arxiv: v1 [math.ca] 29 Jun 2018

Similar documents
EVALUATION OF SOME NON-ELEMENTARY INTEGRALS INVOLVING SINE, COSINE, EXPONENTIAL AND LOGARITHMIC INTEGRALS: PART II

Evaluation of the non-elementary integral e

Chapter 4. Fourier Series

Evaluation of Some Non-trivial Integrals from Finite Products and Sums

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

1 6 = 1 6 = + Factorials and Euler s Gamma function

arxiv: v2 [math.nt] 10 May 2014

Sequences of Definite Integrals, Factorials and Double Factorials

18.440, March 9, Stirling s formula

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula Derived from the Gamma Function

The Gamma function Michael Taylor. Abstract. This material is excerpted from 18 and Appendix J of [T].

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

arxiv: v1 [math.nt] 5 Jan 2017 IBRAHIM M. ALABDULMOHSIN

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

Math 2784 (or 2794W) University of Connecticut

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Chapter 8. Euler s Gamma function

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

Solutions to Final Exam Review Problems

Enumerative & Asymptotic Combinatorics

An Asymptotic Expansion for the Number of Permutations with a Certain Number of Inversions

ON POINTWISE BINOMIAL APPROXIMATION

Notes 19 Bessel Functions

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Chapter 6 Infinite Series

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

ECE Spring Prof. David R. Jackson ECE Dept. Notes 8

On forward improvement iteration for stopping problems

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

A Class of Logarithmic Integrals. Victor Adamchik. Wolfram Research Inc. 100 Trade Center Dr. April 10, 1997

Chapter 8. Euler s Gamma function

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1.

Exponential Functions and Taylor Series

MATH 10550, EXAM 3 SOLUTIONS

PAijpam.eu ON DERIVATION OF RATIONAL SOLUTIONS OF BABBAGE S FUNCTIONAL EQUATION

Number of Spanning Trees of Circulant Graphs C 6n and their Applications

Bounds for the Positive nth-root of Positive Integers

The integrals in Gradshteyn and Ryzhik. Part 5: Some trigonometric integrals

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Appendix: The Laplace Transform

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

A PROOF OF THE TWIN PRIME CONJECTURE AND OTHER POSSIBLE APPLICATIONS

De la Vallée Poussin Summability, the Combinatorial Sum 2n 1

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

CHAPTER 10 INFINITE SEQUENCES AND SERIES

Harmonic Number Identities Via Euler s Transform

De Moivre s Theorem - ALL

The r-generalized Fibonacci Numbers and Polynomial Coefficients

Ma 530 Introduction to Power Series

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

INVERSE THEOREMS OF APPROXIMATION THEORY IN L p,α (R + )

The log-behavior of n p(n) and n p(n)/n

The Phi Power Series

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Formulas for the Approximation of the Complete Elliptic Integrals

A Note on the Symmetric Powers of the Standard Representation of S n

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function

IRRATIONALITY MEASURES, IRRATIONALITY BASES, AND A THEOREM OF JARNÍK 1. INTRODUCTION

A Note On The Exponential Of A Matrix Whose Elements Are All 1

Stability of fractional positive nonlinear systems

arxiv: v1 [math.ca] 22 Jan 2019

ON RUEHR S IDENTITIES

Some integrals related to the Basel problem

On Random Line Segments in the Unit Square

2.4 Sequences, Sequences of Sets

Physics 116A Solutions to Homework Set #9 Winter 2012

On some properties of digamma and polygamma functions

General Properties Involving Reciprocals of Binomial Coefficients

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

1 Approximating Integrals using Taylor Polynomials

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Chapter 9: Numerical Differentiation

MAT 271 Project: Partial Fractions for certain rational functions

Frequency Response of FIR Filters

WHAT ARE THE BERNOULLI NUMBERS? 1. Introduction

arxiv: v2 [math.nt] 9 May 2017

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

ON SOME TRIGONOMETRIC POWER SUMS

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Keywords: Integration, Mathematical Algorithm, Powers of Cosine, Reduction Formula, Trigonometric Identities

A Slight Extension of Coherent Integration Loss Due to White Gaussian Phase Noise Mark A. Richards

An elementary proof that almost all real numbers are normal

COMM 602: Digital Signal Processing

Gamma Distribution and Gamma Approximation

Self-normalized deviation inequalities with application to t-statistic

Complex Numbers Solutions

ON SINGULAR INTEGRAL OPERATORS

Assignment Number 3 Solutions

... and realizing that as n goes to infinity the two integrals should be equal. This yields the Wallis result-

Solution of Differential Equation from the Transform Technique

Dominant of Functions Satisfying a Differential Subordination and Applications

ENGI Series Page 6-01

Matrix Operators and Functions Thereof

7.1 Convergence of sequences of random variables

Math 155 (Lecture 3)

arxiv: v1 [cs.sc] 2 Jan 2018

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A.

Math 113, Calculus II Winter 2007 Final Exam Solutions

Transcription:

URAL MATHEMATICAL JOURNAL, Vol. 3, No., 207 arxiv:807.025v [math.ca] 29 Ju 208 EVALUATION OF SOME NON-ELEMENTARY INTEGRALS INVOLVING SINE, COSINE, EXPONENTIAL AND LOGARITHMIC INTEGRALS: PART II Victor Nijimbere School of Mathematics ad Statistics, Carleto Uiversity, Ottawa, Otario, Caada, victorijimbere@gmail.com Abstract: The o-elemetary itegrals Si β,α [siλx β /λx α ]dx,β,α > β ad Ci β,α [cosλx β /λx α ]dx,β,α >, where {β,α} R, are evaluated i terms of the hypergeometric fuctio 2 F 3. O the other had, the expoetial itegral Ei β,α e λxβ /x α dx,β,α > β is expressed i terms of 2 F 2. The method used to evaluate these itegrals cosists of expadig the itegrad as a Taylor series ad itegratig the series term by term. Key words: No-elemetary itegrals, Sie itegral, Cosie itegral, Expoetial itegral, Hyperbolic sie itegral, Hyperbolic cosie itegral, Hypergeometric fuctios.. Itroductio Let us first give the defiitio of the o-elemetary itegral. This defiitio is also give i Part I [6], we repeat it here for referece. Defiitio. A elemetary fuctio is a fuctio of oe variable costructed usig that variable ad costats, ad by performig a fiite umber of repeated algebraic operatios ivolvig expoetials ad logarithms. A idefiite itegral which ca be expressed i terms of elemetary fuctios is a elemetary itegral. Ad if, o the other had, it caot be evaluated i terms of elemetary fuctios, the it is o-elemetary [, 9]. The cases cosistig of the o-elemetary itegrals Si β,α [siλx β /λx α ]dx,β,α β ad Ci β,α [cosλx β /λx α ]dx, β,α, where {β,α} R, were cosidered ad evaluated i terms of the hypergeometric fuctios F 2 ad 2 F 3 i Part I [6], ad their asymptotic expressios for x were derived too i Part I [6]. The expoetial itegral Ei β,α e λxβ /x α dx where β ad α β was expressed i terms of 2 F 2, ad its asymptotic expressio for x was derived as well i Part I [6]. Here, we ivestigate other cases which were ot treated either i Part I [6] or elsewhere. We evaluate Si β,α [siλx β /λx α ]dx,β,α > β ad Ci β,α [cosλx β /λx α ]dx, β,α > ad Ei β,α e λxβ /x α dx,β,α > β. I order to take ito accout all possibilities, wewrite these itegrals as Si β,βα [siλx β /λx βα ]dx,β,α >, Ci β,α [cosλx β /λx α ]dx, β,α >, ad Ei β,βα e λxβ /x βα dx,β,α > where {β,α} R. O oe had, Si β,βα ad Ci β,α are expressed i terms of the hypergeometric fuctio 2 F 3, while o aother had, Ei β,βα is expressed i terms of the hypergeometric fuctio 2F 2. These itegrals ivolvig a power fuctio x β i the argumet of the umerator are the geeralizatios of the expoetial, sie ad cosie itegrals i [7] see sectios 8.9 ad 8.2 respectively, which have applicatios i differet fields i sciece, applied scieces ad egieerig icludig

2 Victor Nijimbere physics, uclear techology, mathematics, probability, statistics, ad so o. For istace, the geeralized expoetial itegral E,α is used i fluidodyamics ad trasport theory, where it is applied to the solutio of Mile s itegral equatios [2], there are also used i modelig radiative trasfer processes i the atmosphere ad i uclear reactors [0], etc. Expoetial asymptotics ivolvig geeralized expoetial itegrals are used i probability theory, see for example [3]. O the had, geeralized sie ad cosie itegrals are frequetly utilized i Fourier aalysis ad related domais [8]. Therefore, we are justified to further geeralize these fuctios ad their coectios to hypergeometric fuctios. Before we proceed to the mai objectives of this paper cosistig of evaluatig the above iterestig cases of o-elemetary itegrals see sectios 2, 3 ad, we first defie the geeralized hypergeometric fuctio as it is a importat tool that we are goig to use i the paper. Defiitio 2. The geeralized hypergeometric fuctio, deoted as p F q, is a special fuctio give by the series [, 7] pf q a,a 2,,a p ;b,b 2,,b q ;x a a 2 a p x b b 2 b q!,. where a,a 2,,a p ad ;b,b 2,,b q are arbitrary costats, ϑ Γϑ /Γϑ Pochhammer s otatio [, 7] for ay complex ϑ, with ϑ 0, ad Γ is the stadard gamma fuctio []. 2. Evaluatio of the sie itegral Si β,βα,β,α > Theorem. Let β ad α >, ad let α mβ ǫ, where m is a iteger m N ad β < ǫ < β.. If ǫ 0, the siλx β Si β,βα λx βα dx m λ 22m x Γ22m2 m λ 2m x 2 m πγmγ m 3 2F 3, 2 ;m,m 3 2,2 x ; λ2 C, 2. where m α/β. 2. If ǫ, the siλx β λ 2m Si β,βα dx m λxβα Γ2m2 l x m λ 22m Γ22m2 2F 3,;m2,m 5 x β 2,2; λ2 m λ 2m2 x 2 2m πγm2γ m 5 2 where m α /β. x C, 2.2

Some o-elemetary itegrals of sie, cosie ad expoetial itegrals type 3 3. Fially, if ǫ β,0 0,,β, we have siλx β λ 2m x ǫ dx m λxβα Γ2m2 ǫ m λ 22m x ǫ Γ22m2 ǫ m λ 2m2 x ǫ 2 2m3 πγm2γ m 5 2F 3, ǫ 2 ǫ ;m2,m 5 2 ǫ x,2 ; λ2 2.3 C, where m α ǫ/β. P r o o f. We proceed as i [5, 6]. We expad gx as Taylor series ad itegrate the series term by term. We use the gamma duplicatio formula[], the gamma property Γα αγα

Victor Nijimbere ad Pochhammer s otatio see Defiitio 2. We also set α mβ ǫ, ad the we obtai siλx β dx λxβα λx β x α λxβ 2 2! dx λ 2 2! x α dx m λ 2 2! x m ǫ dx λ 2 2! x m ǫ dx m m λ 2 2! x m ǫ dx λ 2 2! x m ǫ dx m m λ 22m 22m! x ǫ dx m λ 22m 22m! x ǫ dx m λ 22m Γ22m2 x ǫ dx m λ 22m Γ22m2 x ǫ dx 2. m λ 2m dx Γ2m2 x ǫ m λ 22m Γ22m2 x ǫ dx m λ 22m Γ22m2 x ǫ dx m λ 2m Γ2m2 m m λ 2m Γ2m2 m dx x ǫ λ 22m2 λ 22m m Γ22m2 x ǫ dx Γ22m x ǫ dx dx x ǫ λ 22m2 λ 22m x ǫ m Γ22m2 ǫ x ǫ Γ22m ǫ C m λ 2m dx Γ2m2 x ǫ m λ 22m x ǫ Γ22m2 ǫ m λ 2m2 x ǫ 2 2m3 πγm2γ ǫ m 5 2 ǫ m2 m 5 2 m λ 2m dx Γ2m2 2 ǫ x ǫ m λ 22m x ǫ Γ22m2 ǫ m λ 2m2 x ǫ 2 2m3 πγm2γ m 5 2F 3, ǫ 2 ǫ ;m2,m 5 2 λ2 x! C ǫ x,2 ; λ2 2.5 C

Some o-elemetary itegrals of sie, cosie ad expoetial itegrals type 5. For ǫ 0, we substitute ǫ 0 i 2., ad hece, we obtai siλx β dx λxβα λx β x α λxβ 2 2! dx m λ 22m Γ22m2 x dx m λ 22m Γ22m2 x dx m λ 22m x Γ22m2 m λ 22m x Γ22m2 λ 22m x m Γ22m2 m λ 2m x 2 m π ΓmΓ m 3 2 λ 22m x m Γ22m2 m λ 2m x 2 m πγmγ m 3 2 which is 2., ad where m α/β. m λ 2m2 x 2 2m πγm2γ m 5 2 m m 3 2 2 λ2 x 2F 3, ;m,m 3 2,2 x ; λ2 2. For ǫ, we set ǫ i 2.5 ad obtai siλx β λ 2m dx m λxβα Γ2m2 l x m λ 22m x Γ22m2 2F 3,;m2,m 5 x β 2,2; λ2 which is 2.2, ad where m α /β.! C 2.6 C 2.7 3. For ǫ β,0 0,,β, 2.5 gives siλx β λ 2m x ǫ dx m λxβα Γ2m2 ǫ m λ 22m x ǫ Γ22m2 ǫ m λ 2m2 x ǫ 2 2m3 πγm2γ m 5 2F 3, ǫ 2 ǫ ;m2,m 5 2 which is 2.3, ad where m α ǫ/β. ǫ x,2 ; λ2 2.8 C Example. I this example, we evaluate [ six 2 /x 3.5] dx. We first observe that λ ad β 2. We also have 3.5 β α 2.5 2 2 0.5 β mβ ǫ, ad so m ad ǫ 0.5. Substitutig λ,β 2,m ad ǫ 0.5 i 2.3 gives six 2 x 3.5 dx x.5 9 x 2.5 2.5 x5.5 50π 2 F 3, 98 ;3, 72, 78 ; x C. 2.9

6 Victor Nijimbere We ca use the same procedure for the hyperbolic sie itegral, the results are stated i the followig theorem. Its proof is similar to that of Theorem, we will omit it. Theorem 2. Let β ad α >, ad let α mβ ǫ, where m is a iteger m N ad β < ǫ < β.. If ǫ 0, the sihλx β λx βα dx λ 2m x 2 m πγmγ m 3 2 where m α/β. λ 22m x Γ22m2 2. If ǫ, the sihλx β λ 2m dx λxβα Γ2m2 l x λ 2m2 x 2 2m πγm2γ m 5 2 where m α /β. 2F 3, ;m,m 3 2,2 ; λ2 x λ 22m x Γ22m2 β 2F 3,;m2,m 5 2,2; λ2 x C, 2.0 C, 2. 3. Fially, if ǫ β,0 0,,β, we have sihλx β λ 2m x ǫ dx λxβα Γ2m2 ǫ λ 22m x ǫ Γ22m2 ǫ λ 2m2 x ǫ 2 2m3 πγm2γ m 5 2F 3, ǫ 2 ǫ ;m2,m 5 ǫ,2 2 ; λ2 x 2.2 where m α ǫ/β. C, 3. Evaluatio of the cosie itegral Ci β,α,β,α > Theorem 3. Let β ad α >, ad let α mǫ, where m is a iteger m N ad < ǫ <.. If ǫ 0, the cosλx β Ci β,α λx α dx x α λ α m λ 22m x Γ22m3 m λ 2m x 2 m2 πγ m 3 2F 3, 2 Γm2 ;m 3 2,m2,2 x ; λ2 C, 3.3 where m α/.

Some o-elemetary itegrals of sie, cosie ad expoetial itegrals type 7 2. If ǫ, the cosλx β λx α dx x α λ α m λ 2m l x m λ 22m x Γ2m3 Γ22m3 m λ 2m3 x 2 2m5 πγ m 5 2F 3,;m 5 x 2 Γm3β 2,m3,2; λ2 C, 3. where m α /. 3. Fially, if ǫ,0 0,,, we have cosλx β λx α dx x α λ α m λ 2m x ǫ Γ2m3 ǫ m λ 2m3 x ǫ 2 2m πγ m 5 2F 3, ǫ 2 Γm3 ǫ m ;m 5 2 λ 22m x ǫ Γ22m3 ǫ ǫ x,m3,2 ; λ2 3.5 C, where m α ǫ/.

8 Victor Nijimbere P r o o f. We proceed as i Theorem. We have cosλx β dx λxα λx α λxβ 2 dx 2! λx αdx λ2 λ 2! x α dx λx αdx λ 22 λ 22! x α dx m λx αdx λ 2 22! x m ǫ dx λx αdx λx αdx λx αdx m λ 2 22! x m ǫ dx m m λ 2 22! x m ǫ dx m λ 2 22! x m ǫ dx m λ 22m 22m2! x ǫ dx λ 22m Γ22m3 x ǫ dx m m λ 22m 22m2! x ǫ dx λ 22m Γ22m3 x ǫ dx 3.6 λ 2m dx λx αdx m Γ2m3 x ǫ m λ 22m Γ22m3 x ǫ dx m λ 22m Γ22m3 x ǫ dx λ 2m dx λx αdx m Γ2m3 x ǫ m λ 22m Γ22m3 x ǫ dx m λ 22m3 Γ22m5 x ǫ dx x α λ 2m dx λ α m Γ2m3 x ǫ m λ 22m x ǫ Γ22m3 ǫ m λ 22m3 x ǫ Γ22m5 ǫ C x α λ 2m dx λ α m Γ2m3 x ǫ m λ 22m x ǫ Γ22m3 ǫ m λ 2m3 x ǫ 2 2m πγ ǫ λ2 x m 5 C 2 Γm3 ǫ m 5 2 m3 2 ǫ! x α λ2m dx m λ α Γ2m3 x ǫ m λ 22m x ǫ Γ22m3 ǫ m λ 2m3 x ǫ 2 2m πγ m 5 2F 3, ǫ 2 Γm3 ǫ ;m 5 ǫ x,m3,2 2 ; λ2 C. 3.7

Some o-elemetary itegrals of sie, cosie ad expoetial itegrals type 9. For ǫ 0, we substitute ǫ 0 i 3.6, ad hece, we obtai cosλx β dx λxα dx λx α m m λ 22m λ 22m Γ22m3 x dx Γ22m3 x dx x α λ α m λ 22m x Γ22m3 m λ 22m x Γ22m3 x α λ α m λ 22m x Γ22m3 m λ 2m x 2 m2 π Γ m 3 2 Γm2 m 3 2 m2 2 λ2 x x α λ α m λ 22m x Γ22m3 m λ 2m x 2 m2 πγ m 3 2F 3, 2 Γm2 ;m 3 2,m2,2 x ; λ2 C, 3.8 which is 3.3, ad where m α/. 2. For ǫ, we set ǫ i 3.7 ad obtai cosλx β λx α dx x α λ α m λ 2m l x m λ 22m x Γ2m3 Γ22m3 m λ 2m3 x 2 2m5 πγ m 5 2F 3,;m 5 x 2 Γm3β 2,m3,2; λ2 C, 3.9 which is 3., ad where m α /. 3. For ǫ,0 0,,, 3.7 gives cosλx β λx α dx x α λ α m λ 2m x ǫ Γ2m3 ǫ m λ 2m3 x ǫ 2 2m πγ m 5 2F 3, ǫ 2 Γm3 ǫ which is 3.5, ad where m α ǫ/. m ;m 5 2! λ 22m x ǫ Γ22m3 ǫ ǫ x,m3,2 ; λ2 3.20 C,

0 Victor Nijimbere Example 2. I this example, we evaluate [ cosx/x 5] dx. We first observe that λ ad β. We also have 5 α 23 22 βmǫ, ad so m ad ǫ. Substitutig λ,β,m ad ǫ i 3. gives cosx x 5 dx x x 2 l x 2 x2 720π 2 F 3,; 72,,2; x2 C. 3.2 We ca use the same procedure for the hyperbolic cosie itegral, the results are stated i the ext theorem. Its proof is similar to Theorem 3 s proof, we will omit it. Theorem. Let β ad α >, ad let α mǫ, where m is a iteger m N ad < ǫ <.. If ǫ 0, the coshλx β λx α dx x α λ α λ 22m x Γ22m3 λ 2m x 2 m2 πγ m 3 2F 3, 2 Γm2 ;m 3 2,m2,2 ; λ2 x C, 3.22 where m α/. 2. If ǫ, the coshλx β λx α dx x α λ α λ2m Γ2m3 l x λ 22m x Γ22m3 λ 2m3 x 2 2m5 πγ m 5 2F 3,;m 5 2 Γm3β 2,m3,2; λ2 x C, 3.23 where m α /. 3. Fially, if ǫ,0 0,,, we have cosλx β λx α dx x α λ α m λ 2m x ǫ Γ2m3 ǫ λ 2m3 x ǫ 2 2m πγ m 5 2F 3, ǫ 2 Γm3 ǫ where m α ǫ/. λ 22m x ǫ Γ22m3 ǫ ;m 5 2 ǫ,m3,2 ; λ2 x 3.2 C,

Some o-elemetary itegrals of sie, cosie ad expoetial itegrals type. Evaluatio of the expoetial itegral Ei β,βα,β,α > Theorem 5. Let β ad α >, ad let α βmǫ, where m is a iteger m N ad β < ǫ < β.. If ǫ 0, the Ei β,βα e λxβ λx βαdx x β α λ β α λ m x Γm 2 F 2 λ m x β Γm2 β, β ;m2,2 β ;λxβ C,.25 where m α/β. 2. If ǫ, the Ei β,βα e λxβ λx βαdx x β α λ β α λ m Γm2 l x λ m x β Γm2 β λm x β Γm3β 2 F 2,;m3,2;λx β C,.26 where m α /β. 3. Fially, if ǫ β,0 0,,β, we have e λxβ λx βαdx x β α λ β α λ m x ǫ Γm2 ǫ λ m x β ǫ Γm3β ǫ 2 F 2 λ m x β ǫ Γm2 β ǫ, ǫ ǫ ;m3,2 β β ;λxβ C,.27 where m α ǫ/β.

2 Victor Nijimbere P r o o f. We proceed as before. The, we have e λxβ λx βαdx λx β λx βα dx! λ λx βαdx λ! xβ α dx m λ λx βαdx! xβ βm ǫ dx λx βαdx λx βαdx λx βαdx λx βαdx λx βαdx m λ m Γm2 λ! xβ m ǫ dx λ m m! xβ ǫ dx λ m Γm2 xβ ǫ dx λ m dx Γm2 x ǫ dx x ǫ x β α λ β α λ m dx Γm2 x ǫ x β α λ β α λ m dx Γm2 x ǫ x β α λ β α λ m dx Γm2 x ǫ λ λx βαdx λ! xβ β α dx m m λ! xβ βm ǫ dx λ! xβ m ǫ dx λ m m! xβ ǫ dx λ m Γm2 xβ ǫ dx λ m Γm2 xβ ǫ dx λ m Γm2 xβ ǫ dx.28 λ m Γm2 xβ ǫ dx λ m Γm3 xββ ǫ dx λ m x β ǫ Γm2 β ǫ λ m x ββ ǫ Γm3 ββ ǫ C λ m x β ǫ Γm2 β ǫ λ m x β ǫ Γm3β ǫ λ m Γm2 β ǫ λ m x β ǫ Γm3β ǫ 2 F 2 ǫ β m3 2 ǫ β x β ǫ λx β C!, ǫ ǫ ;m3,2 β β ;λxβ C..29

Some o-elemetary itegrals of sie, cosie ad expoetial itegrals type 3. For ǫ 0, we substitute ǫ 0 i.28, ad hece, we obtai e λxβ λx βαdx x β α λ β α dx λx βα x β α λ β α x β α λ β α λ m Γm2 xβ dx λ m x β Γm2 β λ m x β Γm2 β λ m x β Γm2 β λ m x Γm λ m x β Γm2 β which is.25, ad where m α/β. 2. For ǫ, we set ǫ i.29 ad obtai λ m Γm2 xβ dx λ m x Γm 2 F 2 β λx β! m2 2 β, β ;m2,2 β ;λxβ C,.30 e λxβ λx βαdx x β α λ β α λ m Γm2 l x λ m x β Γm2 β λm x β Γm3β 2 F 2,;m3,2;λx β C,.3 which is.26, ad where m α /β. 3. For ǫ β,0 0,,β,.29 gives e λxβ λx βαdx x β α λ β α λ m x ǫ Γm2 ǫ λ m x β ǫ Γm3β ǫ 2 F 2 λ m x β ǫ Γm2 β ǫ, ǫ ǫ ;m3,2 β β ;λxβ C,.32 which is.27, ad where m α ǫ/β. Example 3. I this example, we evaluate e x2 /x dx. We first observe that λ ad β 2. We also have β α 22 22 0 β βmǫ, ad so m ad ǫ 0. Substitutig λ,β,m ad ǫ 0 i.25 gives e x 2 x 3 dx x 3 x x 2 F 2,2;3,3; x 2 C..33 Corollary. Let α > ad let α mǫ, where m is a iteger m N ad < ǫ.

Victor Nijimbere. If ǫ 0 or, the Ei,α e λx λx αdx λαx α λ m Γm2 l x λ m x Γm2 λm x Γm3β 2 F 2,;m3,2;λxC,.3 where m α. 2. Ad if ǫ,0 0,, we have e λx λx αdx λαx α λ m x ǫ Γm2 ǫ λ m x ǫ Γm2 ǫ λ m x 2 ǫ Γm32 ǫ 2 F 2,2 ǫ;m3,3 ǫ;λxc,.35 where m α ǫ. P r o o f.. If ǫ 0 or implies α mǫ is a iteger α N sice m N. Morever, α mǫ implies β i Theorem 5. Therefore, we obtai.3 by settig β i.26. 2. For ǫ,0 0,, we set β i.27 ad obtai.35. Example. I this example, we evaluate e x /x 3.7 dx. We first observe that λ. We also have 3.7 α 2.7 20.7 mǫ, ad so m 2 ad ǫ 0.7. Substitutig λ,m 2 ad ǫ 0.7 i.35 gives e x x 2.7 x3.7dx 2.7 x0.3.8 x.7.7 x 0.7. x.3 3.2 2 F 2,.3;5,2.3; x C..36 5. Coclusio Formulas for the o-elemetary itegrals Si β,α [siλx β /λx α ]dx,β,α > β, ad Ci β,α [cosλx β /λx α ]dx,β,α >, were explicitly derived i terms of the hypergeometric fuctio 2 F 3 see Theorems ad 2. Oce derived, formulas for the hyperbolic sie ad hyperbolic cosie itegrals were deduced from those of the sie ad cosie itegrals see Theorems 2 ad. O the other had, the expoetial itegral Ei β,α e λxβ /x α dx,β,α > β was expressed i terms of the hypergeometric fuctio 2 F 2 see Theorem 5 ad Corollary. Beside, illustrative examples were give. Therefore, their correspodig defiite itegrals ca ow be evaluated usig the FTC rather tha usig umerical itegratio.

Some o-elemetary itegrals of sie, cosie ad expoetial itegrals type 5 REFERENCES. Abramowitz M., Stegu I.A. Hadbook of mathematical fuctios with formulas, graphs ad mathematical tables. Natioal Bureau of Stadards,96. 06 p. 2. Chiccoli C., Lorezutta S., Maio G. Cocerig some itegrals of the geeralized expoetialitegral fuctio//computers Math. Applic., 992. Vol. 23, No., P. 3 2. 3. Che X. Expoetial asymptotics ad law of the iterated logarithm for itersectio local times of radom walks// A. Probab., 200. Vol. 32, No., P. 328 3300. DOI 0.2/00979000000053. Marchisotto E.A., Zakeri G.-A. A ivitatio to itegratio i fiite terms// College Math. J., 99. Vol. 25, o. P. 295 308. DOI: 0.2307/26876 5. Nijimbere V. Evaluatio of the o-elemetary itegral e λxα dx, α 2, ad other related itegrals// Ural Math. J., 207. Vol 3, o. 2. P. 30 2. DOI: 0.5826/Umj.207.2.0 6. Nijimbere V. Evaluatio of some o-elemetary itegrals ivolvig sie, cosie, expoetial ad logarithmic itegrals: Part I// Ural Math. J., 207. Accepted for publicatio. 7. NIST Digital Library of Mathematical Fuctios. http://dlmf.ist.gov/ 8. Rahma M. Applicatios of Fourier trasforms to geeralized fuctios. Witt Press, 20. 92 p. 9. Roselicht M. Itegratio i fiite terms// Amer. Math. Mothly, 972. Vol 79, o. 9. P. 963 972. DOI: 0.2307/238066 0. Shore S.N. Blue Sky ad Hot Piles: The Evolutio of Radiative Trasfer Theory from Atmospheres to Nuclear Reactors// Historia Mathematica, 2002. Vol 29, P. 63 89. Doi:0.006/hmat.2002.2360