Physics of coherent radiation by relativistic electron bunches

Similar documents
BREMSSTRAHLUNG IN A THIN LAYER OF MATTER AT HIGH ENERGY

Photon Colliders at Multi-TeV Energies

Coherent bremsstrahlung at the BEPC collider

Electron-positron production in kinematic conditions of PrimEx

PHYS 5012 Radiation Physics and Dosimetry

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

PHYS 5012 Radiation Physics and Dosimetry

Scattering of Electromagnetic Radiation. References:

Particles and Waves Particles Waves

University of Oslo. Department of Physics. Interaction Between Ionizing Radiation And Matter, Part 2 Charged-Particles.

Passage of particles through matter

Intense laser-matter interaction: Probing the QED vacuum

2. Passage of Radiation Through Matter

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one.

Interactions of Photons with Matter Compton Scatter (Part 2)

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

Interaction X-rays - Matter

Supplementary Information

Unruh effect & Schwinger mechanism in strong lasers?

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Experimental Physics EP3 Atoms and Molecules Spectroscopy X-rays, lasers

Radiation from Charged Particle Interaction with Matter

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

PHYS 571 Radiation Physics

Quantum Mechanics II Lecture 11 ( David Ritchie

Interaction of Particles with Matter

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

The Cherenkov effect

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Simulating experiments for ultra-intense laser-vacuum interaction

Physics 139B Solutions to Homework Set 4 Fall 2009

D Göttingen, Germany. Abstract

Cooled-HGHG and Coherent Thomson Sca ering

X-ray Energy Spectroscopy (XES).

High energy X-ray vortex generation using inverse Compton scattering

EM radiation - Lecture 14

V.G. Baryshevsky. Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus

Radiative Processes in Flares I: Bremsstrahlung

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

LECTURE 18. Beam loss and beam emittance growth. Mechanisms for beam loss. Mechanisms for emittance growth and beam loss Beam lifetime:

JLab Nov. 1. R. Avakian

New photon transport model in Serpent 2

Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2012

Particle Interactions in Detectors

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

remsstrahlung 1 Bremsstrahlung

for the production of lepton pairs and photons in collisions of relativistic nuclei

MATR316, Nuclear Physics, 10 cr

Queen s University PHYS 352

PHYS 3313 Section 001 Lecture #16

CHANNELING 2014 CHARGED & NEUTRAL PARTICLES CHANNELING PHENOMENA, Capri (Napoli), Italy, October 5-10, 2014

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly.

Recollision processes in strong-field QED

Production of e + e pairs to all orders in Zα for collisions of high-energy muons with heavy nuclei

1240 ev nm nm. f < f 0 (5)

Compton Scattering I. 1 Introduction

RADIATION OF ELECTROMAGNETIC WAVES

PHYS Introduction to Synchrotron Radiation

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012

Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas

Electrodynamics HW Problems 06 EM Waves

Drude-Schwarzschild Metric and the Electrical Conductivity of Metals

David J. Starling Penn State Hazleton PHYS 214

THE POSSIBILITY OF PRECISE MEASUREMENT OF ABSOLUTE ENERGY OF THE ELECTRON BEAM BY MEANS OF RESONANCE ABSORPTION METHOD R.A.

THE SEARCH OF LARGE CROSS SECTION ASYMMETRIES IN THE PAIR PRODUCTION PROCESS BY POLARIZED PHOTONS 1

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Open quantum systems

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

Experimental Determination of Crystal Structure

arxiv:hep-ph/ v1 15 Apr 1995

r,t r R Z j ³ 0 1 4π² 0 r,t) = 4π

Instabilities Driven Equilibration of the Quark-Gluon Plasma

- 1 - θ 1. n 1. θ 2. mirror. object. image

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization

GAMMA-RAYS FROM MASSIVE BINARIES

Damping signatures in future neutrino oscillation experiments

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Studying Nuclear Structure

Scattering in Cold- Cathode Discharges

Shadowing of the electromagnetic field of a relativistic electron

Low Emittance Machines

Compton Source of Twisted Photons

RUTHERFORD ATOM E. Rutherford discovered that the atom had a hard core we call the nucleus.

Quantum Physics Lecture 3

Interaction of Electron and Photons with Matter

Part II. Interaction with Single Atoms. Multiphoton Ionization Tunneling Ionization Ionization- Induced Defocusing High Harmonic Generation in Gases

Chapter 2 Problem Solutions

Quadratic nonlinear interaction

Superposition of electromagnetic waves

Module I: Electromagnetic waves

TRANSIENT PHENOMENA IN QUANTUM MECHANICS: DIFFRACTION IN TIME

a) quantum mechanics b) special relativity c) general relativity d) Newtonian physics e) Maxwellian electromagnetism

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

3. Particle-like properties of E&M radiation

IHEP-BINP CEPC accelerator collaboration workshop Beam energy calibration without polarization

Transcription:

Physics of coherent radiation by relativistic electron bunches. F. Shul ga RuPAC-008 Akhiezer Institute for Theoretical Physics ational Science Center Kharkov Institute of Physics and Technology Kharkov, Ukraine e-mail: shulga@kipt.kharkov.ua How does Electron Radiate? Coherent beam - beam radiation Backward Compton scattering undulator radiation On radiationless motion of accelerated electrons bunch Positron source 1

Relativistic Electron Field Potential e z + γ ikzvt 3 ikr c e d re k ikzvt γ k z ikzvt cos z 4 0 0 4πγ e e dz k ze π e e d J 0 k K 0 k z γ k ( ) ( )

How Does Electron Radiate? The excitation is small c vrel c v γθ << 1 scat v ( c v) t t λ Δ Δ c c γ λ l c γ λ λ γθscat 1 The excitation is increased l c γ λ γθ >> 1 scat The excitation is strong ε 5GeV 3 lc ~10 cm for ω ~1MeV l ~1 cm for ω ~1KeV c 3

Coherence Length R l c γ ω crystal amorphous media dω dω B H LPM ω ε ω 4

Radiation in Coulomb field of relativistic particle lc γ λ l eff c!!! 3 eff lcγ γ λ U( r) α r ( ) U r α + + γ ( z vt) 5

Coherent radiation in crystal and at electron collision with a short bunch crystal atomic string bunch ϑ e ε RT F. Shul ga, D. Tyutyunnik, JEPT Lett. 78(003)700., Proc. of SPIE, v. 5974(005)60. 6

Coherent radiation at electron-beam collision e l c B dω B 0 L I. Ginzburg, G. Kotkin, S. Polityko, V. Serbo Phys. Lett. B86 (199) 395 Phys. Rev. E51 (1995) 493 e B 1 c << 7

Suppression of coherent radiation (analog of LPM-effect) ϑ e ε ( ) + ξ+ ξ + dω π ξ ξ + 1 e ξ 1 ln 1 1, ξ γϑ, l c L dω 6 e m e 4e ln m γϑ << 1 γϑ >> 1 ε5 Gev, L0.1 cm, 0.01 cm, 10 10, ω 4 c γ 50 kev, γϑ L 1. Shul ga, D. Tyutyunnik. JETP Lett. 78 (003) 700. im B7 (005) 15 8

Coherent radiation in a thin crystal p 0 a a lc a p ' γϑ << 1 ϑ Ze, R ε dω γϑ, γϑ << 1 e 3π ( γϑ ) 6ln, γϑ >> 1 dω p lc p ' >> a γϑ >> 1 γϑ suppression of CR 1 A. Akhiezer,. Shul ga et al. Sov. J. Part. ucl. 10 (1979) 9

Beam-beam monitoring u dω 6 e 3 ( ) e u γϑ e sh dω 3π 3πm u u 10

Beam-size dependence e Δ e u γϑ << 1 dω d 1 πδ e Δ ( ) dω 6 + 3 u Δ e sh e d dω 3π m Δ u dω 6 8 e 3π m Δ ln ( Δ ) u Δ ( ) u Δ << u Δ >> u 11

Conclusions Beam-beam collision and CR Beam-crystal collision and CR analogy Born approximation Semiclassical approximation coherent radiation suppression of CR e e 1 c << 1 c >> γϑ << 1 γϑ >> 1 10 10 10 10 l c eff γ ω 3 γ ω long-distance effect Beam-beam monitoring Beams-sizes dependence of CR applications 1

v Radiation of Charge Distribution at r( ) r( ) t+ T t + T e k I dωdο 4π J rt e t r r t ( ) (, ) υ( ) ( ) i( ωt kr() t ) 3 ikr I dt e υ t d k e r () ( ) r t+ T r t + υt ( ) ( ) T π i( ωt kr() t ) 3 ikr I δ( ω kυ ωn ) dte υ t d re r T n 0 () ( ) π ω n n T 13

Classically Radiationless Motion of Oscillating Charge r t T r t ( + ) ( ) 1. Spherically symmetrical charge distribution (G.Schott 1933) 1 4π R ( r) δ( r R) 3 ikr 1 dre r k sin ωnr ω R ( ) ( ) n ω n π n T The radiation is absent for π R kn π T. r r R, nonspherically symmetrical charge distribution, ( ) ( ) G.Goedecke, Phys.Rev 1964 A.Devaney, E.Wolf, J.Math.Phys. 1974 14

Backward Compton Scattering (Quantum Theory) e ω θ Ω Ω ω ε +... ar0 ε' ω ε ε' ω ω T + 4 1 dωdo Ω ε ω m ε' ε ωm ω m E ' ε 50Mev Ω 1ev ω m 4 εε ' Ω m ω ε ' ε ω ω m 900kev 15

Backward Compton Scattering Undulator Radiation dωdo + e 4π i( ωt kr() t ) k v t e dt γϑ << 1 e () Ω e ω δ δ 1 4 1 cos dωdo 4π q q q q ω kv δ ω γ ϕ W q ( ) Ar0 ω ω ω T 1 1 dω Ω ωm ωm ωm E ' W( q) v ( t) e iqt dt e i( v0 ) t v Ω Ω () t Re Ae ε. Shul ga, D. Tyutyunnik. Phys. Lett. A36 (004) 87. 4γ Ω ω 16

Suppression of Radiation at Undulator Motion r t+ T r t + υt υ υ ( ) ( ), Пластинка: ( z ) ( kl ) 3 ik kz 1 sin z z dke + ( r) ( π) δ( k ) k LLL k x y z z ω kυ Ω n ω n 4π γ T n Отсутствие излучения: kl z z πγ Lz π T Lz 1 γ T Подавление излучения при ω ω n : 4π γ k L ωθ n γ L L 1 T > T L > 4π γ 17

18

Positron Source Problem 19

Positron Source from Pencil-like Target.Shul ga, V.Lapko Phys.Lett.A v.359, p.8-9 (006) Pencil-like target A.Mikhailichenko (003) 0