I I 0 ). The left and right movers transform as α n (E) (d ce T ) 1 α n (E ), α n(e) α n(e )(d T Ec T ) 1, α n (E) (d + ce) 1 α n (E ), α n(e) α n(e )(d T + E T c T ) 1 Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 30 / 32

T-dual transformation from the DH model with (α, β) and that with (ᾱ, β): ( ) ( ) T 1 I 0 I 0 (ᾱ, β)t (α, β) = ᾱ β αβ ᾱ 2 + β ɛ I ɛ I 2 α 2 +β ( 2 ) I 0 = ( ) αβ ᾱ β ɛ I α 2 +β 2 ᾱ 2 + β 2 The periodic boundary potential is invariant under this T-dual transformation. Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 31 / 32

XII. Summary The dissipative Hofstadter model describes quantum particles moving in two dimensions subject to a uniform magnetic field, a periodic potential and a dissipative force. We discuss the dissipative Hofstadter model in the framework of the boundary state formulation in string theory and construct exact boundary states for the model at the magic points using the fermion representation. The exact duality of the dissipative Hofstadter model is shown to be equivalent to the subgroup of T-duality symmetry group in string theory unbroken by the boundary periodic potential. Taejin Lee (KNU) Exact Duality and Magic Circles Banff 2006. 8. 1 32 / 32