Chemical Equilibrium. Introduction

Similar documents
Chemical Equilibrium Review? Chemical Equilibrium

Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state

Chemical Equilibrium

Chemical Equilibrium. What is the standard state for solutes? a) 1.00 b) 1 M c) 100% What is the standard state for gases? a) 1 bar b) 1.

Acid/Base Definitions

Chapter 9 Aqueous Solutions and Chemical Equilibria

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water.

Chapter 17. Additional Aspects of Equilibrium

Weak acids are only partially ionized in aqueous solution: mixture of ions and un-ionized acid in solution.

Acids and Bases. CHEM 102 T. Hughbanks. In following equilibrium, will reactants or products be favored? Strong acid (HCl) + Strong base (NaOH)

AP Chemistry: Acids & Bases Notes

Chem 116 POGIL Worksheet - Week 9 Equilibrium Continued Introduction to Acid-Base Concepts

Solubility and Complex-ion Equilibria

Chapter 16 Acid-Base Equilibria

Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle

Properties of Acids and Bases

Acids and Bases. Feb 28 4:40 PM

HA(aq) H + (aq) + A (aq) We can write an equilibrium constant expression for this dissociation: [ ][ ]

Chapter 7 Acids and Bases

Name AP CHEM / / Chapter 14 Outline Acids and Bases

15.1 The Concept of Equilibrium

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin) 1. Which of the following combinations would provide buffer solutions?

Aqueous Reactions and Solution Stoichiometry (continuation)

CHEMISTRY Matter and Change

CHAPTER-7 EQUILIBRIUM ONE MARK QUESTIONS WITH ANSWERS. CHAPTER WEIGHTAGE: 13

Chapter 16: Acids and Bases I. Chem 102 Dr. Eloranta

Advanced Placement Chemistry Chapters Syllabus

Chemistry Lab Equilibrium Practice Test

is considered acid 1, identify the other three terms as acid 2, base 1, and base 2 to indicate the conjugate acid-base pairs.

Chemical Equilibrium

Aqueous Equilibria: Acids and Bases

The Chemistry of Acids and Bases

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion.

General Chemistry II CHM 1046 E Exam 2

Chemical Equilibrium Chapter 6

AP Chemistry Big Idea Review

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

Chapter 14. Objectives

Acid-Base Chemistry & Organic Compounds. Chapter 2

Chapter 17. Additional Aspects of Equilibrium

Chapter 16. Acid-Base Equilibria

X212F Which of the following is a weak base in aqueous solution? A) H 2 CO 3 B) B(OH) 3 C) N 2 H 4 D) LiOH E) Ba(OH) 2

Chem 103 Exam #1. Identify the letter of the choice that best completes the statement or answers the question. Multiple Choice

Chpt 16: Acids and Bases

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 10 - Acids & Bases

Operational Skills. Operational Skills. The Common Ion Effect. A Problem To Consider. A Problem To Consider APPLICATIONS OF AQUEOUS EQUILIBRIA

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

Ions in Aqueous Solutions and Colligative Properties

Chapter 14: Acids and Bases

1 A. That the reaction is endothermic when proceeding in the left to right direction as written.

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species

Chapter 16 Acids and Bases. Chapter 16 Acids and Bases

Equilibrium principles in aqueous systems are limited to qualitative descriptions and/or calculations involving:

AP Chemistry CHAPTER 16 STUDY GUIDE Acid-Base Equilibrium

Chem 1046 Lecture Notes Chapter 17

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College

Acids and Bases Written Response

Acids & Bases. Strong Acids. Weak Acids. Strong Bases. Acetic Acid. Arrhenius Definition: Classic Definition of Acids and Bases.

Name Date Class ACID-BASE THEORIES

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin)

CHAPTER 7.0: IONIC EQUILIBRIA

AP Chapter 15 & 16: Acid-Base Equilibria Name

CHAPTER 8: ACID/BASE EQUILIBRIUM

Chapter 10. Acids, Bases, and Salts

Learning Objectives. Solubility and Complex-ion Equilibria. Contents and Concepts. 3. Precipitation Calculations. 4. Effect of ph on Solubility

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc.

Solubility and Complex-ion Equilibria

CHEM 1B General Chemistry

Big Idea 6 Equilibrium

Solutions are aqueous and the temperature is 25 C unless stated otherwise.

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases

Acids, Bases and ph Preliminary Course. Steffi Thomas 14/09/2017

Unit Nine Notes N C U9

ACID BASE EQUILIBRIUM

Part 01 - Assignment: Introduction to Acids &Bases

I. Multiple Choice Questions (Type-I) is K p

Chapter 1 The Atomic Nature of Matter

1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases

We will briefly go over Answer Key

CHEM Dr. Babb s Sections Exam #4 Review Sheet

CHEM 102 Final Mock Exam

Acid / Base Properties of Salts

AP Chemistry: Acid-Base Chemistry Practice Problems

CH 15 Summary. Equilibrium is a balance between products and reactants

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Chapter 16 - Acids and Bases

1. Read all questions thoroughly and answer each question completely. ALL WORK MUST BE SHOWN IN ORDER TO RECEIVE ANY CREDIT.

Chem1120pretest2Summeri2015

Acid and Bases. Physical Properties. Chemical Properties. Indicators. Corrosive when concentrated. Corrosive when concentrated.

Chapter 6 Acids and Bases

Chapter 14 Acids and Bases

Chapter 15 - Applications of Aqueous Equilibria

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria

What is the correct name and bonding of BF 3? What is the correct name and bonding of BF 3?

Chapter 16 Acid-Base Equilibria

Transcription:

Introduction 1.) Equilibria govern diverse phenomena Protein folding, acid rain action on minerals to aqueous reactions 2.) Chemical equilibrium applies to reactions that can occur in both directions: reactants are constantly forming products and vice-versa At the beginning of the reaction, the rate that the reactants are changing into the products is higher than the rate that the products are changing into the reactants. When the net change of the products and reactants is zero the reaction has reached equilibrium. First, system reaches equilibrium Then, system continually exchanges products and reactants, while maintaining equilibrium distribution. Reactants Product At equilibrium the amount of reactants and products are constant, but not necessarily equal

Equilibrium Constant 1.) The relative concentration of products and reactants at equilibrium is a constant. 2.) Equilibrium constant (K): For a general chemical reaction Equilibrium constant: Where: [ C] K [ A] c a [ D] [ B] d b - small superscript letters are the stoichiometry coefficients - [A] concentration chemical species A relative to standard state

Equilibrium Constant 2.) Equilibrium constant (K): A reaction is favored when K > 1 K has no units, dimensionless - Concentration of solutes should be expressed as moles per liter (M). - Concentrations of gases should be expressed in bars. express gas as P gas, emphasize pressure instead of concentration 1 bar 10 5 Pa; 1 atm 1.01325 bar - Concentrations of pure solids, pure liquids and solvents are omitted are unity standard state is the pure liquid or solid 3.) Manipulating Equilibrium Constants Consider the following reaction: K 1 + [ H ][ A [ HA] Reversing the reaction results in a reciprocal equilibrium reaction: ' 1 1 / K + 1 [ HA] K [ H ][ A ] ]

Equilibrium Constant 3.) Manipulating Equilibrium Constants If two reactions are added, the new K is the product of the two individual K values: K 1 K 2 K 3 K 1 + [ H ][ A [ HA] ] [ CH K 2 + [ H + ] ][ C] + K 3 [ A ][ CH ] [ HA][ C] K3 K1K2 + [ H ][ A [ HA] + ] [CH ] + [ H ][ C] + [ A ][ CH ] [ HA][ C]

Equilibrium Constant 3.) Manipulating Equilibrium Constants Example: Given the reactions and equilibrium constants: K w 1.0 x 10-14 K NH3 1.8 x 10-5 Find the equilibrium constant for the reaction: Solution: K 1 K w K 2 1/K NH3 K 3 K w *1/K NH3 5.6x10-10

Equilibrium and Thermodynamics 1.) Equilibrium constant derived from the thermodynamics of a chemical reaction. deals with the relationships and conversions between heat and other forms of energy 2.) Enthalpy DH is the heat absorbed or released when the reaction takes place under constant applied pressure DH H products H reactants Standard enthalpy change (DH o ) all reactants and products are in their standard state. DH o negative heat released - Exothermic - Solution gets hot DH o positive heat absorbed - Endothermic - Solution gets cold

Equilibrium and Thermodynamics 3.) Entropy Measure of a substances disorder Greater disorder Greater Entropy - Relative disorder: Gas > Liquid > solid DS S products S reactants DS o change in entropy when all species are in standard state. - positive product more disorder - negative product less disorder DS o +76.4 J/(K. mol) at 25 o C More disorder for aqueous ions than solid

Equilibrium and Thermodynamics 3.) Entropy Increase in temperature results in an increase in Entropy (S) Increase occurs for all products and reactants Primarily concerned with DS, which is only weakly temperature dependent - generally treat DS and DH as temperature independent

Equilibrium and Thermodynamics 4.) Free Energy Systems at constant temperature and pressure have a tendency toward lower enthalpy and higher entropy Chemical reaction is favored if: - DH is negative heat given off and - DS is positive more disorder Chemical reaction is not favored if: - DH is positive and DS is negative Gibbs Free Energy (DG): determines if a reaction is favored or not when both DH and DS are positive or negative - A reaction is favored if DG is negative Free energy: DG DH -TDS where T is temperature (Kelvin)

Equilibrium and Thermodynamics 4.) Free Energy Example: Is the following reaction favored at 25 o C? DH o -74.85 x 10 3 J/mol DS o -130.4 J/K. mol Free energy: DG DH TDS (-74.85x10 3 J/mol) (298.15K)(-130.4 J/K.mol) DG -35.97 kj/mol DG negative reaction favored Favorable influence of enthalpy is greater than unfavorable influence of entropy

Equilibrium and Thermodynamics 5.) Free Energy and Equilibrium Relate Equilibrium constant to the energetics (DH & DS) of a reaction Equilibrium constant depends on DG: K e D G o RT where R (gas constant) 8.314472 J/(K. mol) T temperature in kelvins The more negative DG larger equilibrium constant Example: DG -35.97 K e D G o RT e ( 35.97 x10 3 J / mol )( 8.314472J /( K. mol )( 298.15K ) 2.00 x10 6 Because K is very large, HCl is very soluble in water and nearly completely ionized

Equilibrium and Thermodynamics 5.) Free Energy and Equilibrium If DG o is negative or K >1 the reaction is spontaneous - Reaction occurs by just combining the reactants If DG o is positive or K < 1, the reaction is not spontaneous - Reaction requires external energy or process to proceed Gas flows towards a vacuum. spontaneous A vacuum does not naturally form. nonspontaneous

Le Châtelier s Principal 1.) What Happens When a System at Equilibrium is Perturbed? Change concentration, temperature, pressure or add other chemicals Equilibrium is re-established - Reaction accommodates the change in products, reactants, temperature, pressure, etc. - Rates of forward and reverse reactions re-equilibrate

Le Châtelier s Principal 1.) What Happens When a System at Equilibrium is Perturbed? Le Châtelier s Principal: - the direction in which the system proceeds back to equilibrium is such that the change is partially offset. Consider this reaction: At equilibrium: Add excess CO(g): To return to equilibrium (balance), some (not all) CO and H 2 are converted to CH 3 OH If all added CO was converted to CH 3 OH, then reaction would be unbalanced by the amount of product

Le Châtelier s Principal 2.) Example: Consider this reaction: K [ Br - ][ Cr [ BrO 2-3 O 2-7 ][ Cr ][ H 3+ ] 2 + ] 8 1 10 11 at 25 o C At one equilibrium state: [H [Br + ] 5.0 M ] 1.0 M [Cr 2 O [BrO 2-7 - 3 ] 0.10 M ] 0.043 M [Cr 3+ ] 0.0030 M

Le Châtelier s Principal 2.) Example: What happens when: 2- [Cr2O7 ] increased from 0.10 M to 0.20 M According to Le Châtelier s Principal, reaction should go back to left to off-set dichormate on right: Use reaction quotient (Q), Same form of equilibrium equation, but not at equilibrium: - 3 2-7 [ Br ][ Cr H Q 2O ][ - 3+ [ BrO ][ Cr ] 2 + ] 8 ( 1.0)( 0.20)( 5.0) ( 0.043)( 0.0030) 8 2 2 10 11 K

Le Châtelier s Principal 2.) Example: Because Q > K, the reaction must go to the left to decrease numerator and increase denominator. Continues until Q K: 1. If the reaction is at equilibrium and products are added (or reactants removed), the reaction goes to the left 2. If the reaction is at equilibrium and reactants are added ( or products removed), the reaction goes to the right

Le Châtelier s Principal 3.) Affect of Temperature on Equilibrium Combine Gibbs free energy and Equilibrium Equations: K e e DG o RT ( DH DS ) + o RT e o ( DH TDS ) R RT e DH o RT e DS o R Only Enthalpy term is temperature dependent: K(T ) e D H o RT

Le Châtelier s Principal 3.) Affect of Temperature on Equilibrium 1. Equilibrium constant of an endothermic reaction (DH o +) increases if the temperature is raised. DH + 2. Equilibrium constant of an exothermic reaction (DH o -)decreases if the temperature is raised. D D DH -

Le Châtelier s Principal 4.) Thermodynamics vs. Kinetics Thermodynamics predicts if a reaction will occur - determines the state at equilibrium Thermodynamics does not determine the rate of a reaction - Will the reaction occur instantly, in minutes, hours, days or years? DG - spontaneous Diamonds Graphite - While reaction is spontaneous, takes millions of years to occur

Solubility Product 1.) Equilibrium constant for the reaction which a solid salt dissolves to give its constituent ions in solution Solid omitted from equilibrium constant because it is in a standard state Example: K 2+ - 2 18 sp [ Hg2 ][ Cl ] 1.2 10

Solubility Product 1.) Saturated Solution contains excess, undissolved solid Solution contains all the solid capable of dissolving under the current conditions Example: Find [Cu 2+ ] in a solution saturated with Cu 4 (OH) 6 (SO 4 ) if [OH - ] is fixed at 1.0x10-6 M. Note that Cu 4 (OH) 6 (SO 4 ) gives 1 mol of SO 2-4 for 4 mol of Cu 2+? K sp 2. 3 10 69

Solubility Product 2.) If an aqueous solution is left in contact with excess solid, the solid will dissolve until the condition of K sp is satisfied Amount of undissolved solid remains constant Excess solid is required to guarantee ion concentration is consistent with K sp 3.) If ions are mixed together such that the concentrations exceed K sp, the solid will precipitate. 4.) Solubility product only describes part of the solubility of a salt Only includes dissociated ions Ignores solubility of solid salt

Common ion effect a salt will be less soluble if one of its constituent ions is already present in the solution. Decrease in the solubility of MgF 2 by the addition of NaF PbCl 2 precipitate because the ion product is greater than K sp.

Common Ion Effect 1.) Affect of Adding a Second Source of an Ion on Salt Solubility Equilibrium re-obtained following Le Châtelier s Principal Reaction moves away from the added ion Find [Cu 2+ ] in a solution saturated with Cu 4 (OH) 6 (SO 4 ) if [OH - ] is fixed at 1.0x10-6 M and 0.10M Na 2 SO 4 is added to the solution.

Complex Formation 1.) High concentration of an ion may redissolve a solid Ion first causes precipitation Forms complex ions, consists of two or more simple ions bonded to each other ppt. formation Complex forms and redissolves solid

Complex Formation 2.) Lewis Acids and Bases M + acts as a Lewis acid accepts a pair of electrons X - acts as a Lewis base donates a pair of electrons Bond is a coordinate covalent bond ligand adduct Lewis acid Lewis base

Complex Formation 3.) Affect on Solubility Formation of adducts increase solubility Implies low Pb 2+ solubility: K sp K 2+ - 2 9 sp [ Pb ][ I ] 7.9 10 Solubility equation becomes a complex mixture of reactions - don t need to use all equations to determine the concentration of any species Only one concentration of Pb 2+ in solution Concentration of Pb 2+ that satisfies any one of the equilibria must satisfy all of the equilibria All equilibrium conditions are satisfied simultaneously

Complex Formation 3.) Affect on Solubility Total concentration is dependent on each individual complex species 2+ + 2 Pb Pb + PbI + PbI ( aq ) + PbI + PbI total 2 3 4 Total solubility of lead depends on [I - ] and the solubility of each individual complex formation.

Complex Formation 3.) Affect on Solubility Example: Given the following equilibria, calculate the concentration of each zinc-containing species in a solution saturated with Zn(OH) 2 (s) and containing [OH - ] at a fixed concentration of 3.2x10-7 M. Zn(OH) 2 (s) K sp 3.0x10-16 Zn(OH) + b 1 2.5 x10 4 Zn(OH) - 3 b 3 7.2x10 15 Zn(OH) 2-4 b 4 2.8x10 15

Acids and Bases 1.) Protic Acids and Bases transfer of H + (proton) from one molecule to another Hydronium ion (H 3 O + ) combination of H + with water (H 2 O) Acid is a substance that increases the concentration of H 3 O + Base is a substance that decreases the concentration of H 3 O + - base also causes an increase in the concentration of OH - in aqueous solutions acid 2.) Brønsted-Lowry definition does not require the formation of H 3 O + Extended to non-aqueous solutions or gas phase Acid proton donor Base proton acceptor acid base salt

Acids and Bases 3.) Salts product of an acid-base reaction Any ionic solid Acid and base neutralize each other and form a salt Most salts with a single positive and negative charge dissociate completely into ions in water 4.) Conjugate Acids and Bases Products of acid-base reaction are also acids and bases A conjugate acid and its base or a conjugate base and its acid in an aqueous system are related to each other by the gain or loss of H +

Acids and Bases 5.) Autoprotolysis acts as both an acid and base Extent of these reactions are very small water + Kw [ H ][ OH ] 1.0 10-14 - H 3 O + is the conjugate acid of water - OH - is the conjugate base of water - K w is the equilibrium constant for the dissociation of water Acetic acid K 3.5 10 15

Acids and Bases 6.) ph negative logarithm of H + concentration Ignores distinction between concentration and activities (discussed later) ph log[ H + ] ph + poh log[ Kw ] 14.00 at 25 o C A solution is acidic if [H + ] > [OH - ] A solution is basic if [H + ] < [OH - ] An aqueous solution has a neutral ph if [H + ][OH - ] - This occurs when [H + ] [OH - ] 10-7 M or ph 7

Acids and Bases 6.) ph ph values for some common samples

Acids and Bases 6.) ph Example: What is the ph of a solution containing 1x10-6 M H +? What is [OH - ] of a solution containing 1x10-6 M H +?

Acids and Bases 7.) Strengths of Acids and Bases Depends on whether the compound react nearly completely or partially to produce H + or OH - strong acid or base completely dissociate in aqueous solution - equilibrium constants are large - everything else termed weak Strong no undissociated HCl or KOH

Acids and Bases 7.) Strengths of Acids and Bases Equivalent weak acids react with water by donating a proton - only partially dissociated in water - equilibrium constants are called K a acid dissociation constant - K a is small K a K a K a + [ H ][ A [ HA] ] Equivalent weak bases react with water by removing a proton - only partially dissociated in water - equilibrium constants are called K b base dissociation constant - K b is small + [ BH ][ OH K b K b [ B] K b ]

Some Common Weak Acids (carboxylic acids) ACID FORMULA K a pk a ACID FORMULA K a pk a acetic acid H(C 2 H 3 O 2 ) 1.74 E-5 4.76 hydrocyanic acid HCN 6.17 E-10 9.21 ascorbic acid (1) H 2 (C 6 H 6 O 6 ) 7.94 E-5 4.10 hydrofluoric acid HF 6.31 E-4 3.20 ascorbic acid (2) (HC 6 H 6 O 6 ) - 1.62 E-12 11.79 lactic acid H(C 3 H 5 O 3 ) 8.32 E-4 3.08 boric acid (1) H 3 BO 3 5.37 E-10 9.27 nitrous acid HNO 2 5.62 E-4 3.25 boric acid (2) (H 2 BO 3 ) - 1.8 E-13 12.7 octanoic acid H(C 8 H 15 O 2 ) 1.29 E-4 4.89 boric acid (3) (HBO 3 ) 1.6 E-14 13.8 oxalic acid (1) H 2 (C 2 0 4 ) 5.89 E-2 1.23 butanoic acid H(C 4 H 7 O 2 ) 1.48 E-5 4.83 oxalic acid (2) (HC 2 O 4 ) - 6.46 E-5 4.19 carbonic acid (1) H 2 CO 3 4.47 E-7 6.35 pentanoic acid H(C 5 H 9 O 2 ) 3.31 E-5 4.84 carbonic acid (2) (HCO 3 ) - 4.68 E-11 10.33 phosphoric acid (1) H 3 PO 4 6.92 E-3 2.16 chromic acid (1) H 2 CrO 4 1.82 E-1 0.74 phosphoric acid (2) (H 2 PO 4 ) - 6.17 E-8 7.21 chromic acid (2) (HCrO 4 ) - 3.24 E-7 6.49 phosphoric acid (3) (HPO 4 ) 2.09 E-12 12.32 citric acid (1) H 3 (C 6 H 5 O 7 ) 7.24 E-4 3.14 propanoic acid H(C 3 H 5 O 2 ) 1.38 E-5 4.86 citric acid (2) (H 2 C 6 H 5 O 7 ) - 1.70 E-5 4.77 sulfuric acid (2) (HSO 4 )- 1.05 E-2 1.98 citric acid (3) (HC 6 H 5 O 7 ) 4.07 E-7 6.39 sulfurous acid (1) H 2 SO 3 1.41 E-2 1.85 formic acid H(CHO 2 ) 1.78 E-4 3.75 sulfurous acid (2) (HSO 3 ) - 6.31 E-8 7.20 heptanoic acid H(C 7 H 13 O 2 ) 1.29 E-5 4.89 uric acid H(C 5 H 3 N 4 O 3 ) 1.29 E-4 3.89 hexanoic acid H(C 6 H 11 O 2 ) 1.41 E-5 4.84

Some Common Weak Acids (Metals cations)

Some Common Weak Bases (amines) BASE FORMULA K b pk b alanine C 3 H 5 O 2 NH 2 7.41 E-5 4.13 Ammonia NH 3 (NH 4 OH) 1.78 E-5 4.75 dimethylamine (CH 3 ) 2 NH 4.79 E-4 3.32 ethylamine C 2 H 5 NH 2 5.01 E-4 3.30 glycine C 2 H 3 O 2 NH 2 6.03 E-5 4.22 hydrazine N 2 H 4 1.26 E-6 5.90 methylamine CH 3 NH 2 4.27 E-4 3.37 trimethylamine (CH 3 ) 3 N 6.31 E-5 4.20 The K a or K b of an acid or base may also be written in terms of pk a or pk b pk a log( K ) pk log( K ) a b b As K a or K b increase pk a or pk b decrease - a strong acid/base has a high K a or K b and a low pk a or pk b

Acids and Bases 8.) Polyprotic Acids and Bases can donate or accept more than one proton K a or K b are sequentially numbered - K a1,k a2,k a3 K b1,k b2,k b3

Acids and Bases 8.) Relationship Between K a and K b K a + [ H ][ A [ HA] ] K b [ HA][ OH [ A ] ] K w + K a K b [ H ][ A ] [ HA][ OH ] + [ H ][ OH ] [ HA] [ A ] K w K a K b

Acids and Bases 8.) Relationship Between K a and K b Example: Write the K b reaction of CN -. Given that the K a value for HCN is 6.2x10-10, calculate K b for CN -.