You can compute the maximum likelihood estimate for the correlation

Similar documents
STAT 501 Assignment 2 NAME Spring Chapter 5, and Sections in Johnson & Wichern.

STT 843 Key to Homework 1 Spring 2018

3. (a) (8 points) There is more than one way to correctly express the null hypothesis in matrix form. One way to state the null hypothesis is

Stat 427/527: Advanced Data Analysis I

Inferences about a Mean Vector

1. Density and properties Brief outline 2. Sampling from multivariate normal and MLE 3. Sampling distribution and large sample behavior of X and S 4.

STAT 501 EXAM I NAME Spring 1999

Applied Multivariate and Longitudinal Data Analysis

χ test statistics of 2.5? χ we see that: χ indicate agreement between the two sets of frequencies.

Chapter 7, continued: MANOVA

Lecture 5: Hypothesis tests for more than one sample

Multivariate Statistical Analysis

Chapter 12 - Lecture 2 Inferences about regression coefficient

Correlation and Regression

Rejection regions for the bivariate case

Multivariate Capability Analysis Using Statgraphics. Presented by Dr. Neil W. Polhemus

Confidence Intervals, Testing and ANOVA Summary

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41912, Spring Quarter 2008, Mr. Ruey S. Tsay. Solutions to Final Exam

Comparing two independent samples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Correlation and Simple Linear Regression

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Applied Multivariate and Longitudinal Data Analysis

TUTORIAL 8 SOLUTIONS #

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41912, Spring Quarter 2012, Mr. Ruey S. Tsay

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

Institute of Actuaries of India

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2

Analysis of variance, multivariate (MANOVA)

Simple and Multiple Linear Regression

Lecture 3. Inference about multivariate normal distribution

Multivariate Statistics

df=degrees of freedom = n - 1

Chapter 9. Correlation and Regression

Linear Correlation and Regression Analysis

Data Analyses in Multivariate Regression Chii-Dean Joey Lin, SDSU, San Diego, CA

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

STAT 730 Chapter 5: Hypothesis Testing

Topic 10 - Linear Regression

The Common Factor Model. Measurement Methods Lecture 15 Chapter 9

Statistical Data Analysis Stat 3: p-values, parameter estimation

Measurement And Uncertainty

Statistical Inference with Monotone Incomplete Multivariate Normal Data

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between

5 Inferences about a Mean Vector

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Business Statistics. Lecture 10: Correlation and Linear Regression

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary

Spring 2012 Math 541B Exam 1

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA

Ch. 7. One sample hypothesis tests for µ and σ

Least Squares Estimation

Other hypotheses of interest (cont d)

STAT 461/561- Assignments, Year 2015

In most cases, a plot of d (j) = {d (j) 2 } against {χ p 2 (1-q j )} is preferable since there is less piling up

Solutions to Final STAT 421, Fall 2008

Binary choice 3.3 Maximum likelihood estimation

Review of Statistics 101

Multivariate Linear Regression Models

Test 3 Practice Test A. NOTE: Ignore Q10 (not covered)

1/24/2008. Review of Statistical Inference. C.1 A Sample of Data. C.2 An Econometric Model. C.4 Estimating the Population Variance and Other Moments

Regression Models - Introduction

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1.

Discrete Multivariate Statistics

Six Sigma Black Belt Study Guides

Review 6. n 1 = 85 n 2 = 75 x 1 = x 2 = s 1 = 38.7 s 2 = 39.2

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X).

Appendix from L. J. Revell, On the Analysis of Evolutionary Change along Single Branches in a Phylogeny

PROBLEM TWO (ALKALOID CONCENTRATIONS IN TEA) 1. Statistical Design

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

Lecture 12 Inference in MLR

This does not cover everything on the final. Look at the posted practice problems for other topics.

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011

The Chi-Square Distributions

9 Correlation and Regression

STAT 536: Genetic Statistics

Statistical Models with Uncertain Error Parameters (G. Cowan, arxiv: )

The Chi-Square Distributions

Statistical Intervals (One sample) (Chs )

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Exam 2. Jeremy Morris. March 23, 2006

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Introduction to Statistical Data Analysis Lecture 8: Correlation and Simple Regression

Regression models. Categorical covariate, Quantitative outcome. Examples of categorical covariates. Group characteristics. Faculty of Health Sciences

STA 101 Final Review

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Simple logistic regression

Group comparison test for independent samples

CHAPTER 5. Outlier Detection in Multivariate Data

Loglikelihood and Confidence Intervals

Chapter Seven: Multi-Sample Methods 1/52

Linear Regression for Air Pollution Data

Hypothesis testing, part 2. With some material from Howard Seltman, Blase Ur, Bilge Mutlu, Vibha Sazawal

Statistical Inference

UNIVERSITY OF TORONTO Faculty of Arts and Science

The Difference in Proportions Test

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College

Transcription:

Stat 50 Solutions Comments on Assignment Spring 005. (a) _ 37.6 X = 6.5 5.8 97.84 Σ = 9.70 4.9 9.70 75.05 7.80 4.9 7.80 4.96 (b) 08.7 0 S = Σ = 03 9 6.58 03 305.6 30.89 6.58 30.89 5.5 (c) You can compute the maximum likelihood estimate for the correlation coefficient from either Σ or S. Then r = 9.70 (97.84)(75.05) = 0.565 (0.565) t = 0 - - (.565) =.9373 with df = 0 - = 8 (d) + r +.565 z = log = log = 0.6403 - r -.565 z z L u = = 0.6403 0.6403 - (.96) + (.96) 0-3 0-3 = - 0.005 =.38 an approximate 95% confidence interval for the correlation coefficient is (-.005) (.38) e - e -, = (-0.00, 0.88) (-.005) (.38) e + e + (e) An estimate of the generalized variance is S = 4403.59, Answers may vary due to rounding off numbers in the computation of S or using the maximum likelihood estimator instead of S.. (f) An estimate of total variance is

trace(s) = 08.7 + 305.6+ 5.5 = 49.83 (g) An approximate 95% confidence interval for the correlation coefficient is (0.083, 0.96) (h) r r r r r - 3 3 r = 3. (- )(- ) 3 = 0.4638 + r +.4638 z = log = log = 0.50 - r -.4638 an approximate 95% confidence interval for the partial correlation coefficient is (-0.894, 0.863) X X3 X (i) The partial correlation for given could be zero since the 95% CI includes 0. This partial correlation is the correlation between levels of aspartate aminotransferase glutamate dehydrogenase for any subpopulation of patients defined by a particular level of alanine aminotransferase. (0.4638) 0-3 (j) t = =.384 - (.4638) with df = 0-3 = 7 p-value = 0.04 There is insufficient evidence to reject the null hypothesis = 0. (a) Write the joint likelihood function in the form ρ 3. L( µ, Σ) = ( π) np/ Σ n where A = (X j-x )(X j-x ) j= null hypothesis, substitute n/ e tr( Σ A) ( X µ )' Σ - ( X µ ) e.to get the log-likelihood corresponding to the ( ) np / - Σ= σ I, Σ = σ I = σ, tr( Σ A) = tr(a), σ Then, the log-likelihood for the null hypothesis is np np n ( µσ, ) = - log( π) - log( σ ) - tr(a) - ( X µ )'( X µ ) σ σ

(b) Regardless of the value of, under the null hypothesis the log-likelihood _ is maximized when µ = X. Then, the last term in the log-likelihood is zero, σ the mle for σ can be derived by maximizing (, ) = - np np log( ) - log( µ Σ π σ ) - tr(a) σ Setting the first partial derivative equal to zero yields the equation ( µ, Σ) np = - + σ σ σ 4 tr(a) = 0 The solution to this equation yields the maximum likelihood estimate = np tr(a) = n- tr( ) = p np tr(s) = n σ Σ (X j- X)(X ' j-x) np j= which is simply the average of the estimated variances for the p responses obtained from the units in the sample.. (c) There are various ways to write the same formula, but the simplest form is - ln( Λ ) = (np)log( tr( ) ) - (n)log( ) p Σ Σ (d) d.f. = p(p + ) + p - (p+) = p(p + ) - = (p + )(p -) (e) Answers may vary if you do the calculations with a calculator instead of SAS or S- plus, depending on how you rounded off the numbers in the estimated covariance matrix. - ln( Λ) = 4.687 with 5 d.f. p - value = 0 The null hypothesis is rejected which implies all correlation can t be zero. Bartlett s correction to -ln( Λ ) = 36.36, d.f = 5, p-value<0.000 The correction had no effect on the conclusion that the correlation is not zero.

3. Correlation: 0.8-3.6 0.0 0.80.0 Generalized variance: 9.0 9.0 9.0 5.76 0.0 Total variance: 0.0 7.0 6.0 0.0 0.0 The first three cases exhibit different levels of correlation, but the same generalized variance. The total variance for these cases becomes smaller as the correlation gets closer to zero. When there is a perfect correlation, as in the last case, the generalized variance is zero because there is only variation along a onedimensional line, not in two-dimensional space. The total variance is positive because it only accounts for the sum of the variances of the univariate marginal distributions. 4. (a). 0963.69 505.4 with d.f.=98 S = 505.4 6366.3 (b). M = i = (n i - ) log( S ) - i = (n i - )log( S i ) = 9.366 C - = - () 6( + ()() + )( - ) - 45 - + 55 - - 44 + 54 = 0.9776 MC - = 8.95 > χ 3,. 005 =.84 p - value =.0003 <.005 The covariance matrices are not the same. Homes with air conditioning exhibit larger variances for both on peak off peak use of electricity. (c). H: o ρ = ρ vs. H a : ρ ρ + r Z = + p log ~ N log, r p n 3 + r Z = + p log ~ N log, r p n 3 Since the samples are independent, Z is independent of Z. This implies that Var(Z -Z ) = Var(Z ) + Var(Z ) = + n 3 n 3 Z -Z ( ) ( ) + p ( p ) ~N log, + p ( p ) n 3 n + 3

under Ho, => Z -Z ~N 0, + n 3 n 3 + p + p ln ln ~ Z(0,) p p + n 3 n 3 For theses data, Z = -.4 with p-value=0.03, the null hypothesis of equal correlations can be rejected at the 0.05 level of significance. The correlations between total on-peak off-peak usage are not the same for homes with or without air conditioning. (d) T =6.066 (e) F=7.95 d.f.=,97 p-value=<0.000 true (f). Do not use a pooled estimate of the covariance matrix. Estimate Var(X X ) as S+ S compute n n T = ( X X) S+ S ( X X) n n A test statistic with an approximate F-distribution when the null hypothesis is n is F= + n p T = 7.7 4 with (p, n+ n p ) degrees of freedom p(n+ n ) The p-value<0.000 is still small in this case.

5. (a) (b) There are some extreme values in the plot of the results for observer versus the monitor the plot of the results for observer versus the monitor that indicate some substantial disagreements between the expert observers the monitor. The agreement between the two expert observers is quite strong. X X X3 Value of W 0.975 0.954 0.9366 p-value 4.388e-05 3.504e-05 0.000436 The p-values of the Shapiro-Wilk statistics are very small for all three blood pressure measurements, leading to the conclusion that none of three sets of measurements ia a rom sample from a normal distribution.. The QQ plots also indicate substantial right skewness for each distribution.

The Chi-Square probability plot showed that the fit of a three dimensional normal model is inappropriate since it doesn t resemble a straight line through the origin having a slope of. The extreme observations seen in the scatter plots in part (a) are clearly evident in the upper right part of this plot. (c) Since the QQ plots give evidence of right skewness, it may be useful to consider a power transformation with lambda <. Results from Shapiro-Wilk tests QQ plots, suggest the following transformation for the three responses. To compare the mean responses for the two expert observers the monitor, we must use the same transformation for all three responses. It appears that the inverse transformation provides the best compromise for these three responses. X X X3 Transformation X^(-) X^(-) X3^(/) Shapiro-Wilk W 0.9893 0.98 0.989 p-value 0.78 0.64 0.786

lambda X X X3 0.5 Shapiro-Wilk 0.963 0.959 0.967 p-value 0.099 0.0088 0.0876 Log Shapiro-Wilk 0.976 0.9696 0.974 p-value 0.0578 0.044 0.08307 - Shapiro-Wilk 0.9893 0.988 0.984 p-value 0.78 0.64 0.595-0.5 Shapiro-Wilk 0.9853 0.9837 0.989 p-value 0.4493 0.3590 0.786 (d) Using the natural logarithm of each response, we obtain S = 0.0536 0.050604 0.04098 0.050604 0.05007 0.039877 0.04098 0.039877 0.04556 0.99874 0.834 R = 0.99874 0.8350 0.834 0.8350 These results suggest that the correlation (or agreement) between the log-responses for the two expert observers is stronger than the correlation between the log-responses between either expert the monitor. Also, variablitiy may be lower for the monitor. Perhaps the monitor has difficulty recording high blood pressure values. (e) p(p -) - ln( Λ ) = - n ln R = 60.8 with = 3 d.f. p - value = 0 Bartlett s correction, p + 5 - n -- ln R = 589.94 6 with 3 d.f. p - value = 0 Since the estimated correlations are positive the logarithm is a monotone transformation, there is evidence that at least one correlation is not zero which implies that there is more than rom agreement either between the two experts or between at least one of the experts the monitor. (f) Bartlett correction to -*log(lambda)=33.0538 with d.f = 4 p-value <.000.

Reject the null hypothesis that all of the correlations are equal all of the variances are equal for the natural logarithms of systolic blood pressure measurements for the two expert observers the semi-automatic monitor. [,] [,] [,3] [,4] [,5] [,6] rlowerb.004 0.8900 0.8746.0870.088 0.9899 rupperb.0430.387.3498.398.395.0045 (g) Since the two experts the monitor provide repeated measurements on the same subjects, you cannot assume that the estimated correlations are independent. You can use the bootstrap method to obtain approximate 95% confidence intervals for differences between (or ratios of) correlations. You must take bootstrap samples from the original sample, sampling with replacement, compute the correlation matrix for each bootstrap sample. Then, for each bootstrap sample compute the differences (or ratios) for the three pairs of correlations. Results below are based on 5000 bootstrap samples. Ratio 95% Bootstrap C.I. ρ / ρ 3 (.087,.39) ρ / ρ 3 (.08,.393) ρ3 / ρ 3 (0.990,.004) The correlation between the blood pressure measurements for the two expert observers is stronger than the correlation between the blood pressure measurements for the monitor either expert. The correlation between the first expert the monitor is not significantly different from the correlation between the second expert the monitor. If you wanted to make simultaneous confidence intervals, you could have invoked the Bonferroni procedure constructed individual 98.33% confidence intervals for the three differences (or ratios) (h) Use the bootstrap approach described in part (g) to construct approximate confidence intervals for ratios of variances for log-responses. Note that you cannot use F-tests to compare variances in this case, because the variance estimates are not independent. Variance Ratio Bootstrap C.I. var(ln(x))/ var(ln(x)) (.004,.043) var(ln(x))/ var(ln(x3)) (0.890,.387) var(ln(x)) /var(ln(x3)) (0.875,.350) The first expert displayed more variability than the second expert, but this does not necessarily imply that the first expert is less reliable. Why? There were no significant differences between the variance for the monitor the variance for either expert, although the confidence intervals for the variance ratios were quite wide.

(i) u = u u3 H : = 0 is equivalent to test that u-u=u-u3=0. - 0 H : C u = = 0 0 0 - u3 Let Y= CX, X ~ NID ( u, ) n Then Y = CX S y = ( Y Y ) ( Y Y ) n - j= ' T = n(y - 0) (Y - 0) = 77.79 S y u u ' n - p + F = T = 38.7964 d.f =, 83 p-value<0.000 (p -)(n -) There is evidence that the mean blood pressure readings are not the same for the two experts or the monitor. (j) You can do three paired t-tests, or square the paired t-tests to obtain F-tests. H : u = 0 u, T^ =0.005350383 d.f =(, 84) p-value=0.948 There is insufficient evidence to conclude the average blood pressure measurements differ for the two experts. u u3 H : =, 0 T^ =76.3076 d.f =(, 84) p-value<0.000 u u3 H : = 0 T^ =74.40706 d.f =(, 84) p-value<0.000 There is significant evidence that the mean systolic blood pressure measurement is lower for the semi-automatic monitor than for either of the two experts.