Yu-Hao Liang Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

Similar documents
Exact multiplicity results for a p-laplacian problem with concave convex concave nonlinearities

AP Exercise 1. This material is created by and is for your personal and non-commercial use only.

AIMS OES - Author - Decision

Exact multiplicity of boundary blow-up solutions for a bistable problem

Stochastic integral. Introduction. Ito integral. References. Appendices Stochastic Calculus I. Geneviève Gauthier.

Turán s problem and Ramsey numbers for trees. Zhi-Hong Sun 1, Lin-Lin Wang 2 and Yi-Li Wu 3

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112

arxiv: v1 [math.ap] 29 May 2018

ON THE MULTIPLICITY OF EIGENVALUES OF A VECTORIAL STURM-LIOUVILLE DIFFERENTIAL EQUATION AND SOME RELATED SPECTRAL PROBLEMS

Discrete Mathematics, Spring 2004 Homework 9 Sample Solutions

PLUMBING NOTES: ALL NATURAL GAS APPURTENANCES. COMPONENT IMPORTANCE FACTOR (Ip) NOTES FLOOR MOUNTED RESTRAIN ALL RESTRAIN ALL - 1, 2

INTRODUCTION TO ALGEBRAIC TOPOLOGY. (1) Let k < j 1 and 0 j n, where 1 n. We want to show that e j n e k n 1 = e k n e j 1

THE EXISTENCE OF GLOBAL ATTRACTOR FOR A SIXTH-ORDER PHASE-FIELD EQUATION IN H k SPACE

Name (please print) Mathematics Final Examination December 14, 2005 I. (4)

Better bounds for k-partitions of graphs

Brownian Motion and Conditional Probability

Theory of Computation

Topological properties

ON HOW TO CONSTRUCT LEFT SEMIMODULES FROM THE RIGHT ONES

201B, Winter 11, Professor John Hunter Homework 9 Solutions

Sequences and Series

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

Estimation of parametric functions in Downton s bivariate exponential distribution

NOTES ON VECTOR-VALUED INTEGRATION MATH 581, SPRING 2017

Limiting behaviour of moving average processes under ρ-mixing assumption

Solutions Final Exam May. 14, 2014

Lemma 15.1 (Sign preservation Lemma). Suppose that f : E R is continuous at some a R.

A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES

ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION SPACES ABSTRACT

Partial cubes: structures, characterizations, and constructions

NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS

Technical Appendix to "Sequential Exporting"

2019 Spring MATH2060A Mathematical Analysis II 1

arxiv: v1 [math.pr] 6 Jan 2014

Georgian Mathematical Journal 1(94), No. 4, ON THE INITIAL VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL SYSTEMS

BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION

Decomposing oriented graphs into transitive tournaments

REAL AND COMPLEX ANALYSIS

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

Existence of homoclinic solutions for Duffing type differential equation with deviating argument

a i,1 a i,j a i,m be vectors with positive entries. The linear programming problem associated to A, b and c is to find all vectors sa b

TABLE -I RAINFALL RECORDED AT PORT BLAIR (MM) FROM 1949 TO 2009

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator

Solutions for Homework Assignment 2

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

PRODUCT OF OPERATORS AND NUMERICAL RANGE

Fuzzy and Non-deterministic Automata Ji Mo ko January 29, 1998 Abstract An existence of an isomorphism between a category of fuzzy automata and a cate

Abstract. In the paper, a particular class of semimodules typical for additively idempotent

!"#$%&'(&)*$%&+",#$$-$%&+./#-+ (&)*$%&+%"-$+0!#1%&

Online Appendix for Multiproduct-Firm Oligopoly: An Aggregative Games Approach

JUNXIA MENG. 2. Preliminaries. 1/k. x = max x(t), t [0,T ] x (t), x k = x(t) dt) k

arxiv: v3 [math.dg] 19 Jun 2017

Giaccardi s Inequality for Convex-Concave Antisymmetric Functions and Applications

Factorization of weighted EP elements in C -algebras

COMPLETION OF A METRIC SPACE

(2.1) m p (L- s ) sin 0 ds = rn + dm, (2.2) m -EI ds"

IDEAL AMENABILITY OF MODULE EXTENSIONS OF BANACH ALGEBRAS. M. Eshaghi Gordji, F. Habibian, and B. Hayati

NETWORK THEORY (BEES2211)

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4].

Existence Theory for the Isentropic Euler Equations

Natural Boundary Integral Method and Its Applications

Global Asymptotic Stability of a Nonlinear Recursive Sequence

Research Article Frequent Oscillatory Behavior of Delay Partial Difference Equations with Positive and Negative Coefficients

Moore-Penrose-invertible normal and Hermitian elements in rings

arxiv: v2 [math.ap] 14 May 2016

Math 421, Homework #7 Solutions. We can then us the triangle inequality to find for k N that (x k + y k ) (L + M) = (x k L) + (y k M) x k L + y k M

Series of Error Terms for Rational Approximations of Irrational Numbers

All Ramsey numbers for brooms in graphs

Formal Groups. Niki Myrto Mavraki

AN APPROXIMATION ALGORITHM FOR COLORING CIRCULAR-ARC GRAPHS

MA651 Topology. Lecture 10. Metric Spaces.

Analytical formulas for calculating the extremal ranks and inertias of A + BXB when X is a fixed-rank Hermitian matrix

Gluing linear differential equations

arxiv: v1 [math.ca] 12 Feb 2010

On weak solution approach to problems in fluid dynamics

A diamagnetic inequality for semigroup differences

Positive solutions for a class of fractional boundary value problems

Consequences of Continuity and Differentiability

Laplace Transforms Chapter 3

and monotonicity property of these means is proved. The related mean value theorems of Cauchy type are also given.

MEAN VALUE THEOREMS FOR SOME LINEAR INTEGRAL OPERATORS

FUNDAMENTALS OF REAL ANALYSIS by. IV.1. Differentiation of Monotonic Functions

Hyperbolic Problems: Theory, Numerics, Applications

ONLINE APPENDIX TO: NONPARAMETRIC IDENTIFICATION OF THE MIXED HAZARD MODEL USING MARTINGALE-BASED MOMENTS

(i) The optimisation problem solved is 1 min

MATH 5640: Fourier Series

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

This is a submission to one of journals of TMRG: BJMA/AFA EXTENSION OF THE REFINED JENSEN S OPERATOR INEQUALITY WITH CONDITION ON SPECTRA

NON-MONOTONICITY HEIGHT OF PM FUNCTIONS ON INTERVAL. 1. Introduction

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 131A: REAL ANALYSIS (BIG IDEAS)

2.4 Algebra of polynomials

ON THE OSCILLATION OF THE SOLUTIONS TO LINEAR DIFFERENCE EQUATIONS WITH VARIABLE DELAY

The WhatPower Function à An Introduction to Logarithms

PM functions, their characteristic intervals and iterative roots

On complete convergence and complete moment convergence for weighted sums of ρ -mixing random variables

Strongly Consistent Multivariate Conditional Risk Measures

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

On Strongly Prime Semiring

Appendix A. Math Reviews 03Jan2007. A.1 From Simple to Complex. Objectives. 1. Review tools that are needed for studying models for CLDVs.

Transcription:

Detail proofs of some results in the article: Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions Yu-Hao Liang Department of Applied Mathematics, National Chiao Tung University, Hsinchu 3, Taiwan Shin-Hwa Wang Department of Mathematics, National Tsing Hua University, Hsinchu 3, Taiwan In this article, we give detail proofs of Lemma 3.1(I)(ii) (I)(iv), (I)(vi) (I)(viii), (I)(x) (I)(xv) and (III)(v) (III)(ix) in the article Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions 1], where these proofs are not given. To start with, we recall some definitions of functions and Lemma 3.1 therein. Remark that following labels (3.5) and (3.7) (3.19) are consistent with those in 1]. Define f(s) = exp ( ) as s a+s, F(s) = f(t)dt, θ(s) = 2F(s) sf(s) and P 1 (ρ,s) = ρf(ρ) sf(s) F(ρ) F(s), P 2(ρ,s) = ρ2 f (ρ) s 2 f (s) ρf(ρ) sf(s). (3.5) Lemma 3.1. Define M 1 (ρ) = ρf(ρ) F(ρ) for ρ >, (3.7) M 2 (ρ) = ρf (ρ) f(ρ) = a2 ρ for ρ, (3.8) (a+ρ) 2 Q(ρ,s) = θ(ρ) θ(s)+m 1 (ρ)f(ρ) F(s)] for s ρ, (3.9) This work is partially supported by the Ministry of Science and Technology of the Republic of China. Corresponding author. E-mail addresses: moonsea.am96g@g2.nctu.edu.tw (Y.-H. Liang), shwang@math.nthu.edu.tw (S.-H. Wang). 1

November 4, 215 R(ρ,s) = 2θ(ρ) θ(s)] f(ρ) F(ρ) ρ F(ρ) F(s)] 3/2 ρ s for s < ρ, (3.1) 8 3 K 1 (ρ) = ρ2 + 2ρ+1 3 4 3 ρ2 + 1 51 1 (16ρ 3) for ρ, (3.11) ρ+ 5 3 5 ( 8 K 2 (ρ) = 3 132a+165 ) ρ 2 + 2 ρ+1 for ρ, (3.12) 5a+25 3 ] K 3 (ρ) = M 1 (ρ)+2ρ f(ρ) f (ρ) for ρ >, (3.13) f(ρ) L 1 (ρ,s) = 8 25 s M 2(s) 8 F(ρ) F(s) +M 1 (ρ) 1 for s ρ, (3.14) 25 f(s) L 2 (ρ,s) = P 1 (ρ,s) 8 25 s M 1(ρ) for s < ρ, (3.15) L 3 (ρ,s) = P 2 (ρ,s) 3 2 P 1(ρ,s)+ 37 25 Then the following assertions (I) (III) hold: (I) For a >, the following assertions (i) (xv) hold: for s < ρ. (3.16) (i) f(ρ,a)(= f(ρ)) is a strictly increasing function of ρ on, ) and of a on (, ) when the other variable is fixed. Moreover, 1 < f(ρ) < min{e ρ,e a for ρ,a >. (ii) M 2 (ρ) < M 1 (ρ) for ρ >. (iii) 1 < 1 2 M 2(ρ)+2] < M 1 (ρ) for ρ >. (iv) M 1 (ρ) < M 2 (ρ)+1 for < ρ a. (v) M 1 (ρ) is strictly increasing on (,a]. (vi) M 2 (ρ) satisfies M 2(ρ) = a2 (a ρ) (a+ρ) 3 and M 2 (ρ) M 2 (a)(= a/4) for ρ >. > when ρ (,a), = when ρ = a, < when ρ (a, ), (3.17) (vii) P 1 (ρ,) = M 1 (ρ), lim s ρ P 1 (ρ,s) = M 2 (ρ)+1 for ρ > and lim ρ s +P 1 (ρ,s) = M 2 (s)+1 for s. (viii) P 1 (ρ,s) > 1 for s < ρ. (ix) For < ρ a, P 1 (ρ,s) is a strictly increasing function of s on,ρ). Moreover, M 1 (ρ) P 1 (ρ,s) < M 2 (ρ)+1 for s < ρ a, where the equality holds if and only if s =. (x) For s < a, P 1 (ρ,s) is a strictly increasing function of ρ on (s,a]. Moreover, P 1 (ρ,s) > M 2 (s)+1 for s < ρ a. (xi) P 2 (ρ,) = M 2 (ρ) and lim s ρ P 2 (ρ,s) = 2ρf (ρ)+ρ 2 f (ρ) f(ρ)+ρf (ρ) for ρ >. 2

November 4, 215 (xii) M 2 (ρ) < P 2 (ρ,s) for < s < ρ a. (xiii) Q(ρ,s) > for s < ρ. ] f(ρ) (xiv) + M 2(ρ)+1 f(ρ) > for < ρ a. F(ρ) F(ρ) 2ρ (xv) For ρ >, M 1 (ρ,a) and M 2 (ρ,a) are both strictly increasing functions of a on (, ). (II) For < a a (.51), R(ρ,s) > for s < ρ. Here a is the unique positive zero of a/2 e a a/4+1+2. (3.18) (III) For a 4, the following assertions (i) (ix) hold: (i) R(ρ,s) < for ρ a and s < ρ. (ii) For < ρ < a, R(ρ,s) > for < s < ρ if ρ satisfies 21 M 2 (ρ)] f(ρ) M 1 (ρ) > ; while R(ρ,s) < for < s < ρ if ρ satisfies 22 M 1 (ρ)] f(ρ) <. (iii) R(ρ,s) > for s < ρ ρ 1. Here ρ 1 (.286) > 7/25 =.28 is the unique positive zero of 2(1 ρ) ρe 3ρ /(e ρ 1). (iv) R(1/2,s) < for s < 1/2. (v) K 1 (ρ) < M 1 (ρ) < K 2 (ρ) for 1/4 ρ 1/2. (vi) K 3 (ρ) < M 1 (ρ)+ 132a+165 5a+25 ρ2 for 1/4 ρ 1/2. (vii) For any ρ 1/4,1/2], there exists a unique positive s (= s (ρ,a)) on (,ρ) such that > when s (,s ), L 1 (ρ,s) = when s = s, < when s (s,ρ]. (viii) L 2 (ρ,s) for 1/4 ρ 1/2 and s < ρ. (ix) L 3 (ρ,s) for 7/25 ρ 1/2 and s < ρ. (3.19) Proof of Lemma 3.1. In the following, we would give detail proofs of Lemma 3.1 for parts (I)(ii) (I)(iv), (I)(vi) (I)(viii), (I)(x) (I)(xv) and (III)(v) (III)(ix). Proof of Lemma 3.1(I)(ii). Let n 1 (ρ) (a+ρ) 2F(ρ) ρ = (a+ρ) 2F(ρ) ρ = (a+ρ) 2 f(ρ) a 2 F(ρ) M 1 (ρ) M 2 (ρ)] ] ρf(ρ) F(ρ) a2 ρ (a+ρ) 2 (by (3.7) and (3.8)) 3

November 4, 215 for ρ >. Then we compute that lim ρ + n 1 (ρ) = a 2 > and n 1(ρ) = 2(a+ρ)f(ρ) > for ρ >. It implies that, for ρ >, n 1 (ρ) > and hence M 1 (ρ) > M 2 (ρ). Hence the proof of Lemma 3.1(I)(ii) is complete. Proof of Lemma 3.1(I)(iii). First, for ρ >, 1 2 M 2(ρ)+2] > 1 since M 2 (ρ) > by (3.8). Next, we show that 1 2 M 2(ρ)+2] < M 1 (ρ) for ρ >. Let n 2 (ρ) for ρ >. Then we compute that n 2 () = and ρf(ρ) 1 M 2 2(ρ)+2] F(ρ) = ρf(ρ) 1 2 ρf (ρ)/f(ρ)+2] F(ρ) n 2 (ρ) = a 2 ρ 2 (4ρ+a 2 +4a) (2ρ 2 +a 2 ρ+4aρ+2a 2 ) 2f(ρ) > forρ >. Itimpliesthat,forρ >,n 2 (ρ) > andhence 1 2 M 2(ρ)+2] < M 1 (ρ) (= ρf(ρ)/f(ρ)) by (3.7). Hence the proof of Lemma 3.1(I)(iii) is complete. Proof of Lemma 3.1(I)(iv). Let n 3 (ρ) ρf(ρ) M 2 (ρ)+1 F(ρ) = for ρ >. Then we compute that n 3 () = and ρf(ρ) ρf (ρ)/f(ρ)+1 F(ρ) n 3 (ρ) = a 2 ρ(a 2 ρ 2 ) (ρ 2 +a 2 ρ+2aρ+a 2 ) 2f(ρ) < for < ρ < a. It implies that, for < ρ a, n 3 (ρ) < and hence M 1 (ρ) (= ρf(ρ)/f(ρ)) < M 2 (ρ)+1 by (3.7). Hence the proof of Lemma 3.1(I)(iv) is complete. Proof of Lemma 3.1(I)(vi). The proof is trivial and hence it is omitted. Proof of Lemma 3.1(I)(vii). The first equality in the statement of Lemma 3.1(I)(vii) is clear while the second and the third ones follow from the L Hôspital s rule directly. Proof of Lemma 3.1(I)(viii). By integration by parts, we have that, for s < ρ, F(ρ) F(s) = ρ f(t)dt = ρf(ρ) sf(s) ρ s s tf (t)dt < ρf(ρ) sf(s)sincef (t) = a2 f(t) > (a+t) 2 for t >. Hence P 1 (ρ,s) > 1 by (3.5), which completes the proof of Lemma 3.1(I)(viii). Proof of Lemma 3.1(I)(x). Fix s on,a). Then we compute that ρ P 1(ρ,s) = f(ρ){m 2(ρ)+1] P 1 (ρ,s) > F(ρ) F(s) for s < ρ a by Lemma 3.1(I)(ix). Hence, for s < a, P 1 (ρ,s) is a strictly increasing function of ρ on (s,a]. It implies that P 1 (ρ,s) > lim ρ s +P 1 (ρ,s) = M 2 (s) + 1 for s < ρ a by Lemma 3.1(I)(vii). Hence the proof of Lemma 3.1(I)(x) is complete. Proof of Lemma 3.1(I)(xi). The first equality in the statement of Lemma 3.1(I)(xi) is clear while the second one follows from the L Hôspital s rule directly. Proof of Lemma 3.1(I)(xii). By (3.5) and (3.8), for < s < ρ a, we compute that P 2 (ρ,s) M 2 (ρ) = ρ2 f (ρ) s 2 f (s) ρf(ρ) sf(s) ρf (ρ) f(ρ) = sf(s)m 2(ρ) M 2 (s)] >, ρf(ρ) sf(s)] 4

November 4, 215 since M 2 (ρ) is strictly increasing on (,a] by (3.17). Hence the proof of Lemma 3.1(I)(xii) is complete. Proof of Lemma 3.1(I)(xiii). Weprovethat Q(ρ,s) = θ(ρ) θ(s)+m 1 (ρ)f(ρ) F(s)] > for s < ρ in the following three cases. Case 1: s < ρ a. We compute that Q(ρ,s) = F(ρ) F(s)]M 1 (ρ)+2 P 1 (ρ,s)] F(ρ) F(s)]{M 1 (ρ)+2 M 1 (ρ)+1] (by Lemma 3.1(I)(ii) and (I)(ix)) = F(ρ) F(s) >. (3.2) Case 2: s a < ρ. Note first that, since Q(a,s) > for s < a by (3.2) and Q(a,a) = by (3.9), we have that Q(a,s) for s a. Moreover, we compute that ρ F(ρ)Q(ρ,s)] = f(ρ)4f(ρ) 3F(s)+sf(s) M 2(ρ)F(s)] f(ρ)4f(a) 3F(s)+sf(s) M 2 (a)f(s)] (by (3.17)) f(ρ)n 4 (s), wheren 4 (s) = 4F(a) 3F(s)+sf(s) M 2 (a)f(s). Sincen 4 (a) = F(a)1+M 1 (a) M 2 (a)] > by (3.7) and Lemma 3.1(I)(ii) and since n 4 (s) = f(s) 2+M 2(s) M 2 (a)] 2f(s) < for < s < a by (3.17), we have that n 4 (s) > for s a. It follows that F(ρ)Q(ρ,s)] > for s a < ρ. Combining the fact with F(a)Q(a,s) for ρ s a as claimed above, we have that Q(ρ,s) > for s a < ρ. Case 3: a < s < ρ. Fix ρ > a. Suppose it is not true that Q(ρ,s) >, then there exists some s on (a,ρ) such that Q(ρ,s ). Note first that, by the result from Case 2 with s = a, we have that Q(ρ,a) >. On the other hand, since Q(ρ,ρ) = by (3.9) and lim s ρ s Q(ρ,s) = f(ρ)1+m 1(ρ) M 2 (ρ)] < by Lemma 3.1(I)(ii), there exists some s 1 on (s,ρ) such that Q(ρ,s 1 ) >. Hence Q(ρ,s ) < min{q(ρ,a), Q(ρ,s 1 ).It implies that Q(ρ,s) on a,s 1 ] has its global minimum at some point s 2 on (a,s 1 ). However, we compute that, for a < s < ρ, s Q(ρ,s) = f(s)1+m 1(ρ) M 2 (s)], 2 s 2Q(ρ,s) = f (s)1+m 1 (ρ) M 2 (s)]+f(s)m 2(s) = a2 (s+a) 2f(s)1+M 1(ρ) M 2 (s)] f(s) a2 (s a) (by (3.17)) (a+s) 3 a 2 (s a) = (s+a) 2 s Q(ρ,s) f(s)a2 (a+s), 3 which implies that 2 s 2 Q(ρ,s 2 ) = f(s 2 ) a2 (s 2 a) (s 2 +a) 3 < since s Q(ρ,s 2) =. Consequently, s 2 can not be a local minimum point, and we get a contradiction. Hence Q(ρ,s) > for a < s < ρ. 5

November 4, 215 By Cases 1 3, we complete the proof of Lemma 3.1(I)(xiii). Proof of Lemma 3.1(I)(xiv). For < ρ a, we compute that, by (3.7) and (3.8), ] f(ρ) + M 2(ρ)+1 F(ρ) 2ρ Hence the proof of Lemma 3.1(I)(xiv) is complete. f(ρ) = f(ρ) F(ρ) 2ρ F(ρ) 3M 2(ρ)+1 M 1 (ρ)] > f(ρ) 2ρ F(ρ) {3M 2(ρ)+1 M 2 (ρ)+1] (by Lemma 3.1(I)(iv)) = f(ρ) ρ F(ρ) M 2(ρ) >. Proof of Lemma 3.1(I)(xv). For ρ >, we compute that ρ2 f(ρ,a) = f(ρ,a) and a (ρ+a) 2 a M 1(ρ,a) = ρf(ρ,a) a ρ 2 f(ρ,a) (ρ+a) = ρ 2 F(ρ,a) = ρ ] ρ = ρf(ρ,a) F(ρ,a)] 2 = aρf(ρ,a) F(ρ,a)] 2 ρ ρ a M 2(ρ,a) = 2aρ2 (ρ+a) 3 >. f(ρ,a)] F(ρ,a) f(ρ,a) F(ρ,a)] a a F(ρ,a)] 2 f(s,a)ds f(ρ) ρ F(ρ,a)] 2 ] ρ 2 (ρ+a) 2 s 2 (s+a) 2 f(s,a)ds s 2 (s+a) 2 f(s,a)ds (ρ s)(aρ+2sρ+as) (ρ+a) 2 (s+a) 2 f(s,a)ds >, Hence, for ρ >, M 1 (ρ,a) and M 2 (ρ,a) are both strictly increasing functions of a on (, ), which completes the proof of Lemma 3.1(I)(xv). Proof of Lemma 3.1(III)(v). (I). We prove that K 1 (ρ) < M 1 (ρ) for 1/4 ρ 1/2 and a 4. Note first that, for 1/4 ρ 1/2, ] K 1 (ρ) = 32ρ3 +198ρ 2 +272ρ+7959 5(2ρ 2 +5ρ+153) > ρ2 ( 32/2+198) 5(2ρ 2 +5ρ+153) >. Hence, for 1/4 ρ 1/2 and a 4, to prove that K 1 (ρ) < M 1 (ρ,a)(= ρf(ρ,a)/f(ρ,a)) is equivalent to prove that Indeed, we compute that, ρ n 5(ρ,a) = n 5 (ρ,a) ρf(ρ,a) K 1 (ρ) F(ρ,a) >. (3.21) n 6 (ρ,a) (ρ+a) 2 (32ρ 3 198ρ 2 272ρ 7959) 2f(ρ,a), (3.22) where n 6 (ρ,a) n 6,2 (ρ)a 2 +n 6,1 (ρ)a+n 6, (ρ) 6

November 4, 215 and n 6,2 (ρ) = 4224ρ 6 +31672ρ 5 116772ρ 4 +2847534ρ 3 18785444ρ 2 +5767914ρ 2459331, n 6,1 (ρ) = 248ρ 7 +25344ρ 6 3374944ρ 5 +938768ρ 4 45684448ρ 3 643872ρ 2 4918662ρ, n 6, (ρ) = 124ρ 8 +12672ρ 7 1687472ρ 6 +469384ρ 5 22842224ρ 4 3215436ρ 3 2459331ρ 2. Then it can be verified easily (but tediously and hence omitted) that, for 1/4 ρ 1/2 and a 4, n 6 (ρ,4) = 124ρ 8 +448ρ 7 +1691728ρ 6 +3764488ρ 5 1722324ρ 4 +2725461332ρ 3 333853283ρ 2 +9359976ρ 39349296 n 7 (ρ) >, (See Fig. 1(a).) (3.23) a n 6(ρ,4) = 248ρ 7 8448ρ 6 +21962656ρ 5 839788ρ 4 +1821182792ρ 3 15926614ρ 2 +45644865ρ 19674648 n 8 (ρ) >, (See Fig. 1(b).) (3.24) 2 a 2n 6(ρ,a) = 8448ρ 6 +63344ρ 5 2334144ρ 4 +569568ρ 3 3757888ρ 2 +115341828ρ 4918662 n 9 (ρ) >. (See Fig. 1(c).) (3.25) It implies that, for 1/4 ρ 1/2 and a 4, n 6 (ρ,a) > and hence, by (3.22), ρ n 5(ρ,a) >. (3.26) 4 1 7 n 7 (ρ) 8 1 7 n 8 (ρ) 4 1 7 n 9 (ρ) 2 1 7 5 1 7 2 1 7.25.5 (a) ρ 2 1 7.25.5 (b) ρ.25.5 (c) ρ Fig. 1. Function n 7 (ρ) (resp., n 8 (ρ) and n 9 (ρ)) defined in (3.23) (resp., (3.24) and (3.25)) is positive on the interval 1/4, 1/2]. 7

November 4, 215 Next, we show that n 5 (1/4,a) > for a 4. It is easy to see that 1/4 (6b1 48b +192)(s 1/4) 2 +b 1 (s 1/4)+b ] ds = 1 for any b,b 1 >. Thus, if we let b 9822 and b 2225 1 9822 s f(1/4,a), then 2225 f(1/4,a) n 5 (1/4,a) = 1/4 2225 f(1/4,a) F(ρ,a) = K 1 (1/4) 9822 f(1/4,a) F(1/4,a) 1/4 { 2225 = 9822 f(1/4,a) (6b 1 48b +192)(s 1/4) 2 ] +b 1 (s 1/4)+b f(s,a) ds 1/4 n 1 (s,a)ds. (3.27) Note that n 1 (1/4,a) =, s n 1(1/4,a) = and we compute that, for < s < 1/4 and a 4, 2 s 2n 1(s,a) = 2 2225 9822 (6b 1 48b +192)f(1/4,a) 2 s 2f(s,a) = 32 2446a 2 3688a 461 f(1/4,a) 2 1637 (4a+1) 2 s 2f(s,a) > 32 ] 2446a 2 3688a 461 a 2 (a 2 2a 2s) 1637 (4a+1) 2 (a+s) 4 e 1/4 s= (since 2 s 2f(s,a) = a2 (a 2 2a 2s) f(s,a) < a2 (a 2 2a 2s) e 1/4 by Lemma 3.1(I)(i) (a+s) 4 (a+s) 4 and s a 2 (a 2 2a 2s) (a+s) 4 = 2a2 (2a 2 3a 3s) (a+s) 5 2a2 (2a 2 3a 3/4) (a+s) 5 < ) = (78272 26192e1/4 )a 3 (11816 39288e 1/4 )a 2 +(24555e 1/4 14752)a+3274e 1/4 1637a(4a+1) 2 > a2 (78272 26192e 1/4 )a (11816 39288e 1/4 ) ] +3274e 1/4 1637a(4a+1) 2 (since 24555e 1/4 14752 ( 16777) > ) a2 4(78272 26192e 1/4 ) (11816 39288e 1/4 ) ] +3274e 1/4 1637a(4a+1) 2 > >. (since 78272 26192e 1/4 ( 4464) > ) 3274e 1/4 1637a(4a+1) 2 (since 4(78272 26192e 1/4 ) (11816 39288e 1/4 ) = 19572 6548e 1/4 ( 11994) > ) So n 1 (s,a) > for < s < 1/4 and a 4 and hence n 5 (1/4,a) > for a 4 by (3.27). 8

November 4, 215 Combining this fact with (3.26), we conclude that, for 1/4 ρ 1/2 and a 4, n 5 (ρ,a) > and hence K 1 (ρ) < M 1 (ρ,a) by (3.21). (II). We prove that M 1 (ρ) < K 2 (ρ) for < ρ 1/2 and a 4. Note first that, for ρ 1/2, K 2 (ρ,a) 8 3 132a+165 ] ρ 2 + 2 ρ+1 = 31 5a+25 a=4 3 75 ρ2 + 2 ρ+1 >, 3 since 31 75 ρ2 + 2 ρ+1] = 123/1 >. Hence, for < ρ 1/2 and a 4, to prove that 3 ρ=1/2 M 1 (ρ,a) (= ρf(ρ,a)/f(ρ,a)) < K 2 (ρ,a) is equivalent to prove that n 11 (ρ,a) F(ρ,a) ρf(ρ,a) >. (3.28) K 2 (ρ,a) By direct computations, we have that n 11 (,a) =, n ρ 11(,a) = and 2 n ρ 2 11 (,a) = 1/3 >. Hence, if we can prove that 3 n ρ 3 11 (ρ,a) < for < ρ < 1/2 and a 4 and that n 11 (1/2,a) > for a 4, then n 11 (ρ,a), a 4, is either strictly increasing or first strictly increasing and then strictly decreasing on,1/2]. Consequently, n 11 (ρ,a) > min{n 11 (,a),n 11 (1/2,a) = for < ρ < 1/2 and a 4, which completes the proof. Indeed, we compute that, for < ρ < 1/2 and a 4, where and 3 n 12 (ρ,a) ρ 3n 11(ρ,a) = (a+ρ) 6 (4ρ 2 +1ρ+15)a (295ρ 2 5ρ 75)] 4f(ρ,a), (3.29) n 12 (ρ,a) n 12,1 (ρ)a 1 +n 12,9 (ρ)a 9 +n 12,8 (ρ)a 8 +n 12,7 (ρ)a 7 +n 12,6 (ρ)a 6 +n 12,5 (ρ)a 5 +n 12,4 (ρ)a 4 +n 12,3 (ρ)a 3 +n 12,2 (ρ)a 2 +n 12,1 (ρ)a+n 12, (ρ) n 12,1 (ρ) = 256ρ 8 16ρ 7 372ρ 6 11824ρ 5 +121424ρ 4 +318ρ 3 +1296ρ 2 19575ρ+2565 ρ 4( 256ρ 4 16ρ 3 372ρ 2 11824ρ+121424 ) +( 19575ρ + 2565) ρ 4 256ρ 4 16ρ 3 372ρ 2 11824ρ+121424 ] ρ=1/2 +( 19575/2 + 2565) = 121524ρ 4 +158625, n 12,9 (ρ) = 512ρ 9 +24832ρ 8 +14712ρ 7 +73192ρ 6 137468ρ 5 +766152ρ 4 +619515ρ 3 +6933735ρ 2 123525ρ+45225 ρ 8 ( 512ρ+24832)+ρ 4 ( 137468ρ+766152) +( 123525ρ + 45225) ρ 8 ( 512/2+24832)+ρ 4 ( 137468/2+766152) +( 123525/2 + 45225) = 24576ρ 8 +6378848ρ 4 +3884625 3884625, 9

November 4, 215 n 12,8 (ρ) = 256ρ 1 +126976ρ 9 +186576ρ 8 +34983ρ 7 +131614ρ 6 +845667ρ 5 +167528395ρ 4 +2798925ρ 3 +58279725ρ 2 +3645ρ+5356125 ρ 9 ( 256ρ+126976) ρ 9 ( 256/2+126976) = 126848ρ 9, n 12,7 (ρ) = 7756ρ 1 1135712ρ 9 261518ρ 8 461953255ρ 7 1942283675ρ 6 21716243ρ 5 +18152965ρ 4 +3489329625ρ 3 +1351175625ρ 2 +451861875ρ+1614375 ρ 4 1135712ρ 5 261518ρ 4 461953255ρ 3 1942283675ρ 2 21716243ρ+18152965] ρ=1/2 = 7379971835ρ 9 /4, n 12,6 (ρ) = 512ρ 11 875632ρ 1 +425168ρ 9 +614832775ρ 8 +35661957875ρ 7 89732426875ρ 6 +6549918125ρ 5 +81456343125ρ 4 +39594974625ρ 3 +141649171875ρ 2 +21321984375ρ 2446875 ρ 9 ( 875632ρ+425168)+ρ 5 ( 89732426875ρ+6549918125) 2446875 ρ 9 ( 875632/2+425168)+ρ 5 ( 89732426875/2+6549918125) 2446875 = 4263864ρ 9 +4124949375ρ 5 /2 2446875 2446875, n 12,5 (ρ) = 1514ρ 11 +449582ρ 1 53985565ρ 9 +47297392ρ 8 1433873525ρ 7 +3662597375ρ 6 +1173195525ρ 5 +78427175ρ 4 +2155333125ρ 3 +6731859375ρ 2 +28139625ρ 1265625 ρ 1 ( 1514ρ+449582)+ρ 8 ( 53985565ρ+47297392) + ( 1433873525ρ 7 +3662597375 ) 1265625 ρ 1 ( 1514/2+449582)+ρ 8 ( 53985565/2+47297392) +ρ 6 ( 1433873525/2+3662597375) 1265625 = 4495648ρ 1 +44598113975ρ 8 +2945122975ρ 6 1265625 1265625, n 12,4 (ρ) = 16788ρ 11 92818225ρ 1 +449576795ρ 9 21152611875ρ 8 +52919825ρ 7 +115844534375ρ 6 +175485375ρ 5 +224914921875ρ 4 +84673125ρ 3 +11773125ρ 2 18984375ρ 92818225ρ 1 21152611875ρ 8 18984375ρ ] ρ=1/2 = 149712587725/124 > 12511, 1

November 4, 215 n 12,3 (ρ) = 821516ρ 11 +2533263895ρ 1 1241215155ρ 9 +2713375375ρ 8 +711758365ρ 7 +91313653125ρ 6 +236829375ρ 5 +4285828125ρ 4 +17128125ρ 3 ρ 1 ( 821516ρ+2533263895)+ρ 8 ( 1241215155ρ+2713375375) ρ 1 ( 821516/2+2533263895)+ρ 8 ( 1241215155/2+2713375375) 249218895ρ 1 +29242996ρ 8, n 12,2 (ρ) = 151467125ρ 11 1122448ρ 1 +883683375ρ 9 +2611564625ρ 8 +45446975ρ 7 +28846875ρ 6 +1659375ρ 5 +1263515625ρ 4 +6328125ρ 3 ρ 9 ( 1122448ρ+883683375) ρ 9 ( 1122448/2+883683375) = 827596975ρ 9, n 12,1 (ρ) = 22635225ρ 1 +693154125ρ 9 +71235ρ 8 +93814875ρ 7 6823125ρ 6 +49865625ρ 5 ρ 5 ( 6823125ρ+49865625) ρ 5 ( 6823125/2+49865625) = 15854625ρ 6, n 12, (ρ) = 1155256875ρ 1 +176225625ρ 8 199125ρ 7 +8319375ρ 6 ρ 6( 176225625ρ 2 199125ρ+8319375 ) ρ 6 176225625ρ 2 199125ρ+8319375 ] ρ=199125/(2 176225625) = 77484375ρ 6. Above inequalities imply that, for a 4 and ρ 1/2, n 12 (ρ,a) > ( 3884625a 9 2446875a 6 1265625a 5 12511a 4) = 2488265a 9 +2446875 ( a 9 a 6) +1265625 ( a 9 a 5) +12511(a 9 a 4 ) > and hence, by (3.29), 3 ρ 3n 11(ρ,a) <. (3.3) Next, we show that n 11 (1/2,a) > for a 4. It is easy to see that 1/2 (3b1 12b +24)(s 1/2) 2 +b 1 (s 1/2)+b ] ds = 1 11

November 4, 215 for any b,b 1 >. If we let b 268a+35 and b 1a+5 1 268a+35 s f(1/2), then 1a+5 f(1/2) n 11 (1/2,a) 1 1a+5 = F(1/2,a) f(1/2,a) = F(1/2,a) 2K 2 (1/2,a) 268a+35 f(1/2,a) 1/2 { = f(s,a) 1a+5 268a+35 f(1/2,a) (3b 1 12b +24)(s 1/2) 2 ] +b 1 (s 1/2)+b 1/2 n 13 (s,a)ds. ds (3.31) Note that n 13 (1/2,a) =, s n 13(1/2,a) = and we compute that, for < s < 1/2 and a 4, 2 s 2n 13(s,a) = 2 2a+1 s2f(s,a) 268a+35 (3b 1 12b +24)f(1/2,a) = 2 24(4a3 23a 2 192a 65) s 2f(s,a) f(1/2,a) (268a+35)(2a+1) ] 2 a 2 (a 2 2a 2s) 24(4a 3 23a 2 192a 65) > f(s,a)] (a+s) 4 a=4 + a=4 (268a+35)(2a+1) 2 (by Lemma 3.1(I)(i) and since 2 a2 (a 2 2a 2s) s 2f(s,a)= (a+s) 4 a 2 (a 2 2a 2s) = 2a(1+2s)a2 sa 2s 2 ] a (a+s) 4 (a+s) ] 5 d 24(4a 3 23a 2 192a 65) da (268a+35)(2a+1) 2 = 16( 2s+8) e 4s 28 4+s (s+4) 4 ] 16( 2s+8) e 4s (s+4) 4 4+s 28 s=1/2 117 e1/2 (since d ] 16( 2s+8) e 4s ds (s+4) 4 4+s = 1792 6561 e4/9 28 117 e1/2 (.9) >. 117 e1/2 ] e 1/2 a=4 f(s,a), 2a ( a 2 1 a 1 2 2) >, (a+s) 5 = 48 7376a3 +14a 2 +58175a+99 (268a+35) 2 (2a+1) 3 > ) = 32(3s2 24s 16) e 4s (s+4) 6 32(3/4 16) 4+s < (s+4) 6 e 4s 4+s < ) So n 13 (s,a) > for < s < 1/2 and a 4 and hence n 13 (1/2,a) > by (3.31). Combining this fact with (3.3), we conclude that, for 1/4 ρ 1/2 and a 4, n 11 (ρ,a) > and hence M 1 (ρ,a) < K 2 (ρ,a) by (3.28). Hence the proof of Lemma 3.1(III)(v) is complete. Proof of Lemma 3.1(III)(vi). Let n 14 (ρ,a) 1 { M 1 (ρ,a)+ 132a+165 ] ρ 5a+25 ρ2 K 3 (ρ,a) = 132a+165 5a+25 ρ+2 a 2 aρ 2ea+ρ (a+ρ) 2 12

November 4, 215 for < ρ 1/2 and a 4. Then lim ρ +n 14(ρ,a) =, (3.32) and n 14 (1/2,a) = (664a2 +462a+165) 1(4a 2 +4a+1)e a 2a+1 n 15 (α), = 8α 2 99 5(2a+1) 2 25 α+ 33 1 2eα whereα a 2a+1 satisfies4/9 α 1/2fora 4. Wehavethatn 15(α) > for4/9 α 1/2 since n 15 (4/9) = 12637/45 2e 4/9 (.1) >, n 15 (4/9) = 79/225 2e4/9 (.32) > and n 15(α) = 16 2e α > 16 2e 1/2 ( 12.73) > for 4/9 α 1/2. Hence n 14 (1/2,a) > (3.33) for a 4. Moreover, we compute that, for < ρ 1/2 and a 4, 2 ρ 2n 14(ρ,a) = 2a2 (a+ρ) 4 (a 2 2a 2ρ)e aρ a+ρ 6 ] 2a2 (a+ρ) 4 { a 2 2a 2/2 ] a=4 6 = 2a2 (a+ρ) 4 <. Combing this fact with (3.32) and (3.33), we conclude that, for < ρ 1/2 and a 4, n 14 (ρ,a) > and hence K 3 (ρ) < M 1 (ρ)+ 132a+165 5a+25 ρ2. Hence the proof of Lemma 3.1(III)(vi) is complete. Proof of Lemma 3.1(III)(vii). We first show that (3.19) holds for function L 1 (ρ,s) at the two endpoints s = and ρ when ρ is fixed on 1/4,1/2] and a 4. That is, L 1 (ρ,) > and L 1 (ρ,ρ) < for 1/4 ρ 1/2 and a 4. Indeed, we compute that, for 1/4 ρ 1/2 and a 4, L 1 (ρ,) = 8 25 F(ρ,a)+M 1(ρ,a) 1 > 8 ρ e s ds+k 1 (ρ) 1 (by Lemma 3.1(I)(i) and (III)(v)) 25 = 8 8 25 (eρ 3 1)+ ρ2 + 2ρ+1 3 1 (16ρ 3) 1 (by (3.11)) 5 4 3 ρ2 + 1 3 ρ+ 51 5 n 16 (ρ) >. (see Fig. 2.) (3.34) Remark that the proof of (3.34) is easy but tedious and hence we omit it here. On the other hand, for 1/4 ρ 1/2 and a 4, since L 1 (ρ,ρ) = 8 25 ρ M 2(ρ,a) + M 1 (ρ,a) 1 = ρf(ρ,a) F(ρ,a) M 2 (ρ,a)+1 8 25 ρ] by (3.7) and M 2 (ρ,a) + 1 8 25 ρ M 2(ρ,a) + 1 4 25 = M 2(ρ,a)+ 21 25 >, we have that L 1(ρ,ρ) < if and only if F(ρ,a) ρf(ρ,a) M 2 (ρ,a)+1 8 >. (3.35) ρ 25 13

November 4, 215.15 n 16 (ρ).1.5.25.5 Fig. 2. Function n 16 (ρ) defined in (3.34) is positive on the interval 1/4,1/2]. ρ By direct computation, we have that F(ρ,a) a = ρ ρf(ρ,a) M 2 (ρ,a)+1 8 25 ρ ] ( 17ρ+25)a 2 +16ρ 2 a+(8ρ 3 25ρ 2 ) a f(ρ,a)ds+25ρ3 f(ρ,a) (17ρ+25)a 2 (16ρ 5)ρa (8ρ 25)ρ 2 ] >, 2 since a f(ρ,a) by Lemma 3.1(I)(i) and since ( 17ρ+25)a2 + 16ρ 2 a + (8ρ 3 25ρ 2 ) 33 2 a2 + a 21 4 > for 1/4 ρ 1/2 and a 4. Hence L 1(ρ,ρ) < for 1/4 ρ 1/2 and a 4 if (3.35) holds for 1/4 ρ 1/2 and a = 4 or equivalently, L 1 (ρ,ρ)] a=4 < for 1/4 ρ 1/2. Indeed, by Lemma 3.1(III)(v), we have that L 1 (ρ,ρ)] a=4 = 8 25 ρ M 2(ρ)+M 1 (ρ) 1 8 25 ρ M 2(ρ)+K 2 (ρ) 1 ρ ( = 31ρ 3 +174ρ 2 96ρ+16 ) ρ ( < 174ρ 2 96ρ+16 ) 75(4+ρ) 2 75(4+ρ) 2 ρ 174ρ 2 96ρ+16 ] 75(4+ρ) = 8ρ 2 ρ=96/(2 174) 2175(4+ρ) < 2 for 1/4 ρ 1/2. Hence we have that for 1/4 ρ 1/2 and a 4. L 1 (ρ,ρ) < (3.36) Now we show that (3.19) holds in the following two cases, which completes the proof. 14

November 4, 215 Case 1: 4 a 5. Fix 1/4 ρ 1/2. Then we compute that, for < s < ρ, 2 s 2L 1(ρ,s) = 8 { a 2 (a 2 +2a+2s) 4a 2 +( 8s+5)a (4s 2 +25s) 25 (a+s) 4 f(s,a) 4(a 2 +2a+2s) 8 { ] a 2 (a 2 +2a+2s) 4a 2 +( 8s+5)a (4s 2 +25s) 25 (a+s) 4 f(s,a) 4(a 2 +2a+2s) (since ] 4a 2 +( 8s+5)a (4s 2 +25s) a 4(a 2 +2a+2s) f(s,a) F(ρ,a) F(s,a)] f(s,a) f(s,a)(ρ s) a=5 = (29 4s)a2 (4s 2 +17s)a+(4s 2 75s) 27a2 19a 73 2 2 2(a 2 +2a+2s) 2 2(a 2 +2a+2s) < and 2 by the Mean Value Theorem for some s s,ρ],1/2]) 8 ] a 2 (a 2 +2a+2s) 4s 2 65s+15 e 1/2 (1/2 s) 25 (a+s) 4 f(s) 8s+14 (since 4s 2 65s+15 4s 2 65s+15 ] = 233/2 > and s=1/2 1 f(s,a) < e 1/2 by Lemma 3.1(I)(i)) 2a 2 (a 2 +2a+2s) = (8e 1/2 4)s 2 +(136e 1/2 65)s+(15 7e 1/2 ) ] >, 25(2s+35)(a+s) 4 f(s) since 8e 1/2 4( 9) >, 136e 1/2 65( 159) > and 15 7e 1/2 ( 35) >. Combining this fact with (3.34) and (3.36), we conclude that (3.19) holds for 4 a 5. Case 2: a > 5. Fix 1/4 ρ 1/2. Then we compute that, for < s < ρ, s L 1(ρ,s) { = 8 25 a2 (a s) (a+s) 8 1 f(s,a) s 3 25 f(s,a)] 2 F(ρ,a) F(s,a)] = 8 a { 2 9a3 73sa 2 48s 2 a 16s 3 f(s,a)+f(ρ,a) F(s,a)] 25(a+s) 2 f(s,a) 8a 2 (a+s) 8 ] a { 2 9a3 73sa 2 48s 2 a 16s 3 f(s,a)+f(s 25(a+s) 2 f(s,a) 8a 2,a)(ρ s) (a+s) a=5 (since ] 9a3 73sa 2 48s 2 a 16s 3 a 8a 2 (a+s) = s(41a3 +48sa 2 +48s 2 a+16s 3 ) 4a 3 (a+s) 2 < and by the Mean Value Theorem for some s s,ρ],1/2]) 8 ] a 2 16s3 24s 2 1825s+1125 +e 1/2 (1/2 s) 25(a+s) 2 f(s,a) 2(5+s) (since 16s 3 24s 2 1825s+1125 16s 3 24s 2 1825s+1125 ] s=1/2 = 31/2 > and 1 f(s,a) < e 1/2 by Lemma 3.1(I)(i)) = a2 16s 3 (2e 1/2 24)s 2 +(1825 9e 1/2 )s (1125 5e 1/2 ) ] 625(5+s)(a+s) 2 f(s,a) 15

a2 (2e 1/2 24)s 2 +(1825 9e 1/2 )s ( 16/2 3 +1125 5e 1/2 ) ] 625(5+s)(a+s) 2 f(s,a) a2 (1825 9e 1/2 )/2 (1123 5e 1/2 ) ] 625(5+s)(a+s) 2 f(s,a) (since 2e 1/2 24 ( 9) > and (1825 9e 1/2 ) ( 341) > ) = a2 421/2 5e 1/2] 625(5+s)(a+s) 2 f(s,a) <, November 4, 215 since 421/2 5e 1/2 ( 128) >. Combining this fact with (3.34) and (3.36), we conclude that (3.19) holds for a > 5. The proof of Lemma 3.1(III)(vii) is now complete. Proof of Lemma 3.1(III)(viii). Fix a 4 and 1/4 ρ 1/2. Let s on (,ρ) be defined in (3.19). We claim first that L 2 (ρ,s) > for < s < s. Suppose it is not true. Then there exists some s on (,s ) such that L 2 (ρ,s ) =. Consequently, since L 2 (ρ,) = M 1 (ρ) M 1 (ρ) = and lim s + s L 2(ρ,s) = M 2 (ρ)+1 8 25 ρ M 1(ρ) = L 1 (ρ,ρ) > by Lemma 3.1(I)(vii), we have that there exists some t on (,s ] such that L 2 (ρ,t ) = and L s 2(ρ,t ). Note that, by the definition of L 2 (ρ,s) in (3.15), we have that P 1 (ρ,t ) = 8 t 25 +M 1 (ρ). Moreover, we compute that s L 2(ρ,t ) = f(t ) P 1 (ρ,t ) 1 M 2 (t ) 8 ] F(ρ) F(t ) F(ρ) F(t ) 25 f(t ) f(t ) 8 = F(ρ) F(t ) 25 t +M 1 (ρ) 1 M 2 (t ) 8 25 f(t ) = F(ρ) F(t ) L 1(ρ,t ) >, F(ρ) F(t ) f(t ) by (3.14) and (3.19), which makes a contradiction with s L 2(ρ,t ). Hence L 2 (ρ,s) > for < s < s. By similar arguments, we can prove that L 2 (ρ,s) > for s < s < ρ. Hence L 2 (ρ,s) for s < ρ, which completes the proof of Lemma 3.1(III)(viii). Proof of Lemma 3.1(III)(ix). We would show that L 3 (ρ,s) > for 7/25 ρ 1/2, < s < ρ and a 4 by the following strategy. For fixed ρ on (7/25,1/2) and a 4, suppose that there exists some s on (,ρ) such that L 3 (ρ,s ) =. Then we claim that it must hold that s L 3(ρ,s ) <. However, it makes a contradiction with lim s ρ L 3 (ρ,s) > as claimed below. Claim 1: lim s ρ L 3 (ρ,s) > for 7/25 ρ 1/2 and a 4. Proof of Claim 1. By Lemma 3.1(I)(vii) and (I)(xi), for 7/25 ρ 1/2 and a 4, we ] 16

November 4, 215 have that lim L 3(ρ,s) = ( 25ρ2 +24ρ 1)a 4 (52ρ 2 +4ρ)a 3 (76ρ 3 +6ρ 2 )a 2 (4ρ 3 )a ρ 4 s ρ 5(a+ρ) 2 (ρ+1)a 2 +2ρa+ρ 2 ] > ( 25ρ2 +24ρ 1)a 4 (52ρ 2 +4ρ)a 3 11a 2 a 1 5(a+ρ) 2 (ρ+1)a 2 +2ρa+ρ 2 ] n 17 (ρ,a) 5(a+ρ) 2 (ρ+1)a 2 +2ρa+ρ 2 ] >, since n 17 (ρ,a) > which follows from the facts that, for 7/25 ρ 1/2, n 17 (ρ,4) = 9728ρ 2 +5888ρ 449 a n 17(ρ,4) = 8896ρ 2 +5952ρ 348 2 a 2n 17(ρ,4) = 648ρ 2 +4512ρ 214 3 a 3n 17(ρ,4) = 2712ρ 2 +228ρ 96 4 a 4n 17(ρ,a) = 6ρ 2 +576ρ 24 So Claim 1 holds. ( min 9728ρ 2 +5888ρ 449 ) = 63 >, ρ {7/25,1/2 ( 8896ρ 2 +5952ρ 348 ) = 44 >, min ρ {7/25,1/2 min ρ {7/25,1/2 min ρ {7/25,1/2 min ρ {7/25,1/2 ( 648ρ 2 +4512ρ 214 ) = 53 >, ( 2712ρ 2 +228ρ 96 ) = 26112/625 >, ( 6ρ 2 +576ρ 24 ) = 2256/25 >. Claim 2: For 7/25 ρ 1/2 and a 4, if there exists some s on (,ρ) such that L 3 (ρ,s ) =, then s L 3(ρ,s ) >. Proof of Claim 2. Fix ρ on (7/25,1/2) and a 4. Suppose s be an arbitrary point on (,ρ) such that L 3 (ρ,s ) =. Then, by (3.5) and (3.16), we have that ρ 2 f (ρ) s 2 f (s ) = 3 ρf(ρ) s f(s )] 2 37 2 F(ρ) F(s ) 25 ρf(ρ) s f(s )]. 17

November 4, 215 Moreover, where s L 3(ρ,s ) = 3 f(s )ρf(ρ) s f(s )] 2 F(ρ) F(s )] 2 + 3 f(s )+s f (s ) 2s f (s )+s 2 f (s ) 2 F(ρ) F(s ) ρf(ρ) s f(s ) + f(s )+s f (s )]ρ 2 f (ρ) s 2 f (s )] ρf(ρ) s f(s )] 2 = 3 f(s )ρf(ρ) s f(s )] 2 F(ρ) F(s )] 2 + 3 2 { + f(s )+s f (s ) ρf(ρ) s f(s )] 2 3 2 f(s )+s f (s ) F(ρ) F(s ) ρf(ρ) s f(s )] 2 F(ρ) F(s ) = 3 f(s )ρf(ρ) s f(s )] 2 F(ρ) F(s )] 2 +3 f(s )+s f (s ) F(ρ) F(s ) = 2s f (s )+s 2 f (s ) ρf(ρ) s f(s ) 37 25 ρf(ρ) s f(s )] 2s f (s )+s 2 f (s )+ 37 f(s 25 )+s f (s )] ρf(ρ) s f(s ) { f(s ) 3 ρf(ρ) s f(s ) 2 P 1(ρ,s )] 2 3M 2 (s )+1]P 1 (ρ,s )+ s 2 f (s )+ 87s 25 f (s )+ 37f(s 25 ) (by (3.5) and (3.8)) f(s ) f(s ) ρf(ρ) s f(s ) n 18(ρ,s ), (3.37) n 18 (ρ,s) 3 2 P 1(ρ,s)] 2 3M 2 (s)+1]p 1 (ρ,s)+ s2 f (s)+ 87 25 sf (s)+ 37 f(s) 25. (3.38) f(s) Hence to prove that s L 3(ρ,s ) <, it suffices to prove n 18 (ρ,s) > for < s < ρ, 7/25 ρ 1/2, and a 4. We show it by the following Claims 2(a) (c), which completes the proof of Claim 2. Claim 2(a): For < s < 1/2 and a 4, n 18 (ρ,s) is a strictly increasing function of ρ on (s,1/2). Proof of Claim 2(a). Fix s on (,1/2) and a 4. Then we compute that, for s < ρ < 1/2(< a), ρ n 18(ρ,s) = 3{P 1 (ρ,s)] M 2 (s)+1] ρ P 1(ρ,s) = 3{P 1 (ρ,s)] M 2 (s)+1] f(ρ){m 2(ρ)+1] P 1 (ρ,s) F(ρ) F(s) >, by Lemma 3.1(I)(ix) and (I)(x). So Claim 2(a) holds. By Claim 2(a), for a 4, to prove n 18 (ρ,s) > for < s < ρ and 7/25 ρ 1/2, it suffices to prove that lim ρ s +n 18 (ρ,s) > for 7/25 s < 1/2, and n 18 (7/25,s) > for < s < 7/25. We show them by the following Claims 2(b) and 2(c), respectively. Claim 2(b): lim ρ s +n 18 (ρ,s) > for 7/25 s < 1/2 and a 4. 18

November 4, 215 Proof of Claim 2(b). By Lemma 3.1(I)(vii), we compute that lim ρ s +n 18(ρ,s) = 3 2 M 2(s)+1] 2 3M 2 (s)+1] 2 + s2 f (s)+ 87 25 sf (s)+ 37f(s) 25 f(s) = ( 25s2 +24s 1)a 4 (52s 2 +4s)a 3 (76s 3 +6s 2 )a 2 4s 3 a s 4 5(a+s) 4 > for a 4. Above inequality holds by the exactly same arguments given in Claim 1. So Claim 2(b) holds. Claim 2(c): n 18 (7/25,s) > for < s < 7/25 and a 4. Proof of Claim 2(c). Let k = 3/25. Then, by (3.38), we have that { 3 n 18 (7/25,s) = 2 P 1(7/25,s)] 2 3(k +1)P 1 (7/25,s) + {3k M 2 (s)]p 1 (7/25,s)+ s2 f (s)+ 87 25 sf (s)+ 37f(s) 25 f(s) 3 2 (1+k)2 + {3k M 2 (s)]p 1 (7/25,s)+ s2 f (s)+ 87 25 sf (s)+ 37f(s) 25 f(s) (since 3 ] 3 2 x2 3(k +1)x 2 x2 3(k +1)x x=k+1 3 2 (1+k)2 for any k,x R) { 3 = 3k M 2 (s)]p 1 (7/25,s) 2 (1+k)2 s2 f (s)+ 87 25 sf (s)+ 37 f(s) 25 f(s) n 19 (s)p 1 (7/25,s) n 2 (s) n 21 (s). (3.39) Note first that n 19 () = 3k = 9/25 >, n 19 (7/25) = 3 25a2 15a 147 < for a 4, and 25(25a+7) 2 n 19 (s) is strictly decreasing on (,7/25) by Lemma 3.1(I)(vi). Thus there exists some s 1 on (, 7/25) such that > when s (,s 1 ), n 19 (s) = when s = s 1, < when s (s 1,7/25]. Moreover, since n 19 (s 1 ) = 3k M 2 (s 1 )] =, i.e., M 2 (s 1 ) = k, we have that, for a 4, n 2 (s 1 ) = s2 1f (s 1 ) f(s 1 ) = f (s 1 )f(s 1 ) f (s 1 )] 2 87 s 1 f (s 1 ) 37 25 f(s 1 ) 25 + 3 2 (1+k)2 s1 f (s 1 ) f(s 1 ) ] 2 87 s 1 f (s 1 ) 37 25 f(s 1 ) 25 + 3 2 (1+k)2 = a2 2a 2s 1 M a 2 2 (s 1 )] 2 87 25 M 2(s 1 ) 37 25 + 3 2 (1+k)2 (by (3.8)) ] a 2 2a 2s k 2 87 a 2 25 k 37 25 + 3 2 (1+k)2 (since < s 1 < 7/25) s=7/25 = 475a2 45a 126 15625a 2 475a2 45a 126] a=4 15625a 2 = 5674 15625a 2 <. 19 (3.4)

November 4, 215 It follows, by (3.39), that n 18 (7/25,s 1 ) = n 2 (s 1 ) >. Next, we show that n 18 (7/25,s) > for s (,s 1 ) (s 1,7/25) and a 4. By (3.39), it suffices to show that n 21 (s) = n 19 (s) P 1 (7/25,s) n ] 2(s) > (3.41) n 19 (s) for s (,s 1 ) (s 1,7/25) and a 4. We first compute that ] d n2 (s) 5a 2 n 22 (s,a) = ds n 19 (s) 3(a+s) 3 (25s 3)a 2 6sa 3s 2 ] 2, where n 22 (s,a) = ( 125s 2 +3s+2)a 5 +(125s 3 +28s 2 54s)a 4 +(22s 3 146s 2 )a 3 (3s 4 +94s 3 )a 2 +24s 4 a+28s 5 a 2 ( 125s 2 +3s+2)a 3 +(28s 2 54s)a 2 +( 146s 2 )a 175616/78125 ] (since 28s 2 54s ] s=1/2 = 175616/78125) a 2 n 23 (s,a) >, since, for < s < 7/25 and a 4, n 23 (s,4) = 414s 2 +156s+9824384/78125 414s 2 +156s+9824384/78125 ] = 7787384/78125 >, s=7/25 a n 23(s,4) = 396s 2 +18s+96 396s 2 +18s+96 ] = 456/625 >, s=7/25 2 a 2n 23(s,4) = 244s 2 +612s+48 244s 2 +612s+48 ] = 358/125 >, s=7/25 3 a 3n 23(s,a) = 75s 2 +18s+12 75s 2 +18s+12 ] = 18/5 >. s=7/25 ] Hence d n2 (s) ds n 19 < for s (,s (s) 1 ) (s 1,7/25) and a 4. Moreover, since P 1 (7/25,s) is strictly increasing on,7/25] by Lemma 3.1(I)(x), P 1 (7/25,s) n 2(s) n 19 is strictly increasing (s) on (,s 1 ) and (s 1,7/25). Hence by (3.4) and (3.39), n 18 (7/25,s) > for s (,s 1 ) if n 21 () >. Similarly, n 18 (7/25,s) > for s (s 1,7/25) if lim s (7/25) n 21 (s) >. Indeed, we 2

November 4, 215 compute that n 21 () = 3kM 1 (7/25) 37 25 + 3 ] 2 (1+k)2 > 3kK 1 (7/25) 37 25 + 3 ] 2 (1+k)2 (by Lemma 3.1(III)(v)) = 3k 6373521 57875 + 37 = 45839 14271875 >, and, by Lemma 3.1(I)(vii), 25 3 2 (1+k)2 = 3 7 6373521 2557875 + 37 25 3 2 ( 1+ 7 ) 2 25 lim s (7/25) n 21(s) = 8984375a4 175a 3 1994375a 2 8918a 62426 625(25a+7) 4 So Claim 2(c) holds. > 8984375a4 (175+1994375+8918+62426)a 3 625(25a+7) 4 (8984375a 2944861)a3 625(25a+7) 4 >. By Claims 1 and 2, we have that L 3 (ρ,s) > for < s < ρ, 7/25 ρ 1/2 and a 4, which completes the proof of Lemma 3.1(III)(ix). References 1] Y.-H. Liang, S.-H. Wang, Classification and evolution of bifurcation curves for the onedimensional perturbed Gelfand equation with mixed boundary conditions, submitted. 21