Non-standard geometry scaling effects

Similar documents
Regional Approach Methods for SiGe HBT compact modeling

Accurate transit time determination and. transfer current parameter extraction

Working Group Bipolar (Tr..)

HICUM Parameter Extraction Methodology for a Single Transistor Geometry

Semiconductor Device Simulation

Charge-storage related parameter calculation for Si and SiGe bipolar transistors from device simulation

Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31

Breakdown mechanisms in advanced SiGe HBTs: scaling and TCAD calibration

Status of HICUM/L2 Model

2 nd International HICUM user s meeting

Investigation of New Bipolar Geometry Scaling Laws

Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements

Device Physics: The Bipolar Transistor

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model

About Modeling the Reverse Early Effect in HICUM Level 0

HICUM release status and development update L2 and L0

Methodology for Bipolar Model Parameter Extraction. Tzung-Yin Lee and Michael Schröter February 5, TYL/MS 2/5/99, Page 1/34

A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics

Lecture 38 - Bipolar Junction Transistor (cont.) May 9, 2007

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

TCAD setup for an advanced SiGe HBT technology applied to the HS, MV and HV transistor versions

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Forward-Active Terminal Currents

figure shows a pnp transistor biased to operate in the active mode

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

Thermal Capacitance cth its Determination and Influence on Transistor and Circuit Performance

Lecture 27: Introduction to Bipolar Transistors

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

BEOL-investigation on selfheating and SOA of SiGe HBT

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

DISCRETE SEMICONDUCTORS DATA SHEET. BFR106 NPN 5 GHz wideband transistor. Product specification File under Discrete Semiconductors, SC14

Didier CELI, 22 nd Bipolar Arbeitskreis, Würzburg, October 2009

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Digital Integrated CircuitDesign

Transistor's self-und mutual heating and its impact on circuit performance

Semiconductor Physics Problems 2015

MP6901 MP6901. High Power Switching Applications. Hammer Drive, Pulse Motor Drive and Inductive Load Switching. Maximum Ratings (Ta = 25 C)

MOS Transistor I-V Characteristics and Parasitics

CHAPTER.4: Transistor at low frequencies

A new transit time extraction algorithm based on matrix deembedding techniques

CLASS 3&4. BJT currents, parameters and circuit configurations

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

Mod. Sim. Dyn. Sys. Amplifiers page 1

Bipolar Junction Transistor (BJT) - Introduction

Bipolar junction transistors

Parameter Test condition Symbol Value Unit Junction ambient 1) R thja 300 K/W

BFQ65. Silicon NPN Planar RF Transistor. Applications. Features. Absolute Maximum Ratings. Maximum Thermal Resistance

TEMPERATURE DEPENDENCE SIMULATION OF THE EMISSION COEFFICIENT VIA EMITTER CAPACITANCE

T C MEASURED POINT G1 E1 E2 G2 W - (4 PLACES) G2 E2 E1 G1

Parameter Test Conditions Symbol Value Unit Junction ambient on glass fibre printed board (40 x 25 x 1.5) mm 3 plated with 35m Cu

Insulated Gate Bipolar Transistor (IGBT)

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

RF amplifier up to GHz range specially for wide band antenna amplifier.

CM200EXS-24S. Chopper IGBT NX-Series Module 200 Amperes/1200 Volts

Parameter Test Conditions Symbol Value Unit Junction ambient on glass fibre printed board (25 x 20 x 1.5) mm 3 R thja 450 K/W plated with 35m Cu

RF amplifier up to GHz range specially for wide band antenna amplifier.

DATA SHEET. BFG31 PNP 5 GHz wideband transistor DISCRETE SEMICONDUCTORS Sep 12

Investigation of Ge content in the BC transition region with respect to transit frequency

The Devices. Jan M. Rabaey

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

ECE-305: Spring 2018 Final Exam Review

BANDGAP ENGINEERING: GRADED BASE INTRODUCTION

STGWA40HP65FB2. Trench gate field-stop, 650 V, 40 A, high-speed HB2 series IGBT in a TO-247 long leads package. Datasheet. Features.

DISCRETE SEMICONDUCTORS DATA SHEET. BFS520 NPN 9 GHz wideband transistor. Product specification File under Discrete Semiconductors, SC14

Biasing the CE Amplifier

6.012 Electronic Devices and Circuits

Lecture 29: BJT Design (II)

BFS17/BFS17R/BFS17W. Silicon NPN Planar RF Transistor. Vishay Telefunken. Applications. Features

Introduction to Transistors. Semiconductors Diodes Transistors

L K K K K P P1 N GU EU GV EV GW EW GU GVGW GB E LABEL H H

University of Pittsburgh

Bipolar Junction Transistors: Solving Ebers-Moll Problems

Mod. Sim. Dyn. Sys. Amplifiers page 1

IXBK55N300 IXBX55N300

BJT Biasing Cont. & Small Signal Model

Automotive-grade 400 V internally clamped IGBT E SCIS 320 mj

ECE 497 JS Lecture - 12 Device Technologies

DETAIL "A" #110 TAB (8 PLACES) X (4 PLACES) Y (3 PLACES) TH1 TH2 F O 1 F O 2 DETAIL "A"

DATA SHEET. BFQ225 NPN video transistor DISCRETE SEMICONDUCTORS Sep 04

COMPLEMENTARY NPN/PNP TRANSISTOR

DATA SHEET. BFQ226 NPN video transistor DISCRETE SEMICONDUCTORS Sep 04

General Purpose Transistors

Features. Description. Table 1. Device summary. Order code Marking Packages Packing. STGD19N40LZ GD19N40LZ DPAK Tape and reel

IXBX50N360HV. = 3600V = 50A V CE(sat) 2.9V. BiMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Frequency. Advance Technical Information

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27.

Spring Semester 2012 Final Exam

Type Marking Pin Configuration Package BCX42 DKs 1 = B 2 = E 3 = C SOT23. Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage V CEO

Chapter 2 - DC Biasing - BJTs

EE105 - Fall 2006 Microelectronic Devices and Circuits

Solid State Electronics. Final Examination

CM1000DUC-34SA. Mega Power Dual IGBT 1000 Amperes/1700 Volts

Pb-free (RoHS compliant) package Qualified according AEC Q101 C1 (2) Type Marking Pin Configuration Package BCV62A BCV62B BCV62C 2 = C1 2 = C1 2 = C1

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut

IXBK55N300 IXBX55N300

IXBT24N170 IXBH24N170

Transcription:

Non-standard geometry scaling effects S. Lehmann 1), M. Schröter 1),2), J. Krause 1), A. Pawlak 1) 1) Chair for Electron Devices and Integr. Circuits, Univ. of Technol. Dresden, Germany 2) ECE Dept., University of California San Diego, La Jolla, CA, USA HICUM Workshop, Heilbronn (Germany), 12./13. June 26 SL, MS 1

Outline Motivation for investigations profile Variations of the reference profile Results for electrical characteristics and FOMs (f T, I-V,...) Summary SL, MS 2

Motivation for investigation Designer s goal Modeller s goal Circuit optimization Device characterization Find optimal device Compact models for as many as possible devices and device configurations Measure a few devices Extract specific parameters Apply scaling equations! Measurements of some advanced process technologies show deviations w.r.t. conventional scaling equations. SL, MS 3

Motivation for investigation measurements of scaling of collector current symbols... measurements lines... linear regression measurements of scaling of breakdown voltage BV CE A E SL, MS 4

profile profile based on SIMS measurements (in the following => Standard): Non-selective epitaxy (Ge-profile lateral constant) Doping of the internal transistor is laterally constant Simulated emitter widths: b E =[.25.45.65 1.5 1.45]µm Field oxide E.5.1 B log( D ), N122C128 E 19.5 19 18.5 18 17.5 D [cm -3 ] 1e+2 1e+19 1e+18 B C x [μm].15.2 17 16.5 16 15.5 1e+17 1e+16 1e+15.25.3.1.2.3.4 y [μm] 15 14.5.2.4 x [µm].6.8 1 1.2.5.1.15.2.25 y [µm].3.35 => obeys standard scaling rules SL, MS 5

profile 1e+21.2.4.6.8 1.4 1e+2 1e+19 cutline at y=.4µm.35.3.25 D [cm -3 ] 1e+18 1e+17.2.15 1e+16 1e+15 internal SIMS cutline at y=.µm Baselink SIMS internal DEVICE Baselink DEVICE Ge SIMS.5 Ge DEVICE.2.4.6.8 1 x [µm].1 SL, MS 6

profile Gummel plot Transit frequency =V =V I C /A E 1 1 1 1 2 b E b E =.25μm b E =.45μm 1 3 b =.65μm E b E =1.5μm b =1.45μm E 1 4.6.65.7.75.8.85.9 V BE [V] f T [GHz] 6 5 4 3 2 1 b E =.25μm b E =.45μm b E =.65μm b E =1.5μm b E =1.45μm 1 4 1 3 1 2 1 1 1 I C /A E b E SL, MS 7

Depthvar1:.5 s E = --------- Δb.2 Depthvar2:.5 s E = --------- Δb.2.1.2.3 Variations of the reference profile/1 Variations of doping with emitter width (b E,nom =.65µm): Base-emitter junction depth SIC width increases increases/decreases with emitter width with emitter width (Depthvar1/Depthvar2) (SICvar1) (b E,nom +Δb)/2 2/3x b E,nom /2 je 1/3x je Contour at D=cm 3 E x je,nom x je,nom *s E Sicvar1: with s E as Depthvar1 1 18 b SIC b SIC *s E (b E +Δb)/2 Doping along intersection line at depth x=.5μm b E /2 intersection at depth x=.5µm x [μm].4.5.6.7.8.9.1.3.32.34.36.38.4 y [μm] D [cm -3 ] D [cm 3 ] 1 17 b E.1.2 y [µm] SL, MS 8

conventional edge Variations of the reference profile/2 Increased edge doping due to fast poly edge diffusion (Polyvar) (b E <b E,nom ) (b E,nom ) (b E >b E,nom ) Non-standard lateral doping Transient enhanced diffusion (TEDvar) (b E <b E,nom ) (b E,nom ) TED edge (b E >b E,nom ) modified edge E log( D ), N122D128 19.5 conventional edge E log( D ), N122D128 19 19.5 18.5 18.5 18 x [μm] 17.5 17 x [μm] 17.1 16.5 16.1 16 15.5 15 15.15.3.35.4.45.5.55.6 y [μm].15.3.4.5.6.7 y [μm] 14 SL, MS 9

Results - Transit frequencies Large influence on transit frequencies for Depthvar1 and Depthvar2 For small emitter width Polyvar shows the same behavior as Depthvar2 (smaller neutral base width, higher doping at BE junction => larger BE junction capacitance) For small emitter width TEDvar shows the reverse effect as Polyvar (wider neutral base width, lower doping at BE junction => smaller BE junction capacitance) For larger emitter width the variations of the edge doping (Polyvar, TEDvar) show decreased deviations w.r.t. reference profile =V, b E =.25μm =V, b E =1.45μm f T [GHz] 6 5 4 3 2 Depthvar1 Depthvar2 TEDvar Polyvar Sicvar1 Sicvar2 Sicvar3 f T [GHz] 6 5 4 3 Depthvar1 Depthvar2 TEDvar Polyvar Sicvar1 Sicvar2 Sicvar3 x je w B C je 2 1 1 x je w B C je 1 3 1 2 1 1 1 I C /A E 1 3 1 2 1 1 1 I C /A E SL, MS 1

Results - Collector current I C /A E 1.55 x 1 3 1.5 1.45 1.4 1.35 1.3 1.25 Standard method for perimeter-area separation Polyvar and Sicvar1 still show linear scaling behavior Depthvar1 w B =V, V BE =.65V I C /A E 1.8 x 1 3 1.6 1.4 1.2 Depthvar2 w B =V, V BE =.65V I C /A E 1.2 1.15 1.1 P E /A E [1/μm] 1.55 x 1 3 1.5 1.45 1.4 1.35 1.3 1.25 1.2 1.15 TEDvar =V, V BE =.65V w B 1.1 P /A [1/μm] E E I C /A E 1 1.7 1.6 1.5 1.4 1.3 1.2 P /A [1/μm] E E 1.8 x 1 3 Polyvar slope ~I Cp =V, V BE =.65V 1.1 P E /A E [1/μm] SL, MS 11

I B /A E 4.2 x 1 6 4.15 4.1 4.5 4 3.95 3.9 3.85 3.8 Results - Base current Standard method for perimeter-area component separation Sicvar1, Polyvar and TEDvar show linear behavior (with varying peripheral component) 3.75 P E /A E [1/μm] 1 x 1 6 9 Depthvar1 TEDvar =V, V BE =.65V w E =V, V BE =.65V v ce =3*1 5 cm/s I B /A E 4.2 x 1 6 4.15 4.1 4.5 4 3.95 3.9 3.85 3.8 Depthvar2 =V, V BE =.65V 3.75 P E /A E [1/μm] 4.8 x 1 6 4.6 w E Polyvar =V, V BE =.65V I B /A E 8 7 6 5 slope ~I Bp I B /A E 4.4 4.2 4 slope ~I Bp 4 3.8 3 P /A [1/μm] E E 3.6 P /A [1/μm] E E SL, MS 12

Results - Low-current forward charge Q f /A E [fc/μm 2 ].2.18.16.14.12.1 Depthvar1 Depthvar2 TEDvar Polyvar Sicvar1 determined at V BE =.75V.8 P E /A E [1/μm] Q f = τ f I C, Sicvar as well as Polyvar, TEDvar: the larger devices deviate from linear scaling slightly Depthvar1 (increasing junction depth with regard to emitter width) shows significantly more nonlinear scaling behavior than Depthvar2 SL, MS 13

Results - Junction capacitances C je /A E [ff/μm 2 ] 8.5 8 7.5 7 6.5 Depthvar1 V BE =.2V x je N BE 7 x je N BE 6.5 C je /A E [ff/μm 2 ] 8.5 8 7.5 6 5.5 Depthvar2 V BE =.2V 6 5.5 P /A [1/μm] E E 5 4.5 4 P /A [1/μm] E E 7 6.5 TEDvar V BE =.2V 8 7.5 Polyvar V BE =.2V C je /A E [ff/μm 2 ] 6 5.5 x je w B N BE C je /A E [ff/μm 2 ] 7 6.5 N BEp 5 6 4.5 P E /A E [1/μm] 5.5 P /A [1/μm] E E SL, MS 14

Results - Junction capacitances C jc = C jci A SIC + C jcx A BCx = C jci A SIC + C jcx d BCx P BCx Use of the correct dimensions for and would shift P=>P A SIC A BCx.9.88 Sicvar1 =.2V P b SIC d BCx.86 P C jc /A SIC [ff/μm 2 ].84.82.8 A SIC A E.78.76 P P BCx.74 P.1.15.2.25.3.35 P BC,eff /A SIC SL, MS 15

Tetrode simulations Symmetric structure as shown below has been simulated Voltage difference of +1mV between base contact B1 and B2. V B2 V B1 R = with. ( ------------------------------- = + )/2 2r + r b -------- E l Bx SBi E = 1μm I B1 I B2 l E I B1 B1 E N122C128 B2 I B2 x 1 19 16 14.5 12 x [μm] 1 8.1 6 4.15.2.4.6.8 1 1.2 y [μm] C 2 SL, MS 16

Results - Tetrode simulations Relevant deviations with respect to linear scaling are found only for Depthvar => direct influence of the varying neutral base width For very small emitter width a deviation of Polyvar is expected due to the same reason 5 4.5 4 3.5 =V Depthvar1 Depthvar2 TEDvar x je w B Polyvar Sicvar1 x je w B R [kω] 3 2.5 2 1.5 1.2.4.6.8 1 1.2 1.4 1.6 b [μm] E SL, MS 17

Results - BV CE For Depthvar, Sicvar, Polyvar only slight deviations in BV CE are observed TEDvar shows a significant higher BV CE and a dependence on emitter width determined at V BE =.55V I B 2.7 2.6 Depthvar1 Depthvar2 TEDvar Polyvar Sicvar1 B VCE [V] 2.5 2.4 b E measured example V CB 2.3 2.2.5 1 1.5 b E [μm] SL, MS 18

Summary Variation of base-emitter junction depth with emitter width shows a large deviation with respect to conventional scaling => in dependence of occurence of similar measurements a modification of existing scaling equations has to be considered depending on observed measurement trends Some deviations with respect to conventional scaling occur only at small emitter width or or influence but even the peripheral components (e.g. Polyvar, in parts TEDvar) Evaluation of measured curves can allow conclusions regarding lateral doping profile (e.g. BV CE => TEDvar) Reason for deviation from conventional scaling for the forward charge Q f for large devices has to be investigated Develop preprocessor to include non-standard scaling behavior in scalable model parameter generation 19