rin t or re p c redit to the U S. Arm y Coastal E n g ineerin g R esearc h Center.

Similar documents
A L A BA M A L A W R E V IE W

P a g e 5 1 of R e p o r t P B 4 / 0 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

T h e C S E T I P r o j e c t

H STO RY OF TH E SA NT

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

P a g e 3 6 of R e p o r t P B 4 / 0 9

Fr anchi s ee appl i cat i on for m

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

Le classeur à tampons

THIS PAGE DECLASSIFIED IAW E

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

Executive Committee and Officers ( )

I N A C O M P L E X W O R L D

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

Geometric Predicates P r og r a m s need t o t es t r ela t ive p os it ions of p oint s b a s ed on t heir coor d ina t es. S im p le exa m p les ( i

RAHAMA I NTEGRATED FARMS LI MI TED RC

Welcome to the Public Meeting Red Bluff Road from Kirby Boulevard to State Highway 146 Harris County, Texas CSJ No.: December 15, 2016

INTERIM MANAGEMENT REPORT FIRST HALF OF 2018

Form and content. Iowa Research Online. University of Iowa. Ann A Rahim Khan University of Iowa. Theses and Dissertations

M Line Card Redundancy with Y-Cab l es Seamless Line Card Failover Solu t ion f or Line Card H ardw or Sof t w are Failu res are Leverages hardware Y-

Beechwood Music Department Staff

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

o Alphabet Recitation

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Results as of 30 September 2018

Dangote Flour Mills Plc

Gen ova/ Pavi a/ Ro ma Ti m i ng Count er st at Sep t. 2004

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

Bellman-F o r d s A lg o r i t h m The id ea: There is a shortest p ath f rom s to any other verte that d oes not contain a non-negative cy cle ( can

FOR SALE T H S T E., P R I N C E AL BER T SK

Alles Taylor & Duke, LLC Bob Wright, PE RECORD DRAWINGS. CPOW Mini-Ed Conf er ence Mar ch 27, 2015

PC Based Thermal + Magnetic Trip Characterisitcs Test System for MCB

Provider Satisfaction

What are S M U s? SMU = Software Maintenance Upgrade Software patch del iv ery u nit wh ich once ins tal l ed and activ ated prov ides a point-fix for

Instruction Sheet COOL SERIES DUCT COOL LISTED H NK O. PR D C FE - Re ove r fro e c sed rea. I Page 1 Rev A

DETAIL MEASURE EVALUATE

User Equilibrium in a Disrupted Network with Real-Time Information and Heterogeneous Risk Attitude

I zm ir I nstiute of Technology CS Lecture Notes are based on the CS 101 notes at the University of I llinois at Urbana-Cham paign

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

COMPILATION OF AUTOMATA FROM MORPHOLOGICAL TWO-LEVEL RULES


Building Harmony and Success

Payroll Direct Deposit

Lesson Ten. What role does energy play in chemical reactions? Grade 8. Science. 90 minutes ENGLISH LANGUAGE ARTS

STREET Light 120W/130W/140W/150W/185W. Provides high quality lighting and a long lifespan solution for residential,industrial areas and main roads.

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

Progression in calculations Years 5 and 6

results may be taken off to the nearest yard with g reat rapidity. Others prefer tables, allow of g reater precision,

TT1300 Se ries. Low Noise Matched Transister Ar ray ICs DESCRIPTION APPLICATIONS FEATURES. Microphone Preamplifiers

of HIGHE R E DUCAT I ON

J A D A V PUR U N IV ERS IT Y K O LK AT A Fa cu lty of En gi n eer in g & T e ch no lo gy N O T I C E

S ca le M o d e l o f th e S o la r Sy ste m

The Ability C ongress held at the Shoreham Hotel Decem ber 29 to 31, was a reco rd breaker for winter C ongresses.

M M 3. F orc e th e insid e netw ork or p rivate netw ork traffic th rough th e G RE tunnel using i p r ou t e c ommand, fol l ow ed b y th e internal

APPLICATION INSTRUCTIONS FOR THE

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri-

Functional pottery [slide]

minceymarble.com 4321 Browns Bridge Road, Gainesville, GA Ph: Fx:

We help hotels and restaurants SAYHELLO.

A Comparative Study on the Morphometric Characters of Fishes Belonging to Family: Centracanthidae in the Egyptian Mediterranean Waters

V6309/V Pin Microprocessor Reset Circuit EM MICROELECTRONIC-MARIN SA. Fea tures. Typi cal Op er at ing Con figu ra tion.

M1 a. So there are 4 cases from the total 16.

APPLICATION INSTRUCTIONS FOR THE

EKOLOGIE EN SYSTEMATIEK. T h is p a p e r n o t to be c i t e d w ith o u t p r i o r r e f e r e n c e to th e a u th o r. PRIMARY PRODUCTIVITY.

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t

CPU. 60%/yr. Moore s Law. Processor-Memory Performance Gap: (grows 50% / year) DRAM. 7%/yr. DRAM

Tie Bar Extension Measuring Chain

S U E K E AY S S H A R O N T IM B E R W IN D M A R T Z -PA U L L IN. Carlisle Franklin Springboro. Clearcreek TWP. Middletown. Turtlecreek TWP.

B ench mark Test 3. Special Segments in Triangles. Answers. Geometry B enchmark T ests. 1. What is AC if } DE is a midsegment of the triangle?

What Is Our Relationship with the Earth?

The Ind ian Mynah b ird is no t fro m Vanuat u. It w as b ro ug ht here fro m overseas and is now causing lo t s o f p ro b lem s.

Peace Prevails School Programme Background

SPECIFICATION SHEET : WHSG4-UNV-T8-HB

INST T N DLS. - Ext t t. Carefully read these instructions before first use. Code: Date: / /201 Rev.:.0

Th e E u r o p e a n M ig r a t io n N e t w o r k ( E M N )

Radioactive Decay and Half Life Simulation 2/17 Integrated Science 2 Redwood High School Name: Period:

APPLICATION INSTRUC TIONS FOR THE

WELCOME. O ne Vi si on Photography i s a award wi nni ng wed d i ng photographer & wed d i ng vi d eography i n S outh Wal e s

LU N C H IN C LU D E D

K owi g yourself is the begi i g of all wisdo.

Vlaamse Overheid Departement Mobiliteit en Openbare Werken


2 tel

e-hm REPAIR PARTS REPAIR PARTS ReHM R3

3.! Lateral a nd Tor sional Vibrations: An elastic system that is

Senility Degree. Our machine derives APG waveform after 2 nd differential of arterial pulse wave in order to measure

W Table of Contents h at is Joint Marketing Fund (JMF) Joint Marketing Fund (JMF) G uidel ines Usage of Joint Marketing Fund (JMF) N ot P erm itted JM

INS TITU TE O F CLINICAL CH E M IS TR Y AND LABO R ATO R Y

Grain Reserves, Volatility and the WTO

heliozoan Zoo flagellated holotrichs peritrichs hypotrichs Euplots, Aspidisca Amoeba Thecamoeba Pleuromonas Bodo, Monosiga

Bimetal Industrial Thermometers

THIS PAGE DECLASSIFIED IAW EO 12958

The distribution of characters, bi- and trigrams in the Uppsala 70 million words Swedish newspaper corpus

Process, Progress and Results

This Specification is subject to change without notice

Fall / Winter Multi - Media Campaign

Transcription:

c ommerc ial p rodu c ts. R e p rin t or re p u blic atio n of an y o f this mate rial shall g ive a pp ro p riate c redit to the U S. Arm y Coastal E n g ineerin g R esearc h Center. Limited f ree distribution within th e U nited States of sin g le c o p ies of this p ublic ation has been made b y this Center. available from Additio n al Co p ies are N a ti on al T e c hn ic al I n f o rma tion S e rvic e A T TN : O p e ra tion s D i vision 5285 Por t R o y al R oad S p rin gf i e l d Vir, gin ia 22 1 51 Contents of this re p ort ar e n ot to be used f or advertisin g, publi c ati on, or p romotional p ur p oses. Citation of tr ade n ames does not c o n stitute an of f ic ial en dorsement or a pp roval of the use of suc h T he fi n di n g s in this re p ort ar e n ot to be c onstrued as an of ficial D e p art ment of the Arm y position u nless so desi g nated b y other au thorized doc uments.

1 6. D IS T R I B U TI O N S T A T E ME N T ( a t a m R e p ort ) Approved for pub li c re lease ; distribu ti on u n limi ted I7. D I S T R I B U T IO N S T A T E ME N T 1 9. K E Y WO R D S ( C o n t i n u e on r e m -o ol d. I f n o c o a oc ry c ad i d e n ti ty b y b l o c k n u mb e r ) Great Lakes I nlet - harbor resona n c e Lake se i c h i n g Nonti dal inlet Inlet hydraulic s 20, AS T R A C T (C a n ḡh a n m u c i t f " m I n " Id e n t i ty b y b l o c k u m b e r ) Revers i n g c u rrents i n i nlets on the Great Lakes are gen erated pri mari ly b long wave se i c h i n g modes of the lakes rather than by the a stronomi c a l tide. Fie ld measurements were c on du c ted i n 1 9 74-75 at n in e harbors on the Great Lakes to : (a) Investigate the natu re of lon g wave exc i tation and the gener ating me c hanism for si gni fi c ant inlet ve locities, (b ) estab li sh te c hniques f or predi c ti n g in let- bay system response, an d ( c ) deve lop base d a t a for future p l an n i n g an d design s tudies. Data c o l lec ted inc lude c ontinuous harbor water ( c o n tinued ) DD 1 473 som o u o r t n o v c s IS O B S O L E T E U NCLASSI FIED S E C U R IT Y C L AS S I F IC AT IO N O F T HRS P AGE ( h c u D a ta E n to

leve l meas u rements at a l l sites, in let ve loc ity meas u rements a t the primary site (Pentwater, Mi c higan ), an d c hann e l hydrographi c su rveys at the sites where more re c ent d at a were needed. Avai lab le his tori c water leve l and ve loc i ty data for some of the harbor sites were a l so u sed. Amp li fied harbor os i l s c lation an d of the highes t let gen eration in ve l oc ities aused by the He lmho lt z res a r e c onan e mode whi h c c h a s a period of to 5 rs for the hou in let - bay sys tems died A re stu. c ent ly deve loped simple meri al, nu c mode l is shown to be effe tive in predi g inlet c c tin - bay response over the ge ran of i tation periods ntered A finite exc enc ou. - di fferenc e form of the c uity ontin i s to ate ly predi t let ve equ a tion shown adequ c in loc i ties i f high - ality bay qu wa ter leve l re c ords are ava i l ab le. Se le c ted data from the stu dy si tes are presen ted to demonstrate the hydrau li c response of the in let - bay systems and the app li c abi lity of the predi c tion s c hemes. Examples to demonstrate u s e of the c onc epts an d te c hn iqu es deve loped in the stu dy are app lied to the design of a n e w in let c hann e l an d to the modi fi c ation of existing c hanne l.

PRE FACE Thi s report i s pub l i shed to provi de coas ta l engineers wi th an ana lys i s o f the hydrau l i c respons e of in let - bay sys tems on the Great Lakes. The work was c arri ed out under the coas tal res earch program of the U. S. Army Coas tal Engineering Res earch Center (CE RC). The report was prepared by Wi l l i am. N. Se e l i g and Dr. Rob ert M. Sor ens en, Coas tal S tructures Bran ch, Res earch Divi s i on, CERC, under the general supervi s i on o f R. P. Savage, Chi ef, Res e ar ch Divi s i on. The authors acknow ledge the e ffor ts o f the U. S. Army Engine er Di s tri ct, De troi t and the Nat i onal Oceani c and At mospheri c Admi ni s trati on, Lake Survey Center, who c o l l e c t ed mos t of the fie l d dat a, and the report revi ew and comments by C. Mas on and B. He r c h e n r ode r. Comments on thi s pub li cat i on a r e invi te d. Approve d for pub l i cati on in accordan ce wi th Pub li c Law 1 66, 79 t h Congres s, approved 3 1 Ju ly 1 94 5, as supp lemented b y Pub li c Law 1 72, 88th Congres s, app r oved 7 November 1 963. S Co l one l, Corps of Engineers Commander and Dir ect or

CONTENTS CONVERS I ON FACTORS, U. S. CUSTOMARY TO METRI C (S I ). SYMBOLS AND DE FINI TI ONS. I INTRODUCTI ON I I LAK E AND INLET HYDRAULI CS. 1. Great Lakes and Inl et - Bay System Hydraul i cs 2. Predi c t i on of In let Ve lo c i ti es. I I I THE F I ELD DATA COLLE CTION PROGRAM. 1. Fi e ld Measurements. 2. Equipment 3. Data Reducti on and Ana lys i s Te c hniqu es. IV RESULTS. 1. S e i c h i n g of th e Great Lakes 2. Predi cted In l et - Bay Respons e to Monochr omati c Long Wa ve Forcing 3. Obs erved Lake Level Fluctuat i ons, Bay Respons e, and In l et Ve lo ci ti es V INLET DES I GN 1. New In let Channel 2. In let Channe l Modi fi cat ion. VI SUMMARY AND CONC LUS I ONS. LI TE RATURE CI TE D TAB LES 1 Summary of fi e ld measurements 2 In let and bay geome tri c measurements. 3 Modes o f os ci l lati on o f the Great Lakes 4 Influence o f Manning ' s n on in let - bay response at Pentwater 5 Predi cted peri ods of maximum wave amp li fi cati on and maximum in l et ve lo ci ti es 6 Predi cted Duluth Superi or maximum in l et water ve l o c i ti es for a forcing wave o f 1 hour ( a o 3 cent imeters ). 7 Numeri ca l Mode l Predi ct ion o f Pentwater respons e to Lake Mi chi gan modes of os ci l l ati on.

CONTENTS TAB LES - Continued Summary o f Pentwater hydrau li c c haracteri s ti c s for s e l e c te d in le t depths FI GURES In l et - b ay syst em. Amp l i fi cat i on and phas e l ag for in l et - bay syst ems Thre e predi c ted longi t u dinal modes o f os ci l lation of Lake Mi c hi gan. Pentwater respons e to s inusoi dal wave in Lake Mi chigan. Respons e to long wave exci tati on a t Pentwater Numeri ca l mode l water l eve l predi ct ions at Pentwater. In l et s tudy s i tes Data co l l e c tion s i tes on Lake Mi chi gan. Data co l l e ct i on s i tes on Lake Superi or. 1 0 Data co l l e c ti on s i t e on Lak e Eri e, Presque I s l e, P ennsy lvani a 1 1 Dat a c o l l e c ti on s i tes on Lake Ontari o 1 2 Samp l e spe c tra o f P entwater bay water l eve ls. Measured and predi ct ed inl et ve l o c i ty cumul ative frequen c y di s tributions at P entwater, Mi c hi gan 1 4 Pentwater respons e to long wave forcing 1 5 Toronto respons e to long wave for c ing 1 6 Predi ct ed respons e of in let - bay sys tems on Lake Mi chi gan to monochromati c forci n g 1 7 Predi cted respons e of in l et - bay sys t ems on Lake S u peri or to monoc hromati c for c ing 1 8 Predi cted respons e of in let - bay sys tems on Lakes Eri e and Ontario to monochromati c for cing

CONTENTS F I GURE - Continued 1 9 Samp le Pentwater and Lake Mi chi gan water l eve l s and spe c tra. 20 Samp l e Pentwater and Lake Mi chi gan water l eve ls and spectra. 2 1 S amp l e Pentwater and Lake Mi chi gan water leve ls and spe c tra. 22 Samp l e water leve l fluctuati ons 23 Water l eve l fluc tuati ons in Li tt l e Lake Harbor. 24 Samp le bay l eve ls and in l et water ve loci ti es at Duluth - Superi or. 25 Pentwater in let cumu lative frequency ve loci ty di s tributions. 26 In let ve loci ty cumul ative frequency di s t ributi ons 27 Crys ta l Lake, Mi c hi gan. 28 Predi cted respons e characteri s ti cs of an in l e t for Crys ta l Lake 29 Predi cte d in let ve loci ti es at Mi chi gan in lets 30 Respons e to l ong wave exci tati on at Pentwater 3 1 Respons e to long wave exci tat ion at Pentwater 3 2 Predi cted Pentwater in l et ve loci ties for Lake Mi chi gan water leve ls re corded on 1 8 Augus t 1 96 7

C ON VE R SI ON F ACTOR S, U. S. C U STOMAR Y T O ME T R IC ( SI ) U NITS OF ME AS U R E ME NT U.S. c u stomar y u nits of me asu reme nt u sed in this r e p or t c a n be c o n ve rted t o me tric ( S I) u nits as f ollows: in c hes Mu lti p l y T o obtai n milli me te rs c e ntime te rs squ are in c hes squar e c entime ters c ubic inc he s c u bic c e n timeters c entime ters meters squ ar e f eet c ubic f eet me te rs squ are me ters kilomete rs per hour ac res he c tares n ewton meters " kilo g rams p e r s q uar e c en timeter ou n c es g rams p oun ds ton, lon g ton, short metric ton s r adian s Celsius de g rees o r K e lvin s l 1 T o obtain Celsiu s ( C) t e m p e r atu r e r e adin g s f r om Fahre n he it ( F ) r e adin g s u u se f o rmu l a : C ( F T o obtain K e lvm ( K ) r e adin g s, u se f o rmu l a : K f (F 32)

SYMBO LS AND DE F INI TI ONS in l et c ros s s e c tional area at the bay end bay surface area in let cros s - s e cti ona l area gri d cr os s - s ect i ona l area in let cros s - s e ctiona l area at the s ea end in l et wi dth grid ce l l wi dth wave speed gri d c e l l depth water depth acce l erat ion due to gravi ty water surfac e e l evation wat er surface e l evat ion in the b a y wat er surface e l evat ion in the bay at the previous t ime st ep wat er sur fa c e e levat ion in the s ea numb er o f channe l s in the gr i d numb er o f s e c ti ons in the gri d gr id ce l l sub s cript indi cating the channe l gri d ce l l sub s cript indi cating the cros s s ecti on mode of os ci l lat ion in l et l ength added in l et l ength in the a c c e l e r a t i on t e r ms to ac c ount for l ong wave radiation from the harb or bas in l ength gri d ce l l l ength

SYMB O LS AND DE FINITI ONS - Cont inue d numb er o f in lets conne c t ing a bay to a s ea Manning ' s n Manning ' s n o f a grid c e l l di s charge di s c harge for the n t h in let tot al di s c harge for al l in l ets hydrau li c radius o f a c hanne l in l et - bay system He lmho l t z peri od fri c tion l es s in l et - bay sys tem He lmho l t z peri od peri od o f free mode of os c i l lati on where the subs cript indi c ate s the mode of os ci l lati on mean ins t ant aneou s in let wat er ve l o c i ty at a c ros s s e c tion mean in l et water ve loc ity at a c ros s s ecti on over a s amp ling interval the gri d c e l l wei ght ing fun c t i on whi ch i s the fracti on o f tota l in let di s charge pas s ing through the ce l l at a time s tep di s tance a long the longi tudina l axis of the inl et di s tan ce al ong a cros s s e ction time s tep component of the bott om - s tres s tensor in the dire c t i on of flow

HYDRAULI CS OF GREAT LAK ES INLETS Wi l l i am N. S e e l i g and R obe r t M: S or e n s e n I. INTRODUCTI ON Nu merous bays and harbors are conne cted to the Great Lake s by j ett ie d in le t c hanne l s. Thes e in le t channe ls are important b e caus e they a l l ow (a) acces s to commercia l shipping and re creationa l b oating, (b) migrati on of fi sh, and (c) flushing of po l lutant s from the bays and harbors. Great Lake s in le t - bay systems are general ly smal l er than thos e on the At lanti c, Paci fi c, and gul f c oas ts of the Uni ted S tates and respond p r imari ly to the long wave se i c h i n g mode s o f the Great Lakes rather than to the as tronomi cal ti des. Thes e s ei c hes have sma l ler amp li tudes and shorter peri ods than the tides on the ocean coasts. The maj or e ffort o f thi s s tudy involved the co l le cti on and ana lys is of hydraul i c data at s evera l in l et - bay sys tems throughout the Great Lakes during 1 9 74 and 1 9 75 Measurements at Pentwater Mi chi gan the primary.,, s tudy locati on in clude d s imu l t aneous re ording o f in l et urrent, c c ve l oc i ti es and water leve ls in the bay and in Lake Mi chi gan. At the other lo cations on ly bay water l eve l s were measured However hydrographi c,., surveys were ob tained for a l l the inl et s inves ti gated, and his tori c hydraul i c data from s e lected s our c es were ana lyzed. Thi s s tudy defines the hydraul i c me chani sms important to Great Lakes in le t - b ay sys tems, deve lops ana lyti c al techni que s for the predi cti on of in let currents and bay water leve l os ci l lations, and pres ents des i gn data and sys tem respons e curve s for s e le cted in l e ts. Fi e ld data were analyzed us ing (a) a formula for e stimating the sei che peri ods of the Great Lakes whi ch are important in producing reversing current s at an in l et ; ( b ) a mode l that us e s bay water leve l time hi s tori es to predi ct in let ve loci ti es ; and (c) a s imp li fi ed numer i cal in le t hydrauli c mode l that, when ca l ibrate d for fri cti on e ffe cts, can be us ed to predi ct in le t ve lo ci ti es and bay water l eve l os ci l l ati ons generated by lake os ci l lati ons. Thes e ana lys i s tec hniques are us ed wi th the fi e l d dat a to deve lop respons e curves and c umulative in let cur rent ve lo ci ty dis tribution curves for the in l ets s tudi ed. I I. LAK E AND INLET HYDRAULI CS 1 Great Lakes and In le t. - B a y S y s tem H drauli cs y. An in l et i s a re l ative ly narrow channe l whi ch connects a " sea " (or one o f the Grea t Lakes in this study) to a l ake or harb or (a " bay i n thi s study). The bay is large compared to the in l et the radius

o f the bay i s typi c a l ly larger than the l ength o f the in l et) and the surface area o f the b ay i s much sma l ler than the surface area of the s ea. a. Caus es o f Revers in g I nl et Current s. Mortimer ( 1 965) and Freeman, Hamb l in, and Murty ( 1 9 74 ) show that s igni fi cant revers ing in l et current ve lo ci t ie s are caus ed by water l eve l f luctuat ions in the Great Lake s whi ch generat e a hydraul i c respons e in the in let and bay. The mo st important Great Lake s water l eve l fluctuati ons are due to the re sonant s e i c h i n g or os ci l lati on of the parti c ular l ake at it s fu ndamenta l and harmoni c periods. S ei c he s are ini tiated by s torm pres sure and wind force s on the s ea whi ch redi s tribute water in the lake t o caus e a h igher e levati on than norma l in s ome areas and lower leve l s in other area s. When gravi ty tri es to res tore the water l eve l, s ei ches are generat ed. Thes e s ei ches usua l ly continue for a numb er of cyc le s whi ch may extend over a few days after the s torm has pa s s ed. When a s ei c he i s generated in one o f the lake s, the water l eve l fluc tuat ions outs i de an in l et caus e a head di ff erence ac r os s the in l e t, whi ch, in turn, g enerat es a current in the in let. Water di s charge through the in let results in water added t o or removed from the bay s o the b ay leve l ri ses and fa l ls in a pumping fashion for mos t se i c h i n g peri ods of the lake. Astronomi ca l ti des and other n on se i c h i n g l ong wave s caus e water l eve l fluctuati ons o f the Great Lake s ; however, thes e fluctuat i ons genera l ly have in suffi ci ent amp li tudes or are at peri ods that usua l ly do not s i g n i f i c an t l y in fluence in let hydrau li cs. St o rm sur ge, parti cular ly on sha l low Lake Eri e, ma y occas i onal ly generate s trong in l et cur rents. b Mathemat i cal Des cri t ion of In l et. p - B a y H ydr au li cs The respons e. of an in let - b ay sys tem ma y b e des cribed in te r ms of the one - dimens i ona l equati on o f water moti on in the in le t and the cont inui ty equati on r e lat ing the rate of b ay l eve l change to the in l et di s char ge. The one - dimens iona l equati on o f moti on a l ong the in let channe l axi s can b e wri tten f E d i where x di s tance a long the channe l $ 3 " water I I surface l eve l A in l et cros s - s ectiona l area 1 2

V water ve lo ci ty in the inlet y di s tance a long the cros s s ect ion ( r zx ) z component of the s tres s tens or in the dire cti on of flow g ac c e l e rat ion due to gravi ty t time The in le t has a wi dth, B, length, L, and cros s - sec tional area, A c the b ay has a surface area, The water l eve ls in the s ea and A ba b a y are h S and h b, respe c tive ly ( F 1 %. ati on Equ ( 1 ) equates the hori zonta l driving force due to the water s rfa e s lope wi th three t u c e rms on the ri ght whi ch are the channe l fri c t i on a l res i stance the, c onve ctive ac c e l eration caus ed by ve l oci ty vari ation a long the channe l axi s, and the tempora l acc e leration (or inerti a) resulting from ve loci ty variati on at a p oint wi th time. In near ly pri smati c c hanne l s, such as many in lets on the Great Lakes, the c on v e c tive ac ce l erati on i s often ne g li gib le. The continui ty equati on, whi c h re lat es rate of bay water l eve l change, ah b / B t, to in l et di s charge, Q, i s B h b Q VA C Aba y at A s imultaneous s o luti on of equati ons ( 1 ) and ( 2 ) for a s inu s oi dal s ea l eve l fluctuati on revea ls the important re spons e characteri s ti cs o f an in le t - bay sys tem (F i g. In thi s fi gure, the phas e lag between the s ea and bay water l eve l fluctuati ons and the amp l i fi cati on o f the fc r c ing wave in the bay by the in l e t - b ay s ystem ar e p lotte d as funct ions of dimens i on les s peri od. Dimens i on les s peri od i s de fined as the fri ct i on les s in let - bay sys tem He lmho l t z peri od, TE ', divi ded by the for c ing wave peri od, T. The He lmho lt z peri od i s tha t peri od o f the forcing wave whi ch through res onan c e wi l l caus e the larges t water l eve l fluctu a ti on in the bay. The b ay water leve l remains approximate ly hori zonta l throughout thi s fluc tuati on. The in let - harbor sys tem response i s ana logous t o the re spons e of a s li ght ly damped spring - mas s sys tem or i ts ac ous ti c counterpart, the He lmho l t z res onator. The moti on o f the mas s o f water in the in l e t c hanne l corre sponds to the motion o f the mas s of the spring - mas s sys tem, and the a c ti on o f gravi ty on the ri s ing and fa l ling harbor water surface corresponds to the res training force of the spring. At value s o f TH ' l T approaching zero (l ong wave periods ) the water leve l fluc tuati ons in the bay are the s ame as thos e in the s e a wi th no I 3

P lo n Vle w unle f. c ross se c h onol are a A su rfac e are a P rofi le View F i g ure 1. In l et - bay sys tem. I 4

phas e l ag (point A, Fi g. At values of TH ' /T approaching 3 (short forcing p e r i od s) t h, e in l et - bay sys tem stron g ly dampens inci dent waves and water leve l fluc tuat ions in the sea have l i tt le inf luence on in let hydraul i c s (point B, Fi g. At va lues of TH ' / T in the ran ge o f the amount of fri cti ona l res i s tan c e in the c hanne l has a maj or influence on the respons e charac teri s ti cs. In lets wi th hi gh fri cti on, e. g., ti da l in l ets on ocean coasts, typi c al ly have amp li fi cati ons of l es s than one. Thi s amp l i fi cati on factor de creases as the forcing wave peri od b ecomes shorte r (point C, Fi g. At most tidal inl ets, the primary ti da l period i s large compared to the in let - b ay He lmho lt z peri od. Low - fri ct ion inl ets, such as thos e on the Great Lakes, have amp li fi c ati ons greater than one and phas e lags of approximat e ly 9 0 for forcing waves wi th TH ' / Ta d (point D, Fi g. 2) which common ly o ccur. 2. Pre di ct ion of In let Ve l oci ti es. Predi c ti on o f in l et ve l ociti es r equi res (a) the time hi s tory of s ea or bay water l eve l s, (b) the geometr i es of the in let and bay, and (c) a fri cti on - ca l ibrated mode l t o re late water leve l fluctuati ons to inlet bay respons e. a. Great Lakes Water Leve l F luctuati ons. In genera l, no methods are and peri ods o f water leve l fluctuat ions at any point in one of the Gre at Lakes. There fore, water leve l s general ly mus t b e measured. However, inexpens ive s chemes are avai lab le for accurate ly predi cting s ome peri ods and re lative amp li tudes of s ei ches of the Great Lakes (Fe e, 1 968 ; Rao and S chwab, K now l edge o f the exi s ting wave peri ods wi l l ai d in the des i gn of water l eve l meas uring sys tems, analys i s procedur es, and pre l iminar y in le t des i gn. The b as i c method for es timat ing one dimens i ona l fundamenta l and harmoni c s ei che peri ods, T k, i s to determine the time r equi re d for a wave to trave l twi ce the l ength o f the b as in whe r e k i s the mode o f os ci l lation, Lb the length o f the bas in in the dire cti on of the s ei che, an d c the spee d of the wave. Samp le predi cted longi tudina l s ei ches for Lake Mi chi gan, us ing the Fee (1 968) computer program, are shown in Fi gure 3 for modes k - l, 2, and 3. b. In l et and B a y Geomet r i es. Hydrographi c surveys, including Corps of Engineers dre dging r e cords, can b e us ed to determine in l et ge ometry ; i. e., l ength, wi dth, and depth fi e ld. Maps and aeri a l photos can b e us ed to de termine bay surface area. I 6

F ir st lon g it u dinal mode I pe r iod, 9 hr ) Se c ond IOII Q II u d ll lgi mode I pe riod, 5.3 hr onh node Por tag e Mu skegon Mu ske q o n I hl f d lon g i tu d i nal mode (pe r i od. 3-5 hr ) antinode Re lat i ve Se ic he He i g ht of Wat e r ( n ormalize d b y le ve l at lhe sou t he rn l i p of Lake Mic hi g an ) Fi gure 3. Thre e predi ct ed l ongi tudinal mod es of os c i l l at i on o f Lake Mi c hi gan (modi fi ed from Mort imer, I 7

c. Methods of Anal y s i s of In l et B a y H y drauli cs. In let current ve loci ti es and bay water surface os ci l l ati ons may be measured to provi de ne ces s ary informati on on the hydrauli c characteri s ti cs of an in let - b ay sys tem. Te chniques us ed for the fi e ld measur ements in thi s s tudy are di s cus s ed in S ecti on I I I, 2. Severa l analyti cal methods are avai lab le for p r edi cting in let hydrauli cs, depending on the type of informati on avai l ab l e and requi red resul ts. Thr ee methods are di s cus s e d b e l ow. ( 1 ) E s tima t ion o f S ei che Peri ods Imp ortant to In let H y draul i cs. To es timate whi ch o f the Gre at Lakes s ei che peri ods, T k, may be i m portant, the fri cti on l e ss in l et - b ay He lmho l t z peri od, T fi ', may b e determined from T 3 ' 2n where L ' i s an adde d channe l length determi ned fr om L ' account s for the water mas s es in moti on beyond the ends of the in let (Mi l es, Equati ons (4) and ( 5 ) may b e i terative ly s o lved to obt ain a value o f T y '. Thi s approach p r oved to yi e l d re as onab ly accu rate es timate s for the in lets cons i dere d in thi s s tudy. As a firs t approximat ion s eiche wave periods whi ch are approximate ly, equa l to the fr ic tion les s He lmho l t z period b etwe e n and 2 time s TE ' ; see Fi g 2) wi l l prob. ab ly caus e the hi ghe st inl et revers ing currents The s ei che node - ant inode patt er n in the Great Lakes wi l l a l so i n f l u ence the importanc e of the vari ous s ei che modes on an in let - bay system. Se i ches wi th ant inodes adj a cent to the in let wi l l produce the largest wat er leve l fluctuations. S ince ends o f the lakes are antinodes for a l l modes o f o s ci l lat ion a long that axi s, bays at the end of a l ak e wi l l norma l ly b e sub j e ct to hi gher wat er l eve l fluctuations than those at other lo cat ions ; e. g., midway a long the longi tudina l axi s o f Lake Mi chigan, near Pentwater, the firs t longi tudina l mode of os ci l lation has a node (Fi g. There fore, on ly sma l l os ci l l at ions can b e generated in the lake at thi s point by thi s mode. The s e cond longi tudina l mode of osc i l lation has an antinode adj acent to P entwat er, s o large water l eve l fluc t u a t i on s in Lake Mi chi gan cou ld be generated outs i de Pentwater by thi s mode. (2) Es tima t ion o f In l et Ve loci tie s from B a y Wat er Leve l Records. A me thod of predi cting in let ve lo ci ti es, i f high - qual i ty b a y wat er l eve l -I 8

r e cords are avai lab le, i s to us e the c ont inuity equation. Wri tt en in finite - di fference form, equat ion ( 2 ) b e c omes where V i s the average in let current ve loci ty at a c ros s s e c t i on o f area A c over a water leve l s amp l ing interva l, and At, h b ', an d h b are mean bay water l eve ls at the beginning and end of the samp ling interva l. Measurements o f water leve l at any point in the bay wi l l be repre s entative o f the mean bay l eve l for the He lmho lt z mode of os c i l l ati on o f in let - bay sys tems. Thi s method for predi cting inl et ve loci ti es i s we l l sui t ed for Great Lakes in l ets becaus e in l et and bay geometri es are s imp le and l eve l r e corders are easy t o ins tal l in the protected b ays. The samp l ing interva l should be one - twenti eth of T3 ' or shorter and the st i l l ing we l l care ful ly des i gned f O r b es t re sults (s ee Sec. I I I ). (3) A Numeri cal Mode l. A re lative ly s imp le but extreme ly us e ful equa ti ons o f moti on and continui ty. In thi s mode l the in let channe l i s divi ded by a flow net into a gri d o f sub channe l s and cros s s e cti ons. The subs cripts i and j de s c rib e the l ocat i on of the ce l l for su b channe l s (I C number of channe ls) and gri d s e cti ons (I S number of s e cti ons ) The equati on of moti on for an in let (. e q 1 ) rewrit ten. in fini te di fference form, and inte grat ed along the axi s yi e lds (See li g, Harri s, He r c h e n r od e r, in preparati on, 1 9 77) g (h s h b ) i = 1 2 A i j I S - 1 Z M ' I I J H D i j where A s and A b are the in let cros s - s e ctional areas at the s ea and bay ends of the inlet, and w i j i s a weighting fun c ti on for di s tributing flow throughout the in let. The di s charge thr ough a g ri d ce l l i s equal to t h e wei ghting functi on of t h e c e l l, W i j, time s the tota l di s charge of the in let, Q. The Manning ' s fri cti on factor, ni j, i s de termined I9

He r c h e n r od e r (in preparati on, during calibrati on o f the mode l (s ee See li g, Harri s, and He r c h e n r od e r, in preparati on, For M in lets conne cting the b ay to the sea, the total di s charge for a l l in le ts, Q T i s M Q T = m 1 Qm The continui ty equation i s wri tten as Bay l eve ls and in let current ve loci ti es are de termined by s o lving the s imultane ous di fferenti al equati ons (7) and ( 9 ) us ing a Ru nge - K utta - Gi l l fourth order fini te - di fference te chnique in c onj un c ti on wi th ini tia l con di t i on s and the time hi s t ory o f water leve ls in the s e a Derivati on and. samp l e app li cati ons o f thi s mode l are given in See li g Harri s and,, To ob tain respons e characteri s ti cs s imi lar to Fi gure 2 for a spe ci fi c in l e t - bay sys tem, the mode l c an b e run b y as suming s inu s oi dal s eawater leve l fluctuat i ons wi th a typi ca l amp l i tude ; e. g., 3 cent imeters foot) at peri ods cover ing the anti cipate d range of lake osci l l ati on modes. Each run o f the mode l wi l l give predi c te d b ay leve ls and in let current ve l oci ti es for the wave peri od us ed Samp le mode l results for Pentwater. in let are shown in Fi gure 4 The s ea leve l predi cte d bay l eve l and.,, in l et ve lo ci ty are shown in the l ower part o f Fi gure 4 ; the importan ce o f e ach o f the terms in the equati on of mot ion, normal i zed by divi ding by the magni tude o f the lar ges t term at e ach time s tep, i s shown in the u ppe r part o f the fi gure. F or thi s condi ti on, the b a y l eve l f luctuati on i s l arger than the s ea leve l fluctuati on due to inerti a in the sys tem and the b ay leve l lags the s ea l eve l b y 84 (Fi g. P l otting resul t s from many r uns s imi l ar to Fi gure 4, but wi th many di ffer ent forcing peri ods, wi l l give the respons e characteri s ti cs of the in l et - b ay sys tem. Thes e curve s for P entwater (Fi g. 5) show that the He lmho l t z peri od wi th fri cti on, T3, i s hours, waves wi th pe r i ods o f 1 to 3 hour s wi l l be amp l i fie d b y the sys tem, and waves with a per i od of hours wi l l gen e r a t e the hi ghes t in l et curr ent ve loci ti es (3 - centimete r wave amp li tude as sume d). The effe ct of fr i cti on on T3 i s demons trated b y the dash l ine in Fi gure 2. The fr i cti on les s He lmho l t z peri od i s a ls o coinci den ta l ly hours (fr om eqs. 4 and The ca lcul ated bay amp li fi cati on and channe l ve lo ci ty in Fi gure 5 are for a Manning ' s n The nume ri ca l mode l usua l ly had to b e r u n for three or four cyc les for the b ay respons e to bui l d to equi lib r ium. In the prototype harbor i t i s l ike ly that equi libr ium (ful l amp li fi cati on) i s never ful ly achi eve d. Thus, the ca lib rati on curve in Fi gur e 5 for ms the upper enve lope of measur ed prototype data.

F ric hon He ad Dif f e re nc e T em p. Ac c ele rat io n Time (hr) Figure 4. Pentwater respons e to s inus oi dal wave in Lake Mi chi gan (peri od hours ; amp li tude foot). 2 I

u ou oou udm v p u o ( s m) ( gr o om u mu n xow

Le g end 0 level rec order 19 74-75 0 level rec orde r 9 67 A ve loc lt y m e te r 19 74-75 Pe ntwater Pen twater Lake, Mi c h. Portage Lak e, Mich. Portage Figure 8. Dat a co l lec tion si tes on Lake M i c hi gan.

mi Ludington, Mi ch. Lu din gton Wh 1 t e Lake, Mi ch. Fi gu r e 8. D a ta co l l ection s i tes on Lake Mi chi gan, - Continue d. 27

Muske gon, Mi c h Mu ske q o n Hol l and, Mi ch. Fi gure 8. Data co l l e cti on si tes on Lake Mi chi gan - Cont inued. 2 8

Du luth - Superi or Wi s. e r Le ve l R e c o rd e r c ul o n L/f f/e L Litt l e Lake, Mi c h. Du lu th Shlp Channel (I nlet 2) ale r Le ve l Re c o rder oc ahon SU DGI IOI nle t E nt r y I 525 m Fi gure 9. Data co l le cti on s i tes on Lake Su per i or. 2 9

Lake Erie Wate r Level Rec order Loc ahon I, OOO m Fi gure 1 0. Data c o l l e cti on s i te on Lake Eri e, Pre sque I s l e, P ennsy lvania. 3 0

T abl e 1 S u mmar y of f i e l d me asu re me n t s. Lake c hi g e n Pe n t wa t e r Lake Su p e ri or la ke Eri e 1 Na t i on al Oc e anic and At mos phe ri c Admi n i strat i on, Lake Su rve y Ce nt er. 2 A S - n m u t e samol i n g in t e rval. 3 Co rn s of E n e m e e r s re c ord s. Thi s st u dv, f all 1 974 5 A 2 - n l nu t e sampl i ng i n t e rval. 3 2

Sma l l - amp l i tude s ea leve l fluctuati ons wi th a peri od o f approximate ly the He lmho l t z peri od of the in l et - b ay sys tem may generate re l at ive ly hi gh in l et water ve l oci ti es as shown in numeri ca l mode l ca l cul ati ons ( s ee S e c. There fore, a water l eve l re cording sys tem mus t be c are ful ly des i gned for e ach locati on to measure sma l l amp li tude but p ot enti al ly, important l ong waves At the s ame time thi s re cording sys tem shoul d., e liminate any short - peri od l arge - amp l i tude noi s e wind wave s, ) that may mask the l ong waves in the record For examp le at Pentwater re.,, c ords should me asure the low - amp li tude waves wi th a peri od of 1 hour or l onger, a n d shoul d exc lude wind wave s and other noi s e wi th peri ods of 1 minute or l es s. One me thod of des i gning a s ti l l ing we l l t o meet thes e requi rements i s to us e the line ar damping we l l des i gn (Noye, Thi s s ti l l ing we l l cons i s ts o f a verti cal cy linder wi th a s ea le d bottom and open to the l ake thr ough a long, thin tub e. Fri ction in the tube and the re l ative c ros s - s e cti ona l are as of the tube and s ti l ling we l l caus e the sys tem to re spond dire ct ly to l ong waves outs i de the we l l and to dras ti cal ly dampen the short - per i od noi s e. Des i gn of s ti l l ing we l l s i s di s cus s ed by Se e li g Fi sher Porter s eri es 1 500 di gi tal float - type water leve l r e corders wi th a verti c a l res o lut i on of 3 mi l l ime ters foot) and s amp ling interva l s of 2 or 5 minutes wer e us e d t o me asure water l eve ls in the s ti l ling we l l s Data were co l l e cted on pun ched tape Water leve l s we re.. measured for s everal months at e ach l ocati on (s ee Tab le In le t ve lo ci ti es at P entwater were measur ed during 1 9 74 and 1 9 75 us ing a Bendix current meter suspended by a cab l e approximate ly mi dway a l ong the channe l, me ters ( 1 5 feet) fromthe north wa l l at mi d depth. Ve loci ty data were re corded on a s trip chart and later di gi ti zed for analys i s at the s ame time interva l as the water leve l data. 3. Data Re ducti on and Ana l y s i s Te chni q ues. Ini ti a l ly, the He lmho l t z peri od of e ach in let - b ay sys tem and the free s e i c h i n g mode p e r i od s. we r e c a l culate d for the lak es and bays surveyed in thi s s tudy ( s ee procedures in S e c. I I ). Thes e ca l culati ons, in c on j u n c t i on wi th a survey of pub l i she d data on Great Lake s res onance charact er i st i c s, gave an indi cati on o f the peri od and magni tude of imp ortant long waves that could b e expe cted at e ach l ocati on. The in formati on was us ed in the des i gn o f water leve l me as urement equipment (di s cus s ed in previ ous s e ction). When the fi e l d data co l l e ct i on pr ogram was comp leted, the di gi t al punched - t ape water l eve l r e cords wer e me chani ca l ly conve r ted to p u n c h c a r d s for computer ana lys i s. The fi rs t procedure for s tudying thes e dat a i n cluded p lotting the re cords for vi sua l inspe cti on. Then, a fas t F ouri er 3 4

trans form and c os ine be l l fu ncti on were us ed to ob tain a spe c tra l ana lys is of each record (Harri s, A re c ord l ength of 5 1 2 point s was used in thes e ana lys es to obtain detai l ed spe c tra l l ine res o lution. Spectra l ana lys i s indi cated the peri od and amp li tude of l ong waves o f intere st to 5 hours) in t h e re cord. Thi s an alys i s i s n e c es sary becaus e s evera l long waves are genera l ly s imu l taneous ly pres ent and the superpos i t ion o f the waves give s the impres s i on o f a c onfus ed re c ord. Examp les o f spe c tra for P entwat er bay water leve ls re c orded during 5 to 1 4 May 1 9 75 are shown in Fi gure 1 2. I f wat er leve l re cords were of good qua li ty, leve l s measured in the bay were then us ed t o predi ct in l et water ve loci ti e s us ing the fini te di fference continui ty equation The res o lut ion of the continuity equat i on should b e checked to j udge the us efulnes s of the predi cted ve loci tie s ; e. g at P entwater the l eve l.,, re corder has a verti cal reso luti on o f 3 mi l l imeters the samp l ing int erva l, is 5 minutes ( 300 s econds ) and the rat io, A b a y / A s o the ve lo city c predi cti on reso luti on, V bas ed on equat i on i s r V " 1 0 1 + foot or centimeters per s econd ( 1 0 ) Thus, the ve loci ty wi l l b e expres s ed as mu lt ip l es of centimeters foot ) per s e cond whi ch may be adequate for many purpos es. For examp l e, i f A b a y / A c was 1 0 5, then wi th the given verti ca l re so luti on, ve loci ti es could on ly b e expres s ed as multip l es of 1 00 centime ters (3 feet) per s e cond, whi ch i s inadequate for mos t purpos es. At Pentwater, the me asured ve l oci ti es in the in let were di gi ti zed at a samp ling r ate of 5 minutes s o that a dire ct compar i son coul d b e made o f measured and predi cte d ( e q 6) ve l oci ti es Cumu lative frequency.. di s tributi ons of measur ed and predi cted ( e q 6) in let ve lo ci ti e s a r e. shown in F i gure 1 3 The. 2 months o f record in 1 9 74 show that ve loci ti es predi cted by continui ty are s li ght ly hi gher than measur ed ve l oci ti es, but adequate for many des i gn purpos es. I V. RESULTS 1. S e i c h i n g o f the Great L akes. Free modes of os ci l lati on o f the Great Lakes have been i denti fi ed by spe ctra l ana lys i s of water leve l re cords in thi s s tudy and others (Mortimer, 1 965 ; Mortimer and Fee, 1 9 74 ; Hamb lin, 1 9 75 ; Rao and Schwab, and have been pre di cted us ing numer i ca l tec hniques (Rockwe l l, 1 966 ; Mortime r, 1 965 ; Bi rchfi e ld and Murty, 1 9 74 ; Rao and S chwab, Tab l e 3 summari zes the known mode s o f os ci l l ati on of Lakes Mi chi gan, Superi or, E r i e, an d On t ari o. 3 5

Pe rnod (hr) Fi gure 1 2. Samp le spe ctra o f Pentwater bay water leve ls (May 1 9 75) 3 6

Measu red Pred ic ted (aa. 6) l nle l c hanne l ve loc rr y (f t/s) 1 3. Measur ed and predi ct ed in l et ve loci ty cumulative fr equency di s tribut i ons at Pentwate r, Mi c hi gan (Octob er - Novemb er 3 7

Tab l e 3. Modes of os c i l lati on of the Gre at Lake s l. 1 Ob s erved, computed by Fee ( 1 968) program and Rockwe l l (1 966) d a t a, an d compi led from many sources. 2 L l ongi tudina l, T transvers e ; other ob s erved peri ods, mode unknown. TWO - dimens i ona l modes ar e not cons i dered. 3 Va lue unknown. 3 8

3 2 Wave Period (hr) Fi gure 1 4. P entwater respons e to long wave forcing (n 4 0

Freeman Hamblin and Time (hr ) Fi gu r e 1 5. Tor onto r e s p o n s e t o wave forcing.

Va lue s o f n were es timated for other Great Lakes inlets bas ed on, experi ence at Pentwater and Toronto. Th e n, t h e fri ct ion les s He lmho lt z peri od was e s tima ted for ea c h in l et - bay sys tem us ing e qpa t i o n s (4 ) and and the numeri c al mode l meri a l mode l and fri ctionl es s. Nu c He lmho l t z peri od resul t s are s u mmari z ed in Tab l e 5. The amp l i tude respons e curves and pre di cted maximum ve l oci ti es are shown for s e l e cted in lets on Lake Mi chi gan ( Fi g. Lake Superi or (Fi g. and Lake s Eri e and Ontari o ( Fi g. A 3 - cent imeter mono chromati c forcing wave amp l i tude wa s us ed in thes e mode ls. For waves o f di fferent amp li tudes, t h e maximum in l et ve lo ci ty i s approximat e ly proporti ona l to amp li tude. Water leve l changes throughout the forcing cyc le caus e non l ine ar e ffe cts ab /ao i s s li ght ly di fferent at hi gh and l ow water), s o that the mean o f ebb and fl ood condi ti ons i s us e d in the respons e curves in thi s s tudy. Thi s analys i s shows that al l o f the j etti ed in let sys tems s tudi e d have s i gni fi cant inerti al e ffe cts becaus e long waves at or near the He lmho l t z peri od o f each sys tem have higher amp li tudes in the bay than in the Great Lakes. The in l et - bay sys tems mode led have a wi de vari ati on in respons e characteri s ti cs from on e sys tem to another b ecaus e of the comp li cated interacti ons b etween the four terms in the equati on of moti on o f the in l et and the respons e o f the b ay to the in let. Pentwat er, for examp l e, has a moderate amount o f wave amp l i fi cat ion and produce s in let ve lo ci ti es greater than 3 0 centimeters p e r s e c ond (1 foot per s econd) for forcing waves o f 3 - centimet e r amp l i tude and per i ods ranging from to hours (Fi g. Whi te Lake has les s wave amp l i fi cati on, but the interact ion b etween the in l et and b ay produc es hi gher ve loci ti es over a wi der range o f forcing peri ods (greater than 3 0 cent imeters p e r s econd for per i ods of 1 to h ou r s) ( F i g. Since Li tt l e Lake and Pre sque I s le have the capaci ty to gener ate r eve r s ing cur r ents in on ly a narrow window of forcing p eri ods, i t i s un l ike ly that s i gni fi cant revers ing cur rents wi l l be frequent ly generat ed (F i gs. 1 7 and Duluth - Superior has the hi ghest capaci ty for generat ing revers ing currents for a given wave amp l i tude wi th maximum ve loci ties oc c urring at a theoret i ca l for c ing peri od of hours. The mean ve loci t ie s in Duluth (in l et are approximate ly t imes l arger than in Superi or (in let 1 ) (F ig A unique featur e o f the Duluth - Superior system i s that the. mode l predicts a net ' f l OW i n t O the harbor through the Duluth in let and a net out fl ow through the Superior in let when the forcing period i s near 1 hour (Tab l e Thi s asymmetry in fl ow throughout the forcing cycl e wi l l generate a sma l l count erc lockwi s e net fl ow throughout the inl et - bay system at Duluth - Superi or. North Pond in, 1 975 had two short nat, ur al in lets conne cting a re l ative ly large b ay to Lake Ontario North Pond does not amp l i fy long. waves becaus e the mas s of water in the in lets i s sma l l compar ed to bay s i ze, and fri cti on in the in lets i s hi gh due to the sha l low - water depths (Fi g. Since fri ct ion i s hi gh, North Pond b ehaves like a tradi ti onal ti da l in let wi th a b al ance b etween he ad and fr i ct i on in the inl ets. 4 2

Wa ve Pe roid (hr ) Wove Pe r iod (h r ) Fi gure 1 6. Predi cted r e spons e o f in le t - b a y sys tems on Lake Mi chi gan to mono chromati c forcing ( a o foot). 4 4

Wave Pe r i od (hr ) Wave Pe r i od (hr ) Fi gur e 1 7. Predi cted respons e of in let - bay sys tems on Lake Super i or to monochromati c forcing ( a o 4 5 foot).

Wav e Pe r i od (hr ) Wav e Pe r i od (hr ) Fi gure 1 8. P r edi cte d r espons e o f in let - bay systems on Lakes Eri e and Onta r i o to monochromati c forcing ( a o foot). 4 6

Tab le 7. Numeri cal model predi cti on of Pentwater re spons e to Lake Mi chi gan modes o f os ci l lati on. Mode Notes - L l ongi tudina l modes of os ci l l ati on o f Lake Mi chi gan. T transvers e mode s of o sci l l ation of Lake Mi chi an g. obs erved os c i l l a t i on, «mod e unknown. x wave has ' a node near Pentwat er. Modes 6L to 9 L have modes o f os c i l lat ion wi th large and V f or Pentwate r. 4 8

I.4 I.O Pe r i od (hr ) I. 4 3 I. 78 I3 2. F r e q u e n c y (c / hr ) Pe nt wat e r La ke Mi c h i g a n Time, 4 hr Fi g ure Sam p l e Pen twater and Lake Mi chi g an water leve ls and spe ctra. 4 9

Pe r iod (hr ) L4 l.0 0 5 I. 78 F r e qu e n c y (c / hr ) Lake Mic h i g a n Pe ntwate r l_ 0 ke T ime, 4 hr Fi gure 20. Samp l e Pentwater and Lake Mi chi gan water leve l s and spe ct ra. 5 0

Pe r io d (hr ) L4 I.O 0 38 l.0 8 l.4 3 I.7S 2 l3 3. l9 F r e q u e n c y (c / h r ) Lake Mic hi g a n Pe ntwate r Lake Time, 4 h r Fi gure 21. S amp le Pentwater an d Mi chi gan water leve l s an d spe ctra. 5 I

with an ampl i fi cation fac tor o f as predi c t ed by the numeri c al mode l, b e c au s e the wave peri od i s muc h l onger than the Pentwater He lmho l t z peri od of hours However the r wave whi - hou.,, c h reac hes hei ght s of 1 5 c ent imet ers foot ) has a negl i gib l e e ffect on the harbor b ecaus e it, i s mu c h shorter than the He lmho l t z period o f hours Waves of. and hours are s l i ght ly ampl i fi ed by the harbor (shown by the spectra l ana lys i s in Fi g. b u t thes e waves are di fficul t to di s tingui sh in th e re c ord b e c s e of the mixing o f individual wave component s au The s torm event in Fi gure 20 shows that a di fferent s et o f modes o f os ci l lati on of Lake Mi chi gan i s pres ent The - hou. r wave i s the hi ghes t i s amp li fi ed the mos t and prob,, ab ly generates the hi ghes t per cent age of s i gni fi cant revers ing in l et cur rent ve lo ci ties. A -hour peri od wave i s a l s o pre s ent and i s amp l i fi ed Waves sho. r ter than 1 hour are damped by the harb or. An unusua l water leve l fluctuati on at Pentwater where on ly the hour wave i s dominant in Lake Mi chi gan, i s shown in Fi gure 21. As predi cted previ ous ly, the and - peri od wave s whi ch are the s ixth and ei ghth longi tudinal modes of os ci l l ati on of Lake Mi chi gan, caus e the hi ghes t current ve l oci ti es. Fi gure 22 shows the wi de variat ion of water leve l f luctuat i ons occurring i n three di ffe r en t harbor s a long the eas te r n shore of Lake Mi chi gan at the same time ( Pentwater and Ludington a r e on ly ki l omete r s (1 1 mi les ) apart) The r eas ons f ar the di ffer ences ar e that the forcing. waves outs ide each l ocati on are di fferent as a result of the node - anti node pattern of s e i c h i n g in Lake Mi chi gan (see S e c. I I ) and b e c ause each harbor responds di ffe r ent ly to the for cing that i s pres ent (s ee Sec. IV) ; e. g., the and - hour waves in Pentwater and Ludington a r e not noti ceab le in Muskegon harb or whi ch has a He lmho lt z pe r i od o f 5 hours. The forcing of harbor s on the other Great Lakes wi l l b e comp lete ly di ffer ent b e caus e the sys tem of se i c h i n g vari es fr om lake to lake ; e. g., on Lake Super i o r, wave peri ods of and hours o ccur in Li tt le Lake Harb o r (Fi g. Shorte r pe r i od waves may al so o ccur in Lake S u per i or, but are not obs er ve d in the har b or b e cause the harb or dampens wave s shor ter than app r oximate ly hour. The and - hour waves on Lake Supe r i or (the 7t h, l ot h, an d 1 1 t h longi tudina l modes of os ci l l at i on) wer e ob s er ved to cause hi gh r e vers ing currents and as s oci ated navi gati on p r ob lems at Duluth - Su per i or ; e. g., on 1 0 June 1 9 73, a - hour wave wi th a height of ap p r oximate ly 30 centime te r s ( 1 foot ) in the har b or, in conj unct ion wi th smal l hour per i od waves, affe cted Duluth - Su per i or. Ve lo ci ties as hi gh as 200 centime ters pe r s e cond feet p e r s e cond) were gener ate d in Duluth in le t and 1 4 0 centimeters p e r s e cond fe et per s e cond) in Super i or (Fi g. Hi gh ve lo ci ti es are gener ated in thes e in lets becaus e of the l arge f b r c i n g waves in Lake Super i or at thi s lo cati on whi ch have per i ods 5 2

28 Au g I 975 O bse rve d Wate r Le ve ls (0 ) T y p i c al F lu c tu ations I9 Ju l y l975 O bse rve d Wate r Le ve ls 0 0 4 Wave P e riod (hr ) Com p u te d S p e c tra (b) E xtre me E ve nt Fi gure 23. Wate r leve l fluctuati ons in Li tt le Lake Harbor. 5 4

near the harbor He lmho l t z period. Forcing wave s are large becaus e the harbor is located on the converg ing end of the l ake, which wi l l a lways be an ant inode o f longi tudina l o sci l lat ions. Maximum water ve locities obs erved in other in l e ts are much l ower than in Duluth - Superi or ; e. g., at P entwat er, a l l measurement s and p r e di c ti ons show t h a t. v e l o c i t i e s are l es s than 60 cent imet ers p e r s econd ( 2 fe et per s econd ) for percent o f the t ime (F ig. Predicted in let ve loci ti es for other l ocat ions show that Portage, Ludington, and Pentwater have s imi lar ve loc ity di stributions ; Presque I s l e, Muskegon, and Li tt l e Lake have s t i l l lower ve l ocit ies (Fi g. V. IN LET DESIGN Great Lakes in let des i gn prob l ems genera l ly fal l into one of two c las s es : (a) a pond or lake to be connect ed to one of the Great Lakes by a new channe l and (b) an exi sting in l et channe l to b e modi fi ed,. The concepts and te c hniques deve loped in thi s study can b e us ed to ai d the des i gn o f an in let in e ither cla s s. An examp le app l i cati on for each clas s is given be low. 1. New In let Channe l. The procedure s f ar ana lys i s o f a new channe l t hat i s to connect a lake to one o f the Great Lakes are : (a) de termine the approximat e in l et dimens ions (l ength, width, and depth) b ased on phys ical l imitat ions such a s the des ired navi gab le depth and wi dth and the di stance b etween the lake and Great Lakes ; ( b) es t imate a Manning ' s n for the propos ed channe l (s ee S e c IV., 2 for typi ca l va lues o f n), ; (c) us e the nume ri cal mode l to obtain monochromati c re spons e char acteri stics o f the harbor for the range o f expe cted l ake se i c h i n g peri ods and a typi cal amp litude ; (d) c ompare the resu lts to thos e o f other near by harb ors ; and (e) app ly the numeri ca l mode l to predi ct in l et ve locities, di s char ge, and bay l eve l s for the peri od o f re c ord (i f Great Lake s water l eve l fluctuat ion re cor ds are avai lab le in the vi c i n i t y of proposed s i te). For examp le, suppos e an inl et i s to be de si gned to connect Crysta l Lake to Lake Mi chi gan (Fi g. Cryst al Lake, l ocat ed on the eas tern shore o f Lake Mi chi gan 35 ki l ometers ( 22 mi l es ) north o f Portage Lake, has a bay sur face area o f x 1 0 7 squar e me ters x 1 0 8 squa r e feet). The in let at thi s s i te woul d b e approximat e ly me ters feet) long. As sume that the in let wou l d be 6 1 meters ( 200 fe et ) wi de and meters ( 1 8 feet ) deep. S ince the in l et i s s imi lar to P ent water (s ee Tab le the Manning ' s n for thi s channe l i s es t imat ed to be The numeri ca l mode l was run for Crys t al Lake using Lake Mi chi gan s ei che peri ods of and hours wi th an amp l i tude o f 3 cent imeters. The predi ct ed respons e characteri s ti cs of thi s in l et - bay sys tem are shown in F igure 28. The mode l predi cts that 5 6

I nlet c hannel ve loc it y P entwate r in l e t cumulative frequen c y ve loci ty di s tributi ons ( 1 967, 1 9 74, 1 9 75) 5 7

I n le t Ch a n n e l Ve loc it y (f t/ s) Fi gure 26. In l et ve lo c i ty cumulative frequency di s tributi ons (b as ed on equati on 6 and bay water leve l re cords ) 5 8

Cr ystal Lake Portage Mu ske g on ( 000 Fi gure 27. Cr ys ta l Lake, Mi chi gan. 5 9

V max(a c : 0 I f t) 8 7 6 5 4 Wave Pe rnod (hr ) Fi gure 28. Pre di cted re spons e c haracteri s ti cs of an in let Crys t al Lake ( L feet, A square feet, D 1 8 feet, B 200 feet). 60

the wave ampl it u de wi l l be smal l er in the bay than in Lake Mi c higan, pri mari ly b e c aus e the bay surfac e area i s mu c h larger than the inl et des i gn c ros s - s e c tional area (a ratio o f approxima t e ly The mode l a lso predi ct s that monochromati c s ei c hes wi th an amp l itude o f 3 centimeters wi l l generate maximum ve loci ti es of 4 3 cent imeters per s e cond feet per s e cond) for wave peri ods of 4 to 9 hours (Fi g. Since maximum ve l oci ties de creas e for waves shorter than 4 hour s, a wave wi th a 1 - hour peri od produces ins i gni fi cant in le t ve lo ci ti e s. The fi rs t three mode s o f os ci l lati on o f Lake Mi chigan and - hour waves ) wi l l generate the highest ve loci ties for the Crys tal Lake in let de s i gn. Por t age i s lo cated near Crystal Lake ; there for e, forcing amp l i tudes o f the first three modes of os ci l lat ion of Lake Mi chi gan wi l l b e s imi lar at both l ocati ons (Fi g. The predi cted ve l g c i t i e s for a given wave are di fferent at Portage and Crys t al Lake (Fi g. 29) due to di fferences in in let an d bay ge ometry. However, Portage water l eve l data can b e us ed to es t imate Crys t al Lake in let ve loci ti es. To pr edi ct inlet ve lo ci ti es at Crys t al Lake us ing Portage dat a, the measur ed Portage b ay leve l fluctuati ons mus t fi rs t b e adj us ted to es ti mat e the nearby Lake Mi chi gan wave amp litudes. Thes e amp li tudes are then us ed to predi ct ve lo ci ti es at Crys ta l Lake ; e. g a measured Port age bay., leve l f luctuat i on has a peri od of hours and amp li tude of foot centimeters ). Thi s wave was amp l i fi ed by a factor of by Portage harb or (Fi g s o the Lake Mi chi gan wave amp li tude was. foot -. A foot wave amp l i tude in Lake Mi chi gan produc es a maximu m ve loci ty of fee t p e r s e cond at Crys ta l Lake in l et (Fi g there. fore the, O. I Z - foot wave produces feet p e r s e cond maxi mu m ve l oci ty Thi s procedure cou ld b e fo l l owed for other s ei che modes. to es timat e the maximum ve loci ti es expected at Cr yst al Lake. I f a comp le te analys i s of in let ve l oci ti es i s required, water leve l s shoul d b e measured in Lake Mi chi gan adj acent t o Crys t al Lake for at l eas t S evera l months. Thes e leve l s can b e us ed as the forcing fu nct ion in the numeri ca l mode l to produce a predi cted time hi s tory of inlet ve loci ti es, di s charge, and bay l eve ls for the per i od of record. 2. In let Channe l Modi fi cati on. Pr ocedur es for inves ti gating the e ff e ct o f a modi f i cat i on to an in l et are : (a) Dete r mine the geometr y of the pres ent sys tem and obt ain proto type hydraul i c data concurr ent bay leve ls Great Lakes leve ls,, an d in l et ve loci ti es ) ; (b ) cal ibrat e the numer i ca l mode l ; ( c) obt ain monochr omati c r espons e char acteri s ti cs of the in l et - b a y sys tem, (d) modi fy the mode l geometry t o re fl ect the p r opos ed in let change and p r e di ct the re spons e cha r acteri s t i cs of the new condi ti on ; and (e) us e the water leve l re cor ds in the Great Lakes to for ce the mode l to pr oduce a time hi s tory of in let ve loci ties, di s char ge, and bay leve ls for the propos ed des ign. 6 I