Exclusive VM electroproduction

Similar documents
PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen

Diffractive rho and phi production in DIS at HERA

PoS(DIFF2006)011. Vector Mesons at H1. Niklaus Berger

Jets and Diffraction Results from HERA

CHAPTER 2 ELECTRON-PROTON COLLISION

Color dipoles: from HERA to EIC

The 2011 Europhysics Conference on High Energy Physics Grenoble, July Riccardo Brugnera Padova University and INFN

Exclusive Vector Meson Production and Inclusive K 0

Vector meson photoproduction in ultra-peripheral p-pb collisions measured using the ALICE detector

Exclusive ρ 0 production in deep inelastic scattering at HERA ZEUS Collaboration

Opportunities with diffraction

QCD Measurements at HERA

arxiv:hep-ph/ v1 5 Mar 1997

Diffraction at HERA. On behalf of H1 and ZEUS collaboations. Laurent Schoeffel CEA Saclay, Irfu/SPP. Paris 2011

arxiv: v1 [hep-ph] 28 May 2012

ZEUS results for EPS-HEP combined ZEUS+H1 result

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude

Ψ(2S)/J/ψ ratio at HERA

e + e - H1 Highlights for EPS03 High Q 2 Cross Sections and PDFs QCD Tests with jets and heavy flavours Low x Physics Searches for new Physics

Leading Baryons at HERA

Diffractive vector meson leptoproduction and spin effects

Exclusive J/ψ production and gluonic structure

ZEUS New Results. Wesley H. Smith, University of Wisconsin on behalf of the ZEUS Collaboration DIS 2004, Strbské Pleso, Slovakia, April 14, 2004

σ tot (J/ψN) 3 4 mb Mark Strikman, PSU Jlab, March 26, 2011

Photon-Photon Diffractive Interaction at High Energies

Single Spin Asymmetry at large x F and k T

ALICE results on ultraperipheral Pb+Pb and p+pb collisions

Measurements of Proton Structure at Low Q 2 at HERA

Running Period. Detector Progress Data Analysis. Background Studies Physics Results Highlights Physics Outlook and Goals

Diffractive PDF fits and factorisation tests at HERA

Novel Measurements of Proton Structure at HERA

Factorisation in diffractive ep interactions. Alice Valkárová Charles University, Prague

ZEUS Highlights for ICHEP02... a personal selection

arxiv:hep-ph/ v2 22 Apr 2001

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

Imaging the Proton via Hard Exclusive Production in Diffractive pp Scattering

Measurements of charm and beauty proton structure functions F2 c c and F2 b b at HERA

2. HEAVY QUARK PRODUCTION

Diffractive dijet photoproduction in UPCs at the LHC

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

TESTING THE STANDARD MODEL IN THE FORWARD REGION AT THE LHC

Proton Structure Function Measurements from HERA

Parton saturation and diffractive processes

Probing the small-x regime through photonuclear reactions at LHC

Diffractive production of isolated photons with the ZEUS detector at HERA

Hadron Propagation and Color Transparency at 12 GeV

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline

ZEUS Status Report Recent Results and Progress PRC, DESY

PoS(Baldin ISHEPP XXI)032

Atlas results on diffraction

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC.

Study of Inclusive Jets Production in ep Interactions at HERA

Measurements of the Proton F L and F 2 Structure Functions at Low x at HERA

Diffractive Dijet and D* Production at HERA

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

Higgs boson photoproduction at the LHC

Mark Strikman PSU. for Boris Blok

EIC meeting, April 6,7, MIT

Beauty jet production at HERA with ZEUS

Physics Results on the Tagged Structure Functions at HERA

Hadronic structure, low x physics and diffraction

Timelike Compton Scattering

Roles of Wave Functions in the Electroproduction of Vector Mesons

DIFFRACTIVE DIJET PHOTOPRODUCTION AND THE OFF-DIAGONAL GLUON DISTRIBUTION a

arxiv: v2 [hep-ph] 19 Feb 2016

Probing Nuclear Color States with J/Ψ and φ

Deeply Virtual Compton Scattering in the Saturation Approach

ZEUS 1995 F ZEUS BPC95 ZEUS SVX95 ZEUS94 E665 H1 SVX95 ZEUSREGGE ZEUSQCD

Diffractive Dijets and Gap Survival Probability at HERA

Physik Department, Technische Universität München D Garching, Germany. Abstract

Small-x Scattering and Gauge/Gravity Duality

Diffractive Structure Functions from the H1 and ZEUS Experiments at HERA

PoS(DIFF2006)005. Inclusive diffraction in DIS H1 Results. Paul Laycock

Nonperturbative QCD in pp scattering at the LHC

Electroweak Physics and Searches for New Physics at HERA

RECENT RESULTS FROM THE ZEUS EXPERIMENT

arxiv:hep-ph/ v1 22 Dec 2000

Introduction to Perturbative QCD

arxiv:hep-ph/ v1 6 Nov 2006

PoS(DIFF2006)001. Topical summary of experimental results

Coherent and Incoherent Nuclear Exclusive Processes

Proposal to Jefferson Lab PAC39 Exclusive Phi Meson Electroproduction with CLAS12

Measurements of the Proton and Kaon Form Factors via ISR at BABAR

ZEUS physics results for summer 2013

GENERALIZED PARTON DISTRIBUTIONS

HERMES status and future running

Exclusive diffractive results from ATLAS, CMS, LHCb, TOTEM at the LHC

arxiv:hep-ph/ v1 25 Apr 2002

Outline: Introduction Quantum ChromoDynamics (QCD) Jet algorithms Tests of QCD QCD analyses at HERA extraction of the proton PDFs

major importance is the factorisation theorem [8] justifying the use of these parton distributions

ALICE results on vector meson photoproduction in ultraperipheral p-pb and Pb-Pb collisions

Studies of the hadronic component of the photon light-cone wave function using exclusive di-pion events at HERA

The transition from pqcd to npqcd

arxiv: v1 [hep-ph] 10 Nov 2008

Pomeron Intercept and Slope: the QCD connection

arxiv:hep-ph/ v1 23 Apr 2002

Multi parton interactions B.Blok (Technion)

arxiv: v1 [hep-ph] 17 Nov 2008

Status report of Hermes

Transcription:

Exclusive VM electroproduction γ * p V p V γ ρ ϕ ψ =,,, J /, ϒ Aharon Levy Tel Aviv University on behalf of the H and collaborations June, 28 A. Levy: Exclusive VM, GPD8, Trento

Why are we measuring σ ( W ) W δ IP soft dσ dt e b t g g hard Expect δ to increase from soft (~.2, from soft Pomeron value) to hard (~.8, from xg(x,q 2 ) 2 ) Expect b to decrease from soft (~ GeV -2 ) to hard (~4-5 GeV -2 ) June, 28 A. Levy: Exclusive VM, GPD8, Trento 2

Why are we measuring Use QED for photon wave function. Study properties of VM wf and the gluon density in the proton. June, 28 A. Levy: Exclusive VM, GPD8, Trento 3

Mass distributions ρ π + π Events/(.3 GeV) 6 4 ρ 2 pb - π DIS + π PHP 2.5.6.7.8.9..2.3.4 M ππ (GeV) events (/3.5 MeV) 5 H φ K + K (a) number of events 5 5 J /ψ + µ µ ϒ µ + µ 2.8 3 3.2 3.4 3.6 M.5. µµ [GeV] June, 28 m A. Levy: Exclusive VM, GPD8, Trento 4 KK [GeV]

Photoproduction σ W δ process becomes hard as scale (mass) becomes larger. real part of amplitude increases with hardness. June, 28 A. Levy: Exclusive VM, GPD8, Trento 5

σ(γ*p ρ p) (nb) 3 2 σ(w) ρ δ.2.8 2 pb - 94 95.6.4.2-2 pb - 2 4 6 8 2 4 6 8 2 W (GeV) 5 5 2 25 3 35 4 Q 2 (GeV 2 ) June, 28 A. Levy: Exclusive VM, GPD8, Trento 6

σ(w) ρ, φ H ρ electroproduction (preliminary) H φ electroproduction (preliminary) σ γ p ρp [nb] 3 2 H HERA- prel. H SV Q 2 [GeV 2 ] 2. 3.3 6.5.9 σ γ p φp [nb] 2 H HERA- prel. Q 2 [GeV 2 ] 3.3 6.5 6.5 9.5 37. Fit W δ 2 W [GeV] Fit W δ 2 W [GeV] June, 28 A. Levy: Exclusive VM, GPD8, Trento 7

σ(w) - φ, J/ψ, γ p) (nb) p φ * σ (γ 2 2 2 Q (GeV ) 2.4 3.8 6.5 3. (a) 98- σ(γp J/ψp) [nb] a) H Q 2 [GeV 2 ] 3.2 7. 22.4 H Fit MRT (CTEQ6M) 5 5 σ DVCS [nb] W (GeV) 2 Q 2 = 8 GeV 2 Q 2 = 5.5 GeV 2 Q 2 = 25 GeV 2 5 3 H W γp [GeV] - 4 5 6 7 8 9 June, 28 A. Levy: Exclusive VM, GPD8, Trento 8 W [GeV]

δ (Q 2 +M 2 ) - VM δ 2.8.6.4.2.8.6.4.2 ρ 96- (2 pb - ) ρ 94 ρ 95 φ J/ψ DVCS 96- DVCS (prel.) (28 pb - ) J/ψ H DVCS H 96- DVCS H HERAII ρ H HERA- (prel.) 5 5 2 25 3 35 4 Q 2 +M 2 (GeV 2 ) June, 28 A. Levy: Exclusive VM, GPD8, Trento 9

Kroll + Goloskokov: δ =.4 +.24 ln (Q 2 /4) (close to the CTEQ6M gluon density, if parametrized as xg(x)~x -δ/4 ) δ 2.8.6.4.2.8.6.4.2 ρ 96- (2 pb - ) ρ 94 ρ 95 φ J/ψ DVCS 96- DVCS (prel.) (28 pb - ) J/ψ H DVCS H 96- DVCS H HERAII ρ H HERA- (prel.) 5 5 2 25 3 35 4 Q 2 +M 2 (GeV 2 ) June, 28 A. Levy: Exclusive VM, GPD8, Trento

σ γ*p ρp (nb) σ 4 3 2 - -2 ( 2 2 Q M ) + n * γ p ρ σ(q 2 ) Fit to whole Q 2 range gives bad χ 2 /df (~7) p (prel.) (2 pb - ) 995 994-2 - 2 June, 28 A. Levy: Exclusive VM, GPD8, Trento Q 2 (GeV 2 ) σ(γp J/ψp) [nb] σ / Fit.5.5 VM ρ ϕ J/ψ γ a) b) W γp = 9 GeV H Fit Fit + fit uncertainty MRT (MRST2) MRT (CTEQ6M) MRT (-S) MRT (H QCD Fit) n 2.44±.9 2.75±.3 ±.7. 2.486±.8 ±.68.54±.9 ±.4 H Q 2 (GeV 2 ) comments Q 2 > GeV 2 Q 2 > GeV 2 All Q Q 2 [GeV 2 2 ] Q 2 >3 GeV 2

σ(q 2 ) σ [nb] 4 3 2 H ρ electroproduction (preliminary) γ p ρ p H HERA- prel. H SV σ [nb] 2 H φ electroproduction (preliminary) γ p φ p H HERA- prel. H SV γ p ρ Y H HERA- prel. (x.5) γ p φ Y H HERA- prel. (x.5) - W = 75 GeV M Y < 5 GeV σ Q 2 ( ) γ p Q 2 +M 2 [GeV 2 ] * 2 ( Q + M ) 2 2 nq ( ) June, 28 A. Levy: Exclusive VM, GPD8, Trento 2 - W = 75 GeV M Y < 5 GeV Q 2 +M 2 [GeV 2 ] nq ( ) 2.5 +.7Q 2 2 (for Q 2 > GeV 2 )

Proton vertex factorisation IP IP elastic Y p-dissociative - σ γ p ρy / σ γ p ρp.8.6.4 H ρ electroproduction (preliminary) H HERA- prel. σ γ p φy / σ γ p φp.8.6.4 H φ electroproduction (preliminary) H HERA- prel. -2.25.5.75.25.5.75 2 photoproduction proton vertex factorisation.2 W = 75 GeV M Y < 5 GeV 2 3 4 Q 2 [GeV 2 ] June, 28 A. Levy: Exclusive VM, GPD8, Trento 3.2 W = 75 GeV M Y < 5 GeV 5 5 2 Q 2 [GeV 2 ] Similar ratio within errors for ρ and φ proton vertex factorisation in DIS

Fit dσ dt e b t b(q 2 ) ρ, γ : b (GeV -2 ) 2 8 2 pb - 994 995 b [GeV -2 ] 8 6 H 6 4 2 4 2 H HERA II e - p H HERA I A (-B log(q 2 /(2 GeV 2 ))) 5 5 2 25 3 Q 2 [GeV 2 ] 5 5 2 25 3 35 4 45 Q 2 (GeV 2 ) June, 28 A. Levy: Exclusive VM, GPD8, Trento 4

b(q 2 +M 2 ) - VM b(gev -2 ) 4 2 8 ρ (2 pb - ) ρ 94 ρ 95 ρ H 95-96 φ 98- φ 94 J/ψ 98- J/ψ 96-97 J/ψ H 96- g g hard 6 4 < r >= b ( c) 2 2 2 DVCS H 96- DVCS H HERAII e - p (prel.) DVCS (prel.) (28 pb - ) 2 3 4 5 Q 2 +M 2 (GeV 2 ) June, 28 A. Levy: Exclusive VM, GPD8, Trento 5

Information on σ L and σ T Use ρ decay angular distribution to get r 4 density matrix element f(cos θ ) ( r ) + (3r )cos h 4 4 2 θ h Events 5 2 25 - - 4 2-2 2-2 pb - 5-5 - cosθ h R σ L = σt r ε 4 4 r ε - ratio of longitudinal- to transversephoton fluxes ( <ε> =.996) r 4 σ σ L L = = σ L + σt σtot using SCHC - cosθ h June, 28 A. Levy: Exclusive VM, GPD8, Trento 6

R=σ L /σ T (Q 2 ) R=σ L /σ T 2 When r 4 close to, error on R large and asymmetric advantageous to use r 4 rather than R. 8 2 pb - 995 994 r 4 = σ L / σ tot.8.6 6.4 4 2.2 2 pb - 994 995 2 3 4 5 Q 2 (GeV 2 ) 2 3 4 5 Q 2 (GeV 2 ) June, 28 A. Levy: Exclusive VM, GPD8, Trento 7

R=σ L /σ T (Q 2 ) H ρ and φ electroproduction (preliminary) R = σ L / σ T 5 γ p ρ Y H HERA- prel. H γ p φ Y H HERA- prel. H 2 4 Q 2 [GeV 2 ] June, 28 A. Levy: Exclusive VM, GPD8, Trento 8

R=σ L /σ T (M ππ ) R=σ L /σ T 5 4.5 4 3.5 3 2.5 2.5.5 2 pb - <Q 2 >=3 GeV 2 <Q 2 >= GeV 2.6.7.8.9..2.3 M ππ (GeV) R = σ L / σ T 5 4 3 2 H ρ electroproduction (preliminary) γ p ρ Y H HERA- prel..6.8 m ππ [GeV] Why?? June, 28 A. Levy: Exclusive VM, GPD8, Trento 9

R=σ L /σ T (M ππ ) Possible explanation: R M 2 ππ α (M ππ ) 3 R (GeV 2 ) 5 4.5 4 3.5 3 2.5 2 pb - <Q 2 >=3 GeV 2 <Q 2 >= GeV 2 example for α=.5 2.5.5.6.7.8.9..2.3 M ππ (GeV) June, 28 A. Levy: Exclusive VM, GPD8, Trento 2

Photon configuration - sizes small k T large γ T : large size small size large config. k T small config. strong color forces large cross section color screening small cross section γ*: γ* T, γ* L γ* T both sizes, γ* L small size Light VM: transverse size of qq ~ size of proton Heavy VM: qq size small cross section much smaller (color transparency) but due to small size (scale given by mass of VM) see gluons in the proton σ~ (xg) 2 large δ June, 28 A. Levy: Exclusive VM, GPD8, Trento 2

σ L /σ tot (W) 4 r = σl / σ tot.9.8.7.6.5.4.3.2 2 pb - <Q 2 > = <Q 2 > = <Q 2 > = <Q 2 > = 4 6 8 2 4 W (GeV) σ L and σ T same W dependence σ L qq in small configuration σ T qq in small and large configurations small configuration steep W dep large configuration slow W dep qq large configuration is suppressed June, 28 A. Levy: Exclusive VM, GPD8, Trento 22

σ L /σ tot (t) 4 r = σl / σ tot.8 b b L T.6 size of γ* L γ* T large qq configuration suppressed.4 2 pb - <Q 2 > = 3 GeV 2 <Q 2 > = GeV 2.2.4.6.8 t (GeV 2 ) June, 28 A. Levy: Exclusive VM, GPD8, Trento 23

σ(w) - DVCS γ * p γ p Final state γ is real γ T using SCHC initial γ* is γ* T but W dep of σ steep large γ* T configurations suppressed σ(γ * p γp) (nb) prel. (6 pb - ) 96- (95 pb - ) 2 W (GeV) June, 28 A. Levy: Exclusive VM, GPD8, Trento 24

Effective Pomeron trajectory Get effective Pomeron trajectory from dσ/dt(w) at fixed t ρ photoproduction June, 28 A. Levy: Exclusive VM, GPD8, Trento 25

Effective Pomeron trajectory α IP (t) α IP (t).5.4.3.2..9.8.5.4.3.2..9.8 ρ electroproduction -.7 -.6 -.5 -.4 -.3 -.2 -. t (GeV 2 ) 2 pb - -.7 -.6 -.5 -.4 -.3 -.2 -. t (GeV 2 ) α IP (GeV -2 ) α IP () June, 28 A. Levy: Exclusive VM, GPD8, Trento 26

Comparison to theory All theories use dipole picture Use QED for photon wave function Use models for VM wave function usually take a Gaussian shape Use gluon density in the proton Some use saturation model, others take sum of nonperturbative + pqcd calculation, and some just start at higher Q 2 Most work in configuration space, MRT works in momentum space. Configuration space puts emphasis on VM wave function. Momentum space on the gluon distribution. W dependence information on the gluon Q 2 and R properties of the wave function June, 28 A. Levy: Exclusive VM, GPD8, Trento 27

ρ data () - Comparison to theory Martin-Ryskin-Teubner (MRT) work in momentum space, use parton-hadron duality, put emphasis on gluon density determination. Phys. Rev. D 62, 422 (2). Forshaw-Sandapen-Shaw (FSS) improved understanding of VM wf. Try Gaussian and DGKP (2- dim Gaussian with light-cone variables). Phys. Rev. D 69, 943 (24). Kowalski-Motyka-Watt (KMW) add impact parameter dependence, Q 2 evolution DGLAP. Phys. Rev. D 74, 746 (26). Dosch-Ferreira (DF) focusing on the dipole cross section using Wilson loops. Use soft+hard Pomeron for an effective evolution. Eur. Phys. J. C 5, 83 (27). June, 28 A. Levy: Exclusive VM, GPD8, Trento 28

ρ data (H) - Comparison to theory Marquet-Peschanski-Soyez (MPS): Dipole cross section from fit to previous ρ, φ and J/ψ data. Geometric scaling extended to non-forward amplitude. Saturation scale is t-dependent. Ivanov-Nikolaev-Savin (INS): Dipole cross section obtained from BFKL Pomeron. Use kt-unintegrated PDF and off-forward factor. Goloskokov-Kroll (GK): Factorisation of hard process and proton GPD. GPD constructed from standard PDF with skewing profile function. June, 28 A. Levy: Exclusive VM, GPD8, Trento 29

Q 2 σ(γ*p ρ p) (nb) 4 3 2 - -2 2 pb - 995 994 KMW DF - 2 FSS (Sat-DGKP) FSS (Sat-Gauss) FSS (NoSat-DGKP) FSS (NoSat-Gauss) - 2 Q 2 (GeV 2 ) KMW good for Q 2 >2GeV 2 miss Q 2 = DF miss most Q 2 FSS Gauss better than DGKP June, 28 A. Levy: Exclusive VM, GPD8, Trento 3

σ γ*p ρp (nb) 4 3 2 Q 2 Data seem to prefer MRST99 and CTEQ6.5M - -2 (prel.) (2 pb - ) 995 994 MRT (MNRT) MRT (CTEQ65M) MRT (MRST4NLO) MRT (MRST99) -2-2 Q 2 (GeV 2 ) June, 28 A. Levy: Exclusive VM, GPD8, Trento 3

σ(γ*p ρ p) (nb) 3 2 3 2 W dependence 2 pb - KMW FSS (Sat-Gauss) FSS (NoSat-Gauss) MRT (CTEQ6.5M) MRT (MRST99) 2 4 6 8 2 4 6 8 2 W (GeV) KMW - close FSS: Sat-Gauss right W-dep. MRT: wrong norm. CTEQ6.5M slightly better in W-dep. June, 28 A. Levy: Exclusive VM, GPD8, Trento 32

σ L /σ tot (Q 2 ) 4 r = σl /σ tot.75.5.25 2 pb - 994 995 MRT (CTEQ6.5M) MRT (MRST99).75.5.25 FSS (NoSat-Gauss) FSS (Sat-Gauss) 2 3 4 5 Q 2 (GeV 2 ) June, 28 A. Levy: Exclusive VM, GPD8, Trento 33

σ L /σ tot (W) 4 r = σl / σ tot.9.8.7.6 2 pb - 4 r = σl / σ tot.9.8.7.6 2 pb -.5.4.3 FSS (Sat-DGKP) FSS (Sat-Gauss) KMW FSS (Sat-DGKP) FSS (Sat-Gauss) KMW.5.4.3 MRT (MRST99) MRT (CTEQ6.5M) DF MRT (MRST99) MRT (CTEQ6.5M) DF.9.9.8.8.7.7.6.5 FSS (Sat-DGKP) FSS (Sat-Gauss) KMW FSS (Sat-DGKP) FSS (Sat-Gauss) KMW.6.5 MRT (MRST99) MRT (CTEQ6.5M) DF MRT (MRST99) MRT (CTEQ6.5M) DF 5 75 25 5 5 75 25 5 W (GeV) 5 75 25 5 All models have mild W dependence. None describes all kinematic regions. 5 75 25 5 W (GeV) June, 28 A. Levy: Exclusive VM, GPD8, Trento 34

σ L,σ T (Q 2 +M 2 ) σ L [nb] 3 2 H ρ and φ electroproduction (preliminary) γ L p ρ p H HERA- prel. σ T [nb] 3 2 H ρ and φ electroproduction (preliminary) γ T p ρ p H HERA- prel. GK (GPD) INS (k t fact) MPS (Sat) γ L p φ p γ T p φ p - -2 H HERA- prel. GK (GPD) W = 75 GeV INS (k t fact) MPS (Sat) Q 2 +M 2 [GeV 2 ] - -2 H HERA- prel. W = 75 GeV Q 2 +M 2 [GeV 2 ] Different Q 2 +M 2 dependence of σ L and σ T (σ L at Q 2 =) Best description of σ L by GK; σ T not described. June, 28 A. Levy: Exclusive VM, GPD8, Trento 35

Density matrix elements - ρ, φ r 4 Re r 4 r 4 - r...2.5.8.6 -.5 -. -.2.4 -. 2 2 2 2 r Re r r - Im r 2.3.5.2..2...5 -.2 -. -. -.5 -. 2 2 2 2 Im r 2 - r 5 r 5...25 Re r 5.4.5.2 -. -.2 2.2 2 -.5 -. 2.5..5 2 r 4 Re r 4 r 4 - r...2.5.8.6 -.5 -. -.2.4 -. 2 2 2 2 r Re r r - Im r 2.3.5.2..2...5 -.2 -. -. -.5 -. 2 2 2 2 Im r 2 - r 5 r 5...25 Re r 5.4.5.2 -. -.2 2.2 2 -.5 -. 2.5..5 2 r 5 - Im r 6 Im r 6 - -.5.4.5.2 -. -.2 -.5 -.4 -.5 -.2 2 2 2 Q 2 [GeV 2 ] H ρ electroproduction (preliminary) H HERA- prel. GK (GPD) r 5 - Im r 6 Im r 6 - -.5.4.5.2 -. -.2 -.5 -.4 -.5 -.2 2 2 2 Q 2 [GeV 2 ] H φ electroproduction (preliminary) H HERA- prel. GK (GPD) Fair description by GK r 5 violates SCHC June, 28 A. Levy: Exclusive VM, GPD8, Trento 36

Summary and conclusions New high statistics measurements on ρ, φ electroproduction and on DVCS. The Q 2 dependence of σ(γ*p ρp) cannot be described by a simple propagator term. The cross section is rising with W and its logarithmic derivative in W increases with Q 2. The exponential slope of the t distribution decreases with Q 2 and levels off at about b = 5 GeV -2. Proton vertex factorisation observed also in DIS. The ratio of cross sections induced by longitudinally and transversely polarised virtual photons increases with Q 2, but is independent of W and t. The effective Pomeron trajectory has a larger intercept and smaller slope than those extracted from soft interactions. All these features are compatible with expectations of perturbative QCD. None of the models which have been compared to the measurements are able to reproduce all the features of the data. June, 28 A. Levy: Exclusive VM, GPD8, Trento 37