Advances in the study of intrinsic rotation with flux tube gyrokinetics

Similar documents
Electrochemical reaction mechanisms

EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In the absence of or in between ELMs)

The gravitational field energy density for symmetrical and asymmetrical systems

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

The Hyperelastic material is examined in this section.

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 6: Heat Conduction: Thermal Stresses

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice.

Grand Canonical Ensemble

Radial Cataphoresis in Hg-Ar Fluorescent Lamp Discharges at High Power Density

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Chapter 3: Energy Band and Charge Carriers Semiconductor

Multiple-Choice Test Runge-Kutta 4 th Order Method Ordinary Differential Equations COMPLETE SOLUTION SET

:2;$-$(01*%<*=,-./-*=0;"%/;"-*

CHAPTER 33: PARTICLE PHYSICS

EAcos θ, where θ is the angle between the electric field and

Mathematical modeling of the crown forest fires impact on buildings

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Collisions between electrons and ions

9.5 Complex variables

Lecture 16: Bipolar Junction Transistors. Large Signal Models.

Stability of an Exciton bound to an Ionized Donor in Quantum Dots

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Spatial channeling of energy and momentum of energetic ions by destabilized Alfvén eigenmodes

A Probabilistic Characterization of Simulation Model Uncertainties

Magneto-elastic coupling model of deformable anisotropic superconductors

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3

Accretion Theory of Spontaneous Rotation in Toroidal Plasmas

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Numerical Study of Two-fluid Flowing Equilibria of Helicity-driven Spherical Torus Plasmas

Influence Of Geometric Parameters Of An Annular Fin Of Different Cross-Sections On Its Efficiency

THE PRINCIPLE OF HARMONIC COMPLEMENTARITY IN EVALUATION OF A SPECIFIC THRUST JET ENGINE

Introduction to Molecular Spectroscopy

Spring 2002 Lecture #13

Basic Electrical Engineering for Welding [ ] --- Introduction ---

Proceedings of the 7th IASME / WSEAS International Conference on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT (HTE '09)

The impact of complex network structure on seizure activity induced by depolarization block

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels

Sensors and Actuators Sensor Physics

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

Optimal environmental policies in a heterogeneous product market under research and development competition and cooperation

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Deconfinement phase transition in SU(3)/Z3 QCD (adj) via the gauge theory/affine XY-model duality

MHD Effects in Laser-Produced Plasmas

1- Summary of Kinetic Theory of Gases

Fr Carrir : Carrir onntrations as a funtion of tmpratur in intrinsi S/C s. o n = f(t) o p = f(t) W will find that: n = NN i v g W want to dtrmin how m

Problem 22: Journey to the Center of the Earth

Outlier-tolerant parameter estimation

First looking at the scalar potential term, suppose that the displacement is given by u = φ. If one can find a scalar φ such that u = φ. u x.

Gravitation as Geometry or as Field

Unbalanced Panel Data Models

Runaway Electrons and Current Dynamics During Tokamak Disruptions

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

Pion condensation with neutrinos

LINEAR SYSTEMS THEORY

Collisionless anisotropic electron heating and turbulent transport in coronal flare loops

Some Useful Formulae

Studies of Turbulence and Transport in Alcator C-Mod Ohmic Plasmas with Phase Contrast Imaging and Comparisons with GYRO*

Study of Dynamic Aperture for PETRA III Ring K. Balewski, W. Brefeld, W. Decking, Y. Li DESY

10/23/2003 PHY Lecture 14R 1

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

TF Magnet. Inputs. Material Data. Physics Parameters. R0 plasma major radius B toroidal field at plasma major radius. Bounding Box for the Plasma

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

SCIENCE CHINA Chemistry. Signatures of shear thinning-thickening transition in steady shear flows of dense non-brownian yield stress systems

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

From Structural Analysis to FEM. Dhiman Basu

SUPPLEMENTARY INFORMATION

Multiple Choice Questions

IV. First Law of Thermodynamics. Cooler. IV. First Law of Thermodynamics

Prof. Paolo Colantonio a.a

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

Problem Set 9 Solutions

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Derivation of Eigenvalue Matrix Equations

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

10/9/2003 PHY Lecture 11 1

Chapter 21 - The Kinetic Theory of Gases

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Chapter 11 Torque and Angular Momentum

Statistical mechanics handout 4

Chapter 3 and Chapter 4

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University

MEASUREMENT OF MOMENT OF INERTIA

Physics 2A Chapter 3 HW Solutions

11. Dynamics in Rotating Frames of Reference

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Lecture 3. Interaction of radiation with surfaces. Upcoming classes

So far: simple (planar) geometries

New solution to the cosmological constant problem and cosmological model with superconductivity

ITER Performance Study with the Presence of Internal Transport Barrier

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

ECE 422 Power System Operations & Planning 2 Synchronous Machine Modeling

ECE 522 Power Systems Analysis II 2 Power System Modeling

Transcription:

Adans n th study o ntrns rotaton wth lux tub gyroknts F.I. Parra and M. arns Unrsty o Oxord Wolgang Paul Insttut, Vnna, Aprl 0

Introduton In th absn o obous momntum nput (apart rom th dg), tokamak plasmas rotat Last yar, prsntd low low trms that an xplan ntrns rotaton Ths talk: Show that low low ordrng s ndd: symmtry o transport o momntum n tokamaks Improd ordrng that gs nw ontrbutons: nw salng o turbuln wth / Wolgang Paul Insttut, Vnna, Aprl 0

Exprmntal dn ω φ (krad/s) ICF, I p =.6MA ICF, I p =.7MA Ohm, I p =.7MA 5 0 5 0-5 0ms 90ms 90ms 40ms 70ms 30ms 3.0 3.4 3.8 3.0 3.4 3.8 3.0 3.4 3.8 (m) JG06.34-0 Cor Ohm: hollow ountr-rotatng Cor ICF Hgh I p : pakd, orotatng Low I p : hollow, ountr-rotatng Edg: o-rotatng ndpndnt o snaro Courtsy o M. F. Na Wolgang Paul Insttut, Vnna, Aprl 0 3

Gomtry Hr, s n th o-urrnt drton a Flux sura arag = (V ) dd ( )/ Wolgang Paul Insttut, Vnna, Aprl 0 4

Intrns rotaton Assum ltrostats to smply: E = φ Consraton o total torodal angular momntum J or anshs du to axsymmtry and n = n t n V M = V ( V Π) ( J ) Hr Π = ( )( ) 3 d M /t = 0, no momntum nput Π = 0 Wolgang Paul Insttut, Vnna, Aprl 0 5

Hgh low ordrng Wolgang Paul Insttut, Vnna, Aprl 0 6

Hgh low ordrng To mak = 0 V = Φ b V V = V = Ω ~ t Φ Wolgang Paul Insttut, Vnna, Aprl 0 7

δ smulatons Sn lutuaton <<, us = F, φ = φ 0 φ Varabls D Dt = E φ Φ Ω 0 ε =, μ = M M Smlar quaton or ltrons l M E 0 o E ( ) ( ) { b C } M M φ t I Potntal ound rom d 3 d 3 = 0 Ω E Ω M ε Wolgang Paul Insttut, Vnna, Aprl 0 8

Wolgang Paul Insttut, Vnna, Aprl 0 9 Momntum transport or hgh lows Turbuln wth k ρ ~, qulbrum wth k ρ << M, M /ε = onstant n omputatonal doman Fourr analyz, and φ n Momntum transport ( ) ( ) Π Ω Ω Ω Ω = Π = Π χ φ ud T n T P T n T M d,,,...,, ;, 3 b

Symmtry o momntum transport In up-down symmtr tokamak Ω Ω Ω,,, k, Ω,,, φ,,, k, φ Ω Ω Thus, Ω, Ω, Π Π Ω In addton, Ω = 0 = Π = 0 Ω Hn, or subson Π P Ω χ Wolgang Paul Insttut, Vnna, Aprl 0 0,

Physal ntrprtaton Paralll moton o partls ( ),, Π = ( ) 0 Smlar ptur or prpndular damagnt drt Changs sgn du to k k Wolgang Paul Insttut, Vnna, Aprl 0

Numral dn (I) Ω = 0 Ω = 0. Wolgang Paul Insttut, Vnna, Aprl 0

Numral dn (II) Ω = 0 Ω = 0. Wolgang Paul Insttut, Vnna, Aprl 0 3

Intrns rotaton wth hgh low In th hgh low ordrng, only up-down asymmtry an produ ntrns rotaton wth nough strutur P Ω P Ω = Ω χ 0 xp d χ Up-down asymmtry only strong nar dg Up-down asymmtry sms unabl to xplan sgn hangs n rotaton and dpndns wth hatng Stll at ara o rsarh Nd to ontnu to nxt ordr Wolgang Paul Insttut, Vnna, Aprl 0 4

Low low ordrng Wolgang Paul Insttut, Vnna, Aprl 0 5

Low low ordrng V = n b φ 0 b p V, = V V = Ω K ~ V, ρ a ( ) t T = K ( ) Wolgang Paul Insttut, Vnna, Aprl 0 6

Changs n momntum lux Nd to alulat to an ordr hghr n δ = ρ /a Π ~ D g r ( n M V { δ t ) << Π at hgh low Two drnt ontrbutons Nw trms n th xprsson or Nw trms n th gyroknt quaton Wolgang Paul Insttut, Vnna, Aprl 0 7

Wolgang Paul Insttut, Vnna, Aprl 0 8 Turbulnt momntum transport Usng momnts o th ull Fokkr-Plank quaton and gnorng nolassal transport o momntum ( ) ( ) ( ) ( ) ( ) { } ( ) φ φ φ Π = ) ( 3 3 3 3 b b b F C d M d V V M d I M t p M d M l

Nw trms M V V ( ) ( ) 3 φ b d M p t... ~ d dt ( ) Causd by hangs n wdth o drt orbts M = = onst. gs drt orbt ( ) wdth ( ) nras n wdns drt orbts mods n = n nw Ω Wolgang Paul Insttut, Vnna, Aprl 0 9

Wdth o drt orbts For nrasng ( ) E E n = n ( ) ( ) n n r r GK polarzaton E no polarzaton ΔΩ Wolgang Paul Insttut, Vnna, Aprl 0 0

Wolgang Paul Insttut, Vnna, Aprl 0 Gyroknt quaton To lowst ordr, du to symmtry To nxt ordr Problmat baus w nd,, φ! Nd hghr ordr trms n gyroknt quaton ( ) ( ) 0 3 = φ b d M ( ) ( ) ( ) ( ) φ φ b b 3 3 d d M

Wolgang Paul Insttut, Vnna, Aprl 0 Hghr ordr gyroknt quaton Flux tub quaton to sond ordr ( ) { } ( ) ( ) ( ) { } 0 () () () () () ) ( = E E C E E E F t M F E t M T C t M M n n E M M M M E E M & & & & l b b b b araton prol radal φ φ φ φ φ φ

Hghr ordr gyroknt quaton Flux tub quaton to sond ordr Nolassal qulbrum t on turbuln Flow and hat low wthn lux sura Slowly aryng nlop o th turbuln n th polodal drton Paralll nonlnarty adal prol araton Hghr ordr orrtons to gyroknt quaton Wolgang Paul Insttut, Vnna, Aprl 0 3

Frst proposd smplaton For / << & turbuln NOT salng wth / ( ) { } ( l) n b M E C = E F... t Nolassal paralll lows and hat lows largr than turbulnt ts by ρ p /ρ ~ / >> Usng Π t n dτ E F Ω,,, P Ω χ Ω K T L Ω T T T Wolgang Paul Insttut, Vnna, Aprl 0 4

Numral rsults Wolgang Paul Insttut, Vnna, Aprl 0 5

Salng o turbuln wth / Important trms n gyroknt quaton... b E E M = 0 qδ ~ a l ρ φ T ~ ~ M M ~ l a Maxmum Δ ~ φ T ~ ~ M M ~ ρ, a l ~ ρ Wolgang Paul Insttut, Vnna, Aprl 0 6

Numral salngs Wolgang Paul Insttut, Vnna, Aprl 0 7

Whn ths / salng works Nd to onsdr Slowly aryng nlop o th turbuln n th polodal drton Paralll nonlnarty adal prol araton Hghr ordr orrtons to gyroknt quaton an b ngltd Stll studyng undr what rumstans ths salng works Wolgang Paul Insttut, Vnna, Aprl 0 8

Wolgang Paul Insttut, Vnna, Aprl 0 9 Intrns rotaton Addng all th ontrbutons In ordr o magntud omparabl to obsratons 0 sours hatng = Ω Ω Π χ T Z T n N n M T K T L P ~ r T r V

Conlusons Nw sl-onsstnt modl or ntrns rotaton that an xplan hang o sgn n rotaton Intrns rotaton dpnds on gradnts o dnsty and tmpratur o both ltron and ons, and on th hatng sour Possbl sours o ntrns rotaton not studd hr ar up-down symmtry and rppl Wolgang Paul Insttut, Vnna, Aprl 0 30