Citation 数理解析研究所講究録 (1997), 1014:

Similar documents
Citation 数理解析研究所講究録 (2004), 1368:

Citation 数理解析研究所講究録 (2001), 1191:

Citation 数理解析研究所講究録 (2009), 1665:

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

Advanced Mathematical Methods for Scientists and Engineers I

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

Title series (Analytic Number Theory and. Citation 数理解析研究所講究録 (2009), 1665:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

On a WKB-theoretic approach to. Ablowitz-Segur's connection problem for. the second Painleve equation. Yoshitsugu TAKEI

in the geometric function theory) Author(s) Shigeyoshi; Darus, Maslina; Cho, Na Citation 数理解析研究所講究録 (2010), 1717: 95-99

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461:

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405:

Citation 数理解析研究所講究録 (2006), 1465:

Citation 数理解析研究所講究録 (2002), 1244:

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

Citation 数理解析研究所講究録 (2002), 1254:

Citation 数理解析研究所講究録 (1994), 886:

Citation 数理解析研究所講究録 (2004), 1396:

FIXED-WIDTH CONFIDENCE INTERVAL EST Title OF A FUNCTION OF TWO EXPONENTIAL SC. Author(s) Lim, Daisy Lou; Isogai, Eiichi; Uno

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091:

Citation 数理解析研究所講究録 (2006), 1466:

関数型 SIRMs 結合型ファジィ推論法による非線形同定に関する一考察 ( モデリングと最適化の理論 ) Citation 数理解析研究所講究録 (2006), 1526:

Mode generating effect of the solut. Citation 数理解析研究所講究録 (2005), 1425:

Title analysis for nonlinear phenomena) Citation 数理解析研究所講究録 (2016), 1997:

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

Citation 数理解析研究所講究録 (1996), 941:

Citation 数理解析研究所講究録 (2012), 1805:

Citation 数理解析研究所講究録 (2014), 1898:

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16:

Citation 数理解析研究所講究録 (2013), 1841:

Title numbers (Mathematics of Quasi-Perio. Citation 数理解析研究所講究録 (2011), 1725:

Citation 数理解析研究所講究録 (2008), 1605:

Citation 数理解析研究所講究録 (2012), 1794:

Section 5.2 Series Solution Near Ordinary Point

Citation 数理解析研究所講究録 (2000), 1123:

Citation 数理解析研究所講究録 (2003), 1347:

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669:

Title Numerics(The 7th Workshop on Stocha. Citation 数理解析研究所講究録 (2006), 1462:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234:

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

Citation 数理解析研究所講究録 (2003), 1334:

Citation 数理解析研究所講究録 (1999), 1099:

(Theory of Biomathematics and its A. Citation 数理解析研究所講究録 (2010), 1704:

DIFFERENTIAL OPERATORS AND SIEGEL-M. Author(s) IMAMOGLU, OZLEM; RICHTER, OLAV K. Citation 数理解析研究所講究録 (2010), 1715:

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741:

Notes for Expansions/Series and Differential Equations

Last Update: March 1 2, 201 0

Citation 数理解析研究所講究録 (2008), 1588:

Title series (New Aspects of Analytic Num. Citation 数理解析研究所講究録 (2002), 1274:

Citation 数理解析研究所講究録 (2010), 1679:

DIFFERENTIAL EQUATIONS

Author(s) Aoshima, Makoto; Srivastava, Muni S. Citation 数理解析研究所講究録 (1999), 1101:

Series Solutions of Differential Equations

Wave and Dispersive Equations) Citation 数理解析研究所講究録 (2004), 1355:

Citation 数理解析研究所講究録 (2016), 1995:

Title solutions of damped sine-gordon equ. Author(s) Nakagiri, Shin-ichi; Elgamal, Mahmo. Citation 数理解析研究所講究録 (1998), 1034: 1-13

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

Citation 数理解析研究所講究録 (2007), 1570:

Method of Averaging for Differential Equations on an Infinite Interval

First Order Linear Ordinary Differential Equations

and Function spaces and its applica Citation 数理解析研究所講究録 (2009), 1667:

Title (The 8th Workshop on Stochastic Num. Citation 数理解析研究所講究録 (2009), 1620:

Citation 数理解析研究所講究録 (2015), 1963:

Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

Title free boundary problems (Free Bounda. Citation 数理解析研究所講究録 (2001), 1210:

Citation 数理解析研究所講究録 (2005), 1440:

Representations of solutions of general nonlinear ODEs in singular regions

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions

Transient effects in hydronization

DIFFERENTIAL EQUATIONS

Differential Equations and its Deve. Citation 数理解析研究所講究録 (2005), 1428:

Systems under Uncertain Environment. Author(s) Dohi, Tadashi; Takeita, Kentaro; Os. Citation 数理解析研究所講究録 (1998), 1048: 37-52

Additive resonances of a controlled van der Pol-Duffing oscillator

We start with a discussion of the Sampling Theorem.

Fundamentals of Linear Algebra. Marcel B. Finan Arkansas Tech University c All Rights Reserved

(Refer Slide Time: 01:30)

Kahler submanifolds of a quaternion (Geometry of homogeneous spaces and. Citation 数理解析研究所講究録 (2003), 1346:

Author(s) Higuchi, Masakazu; Tanaka, Tamaki. Citation 数理解析研究所講究録 (2002), 1298:

Citation Acta Mechanica Sinica/Lixue Xuebao, 2009, v. 25 n. 5, p The original publication is available at

Citation 数理解析研究所講究録 (2006), 1476:


INTERPRETATION OF RACK COLORING KNO. Low-dimensional Topology) Author(s) TANAKA, KOKORO; TANIGUCHI, YUMA. Citation 数理解析研究所講究録 (2012), 1812:

Citation 数理解析研究所講究録 (2005), 1452:

RADON TRANSFORM OF HYPERFUNCTIONS A PROBLEMS OF SUPPORT. Citation 数理解析研究所講究録 (1996), 937:

LOGARITHMIC ORDER AND DUAL LOGARITH ORDER (Operator Inequalities and Re. Citation 数理解析研究所講究録 (2000), 1144:

The Solution of Weakly Nonlinear Oscillatory Problems with No Damping Using MAPLE

On an Eigenvalue Problem Involving Legendre Functions by Nicholas J. Rose North Carolina State University

Dynamics at the Horsetooth Volume 2A, Focused Issue: Asymptotics and Perturbations, 2010.

Lecture 4: Numerical solution of ordinary differential equations

2:2:1 Resonance in the Quasiperiodic Mathieu Equation

Title Logics and Their Kripke Semantics) Citation 数理解析研究所講究録 (1997), 1010:

DIFFERENTIAL EQUATIONS

Special Functions of Mathematical Physics

Citation 数理解析研究所講究録 (2013), 1871:

Citation 数理解析研究所講究録 (1994), 860:

SOLUTIONS ABOUT ORDINARY POINTS

Transcription:

Multiple-scale analysis of Duffing' Titleexpansion of Jacobi's elliptic func asymptotic analysis) Author(s) AOKI Takashi Citation 数理解析研究所講究録 (1997) 1014: 49-60 Issue Date 1997-10 URL http://hdlhandlenet/2433/61589 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

1014 1997 49-60 49 Multiple-scale analysis of $\mathrm{d}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{g}^{;_{\mathrm{s}}}$ and Fourier series expansion of elliptic functions $\mathrm{j}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{b}\mathrm{i})\mathrm{s}$ equation Takashi AOKI ( ) Department of Mathematics and Physics Kinki University Higashi-Osaka 577 Japan $0$ Introduction This note is concerned with an elementary ordinary differential equation with $\epsilon$ a small positive paranueter : (1) $\frac{d^{2}y}{dt^{2}}+y+_{\mathrm{c}}\prime y^{3}=0$ This equation is called Duffing s equation Several textbooks of perturbation theory treat this equation to illustrate the method of multiple-scale analysis ([BO] [H] [KC] [N] for example) In these textbooks the leading ternl of a perturbative solution of (1) is calculated by using the method of multiplescale analysis On the other hand (1) can be solved by quadrature ([KC] $)$ [L] : the general solution can be written in terms of a Jacobi s elliptic function The purpose of this article is to clarify the relation between these two solutions: a perturbative solution and the exact solution 1 Regular perturbation expansions and an apparent paradox In this section we briefly illustrate why regular perturbation expansions are not appropriate for global analysis of (1) This section and the first half part of the next section are due to [BO]

50 A naive perturbative solution of (1) with the initial conditions (2) $y(0)=1$ $\cdot$ $y (0)=0$ is obtained by expanding $y(t)$ as a power series in $\epsilon$ : (3) $y(t)= \sum^{\infty}\mathit{6}^{k}y_{k}(tk=0)$ Substituting this into (1) $\epsilon$ and equating coefficients of like powers of a sequence of linear differential equations: gives (4) $y_{0^{+}}^{\prime/}y_{0}=^{\mathrm{o}}$ (5) $y_{1}^{\prime/}+y_{1}=-y_{0}^{3}$ (6) $y_{2}+y_{2}=-jj23y_{0}y_{1}$ and so on The solution to (4) which satisfies $y_{0}(0)=1$ $y_{0}^{;}(0)=0$ is $y_{0}(t)=\cos t$ Now the right-hand side of (5) is known: $-y_{0}^{3}=-\cos^{3}t$ Using the relation $\cos^{3}t=\cos 3t/4+3\cos/4$ we have the solution of (5) with the initial conditions $y_{1}(0)=y_{1} (0)=0$ : $y_{1}(t)= \frac{1}{32}\cos 3t-\frac{1}{32}\cos t-\frac{3}{8}t\sin t$ The last term $t\sin t$ of the right-hand side of $y_{1}$ is called a secular term since it is not bounded The right-hand side of (6) is now given and we have the solution $y_{2}$ of (6) with the initial conditions $y_{2}(0)=y 2(0)=0$ : $y_{2}(t)= \frac{1}{2^{10}}\cos 5t-\frac{3}{2^{7}}\cos 3t+\frac{23}{2^{10}}\cos t+\frac{t}{2^{8}}(-9\sin 3t+24\sin t)-\frac{9}{2^{7}}t^{2}\cos t$ The last two terms are unbounded and we also call them secular terms In a $y_{k} \mathrm{s}$ similar manner we can obtain successively

as be 51 For ex- Thus we have a perturbative solution of (1) in arbitrary order ample the first-order perturbative solution is $y(t)= \cos t+\mathrm{c} (\frac{1}{32}\cos 3t-\frac{1}{32}\cos t-\frac{3}{8}t\sin t)+\mathrm{o}(\epsilon^{2})$ The term means that for fixed $0(\epsilon)$ the error between $y(t)$ $y\mathrm{o}(t)+\epsilon y1(t)$ and $\epsilon^{2}$ is at nuost of order Hence it $\epsilonarrow 0$ $\mathrm{n}\dot{\mathrm{u}}\mathrm{g}\mathrm{h}\mathrm{t}$ not small for values of $1/\epsilon$ of order For such large values of the secular terms in $y_{1}$ and in $y_{2}$ suggest that the amplitude of oscillation grows with In spite of these observations we can show that the solution to (1) with (2) is bounded for all Multiplying (1) by converts each ternl in the $y $ differential equation to an exact derivative: $\frac{d}{dt}[\frac{1}{2}(\frac{dy}{dt}\mathrm{i}^{2}+\frac{1}{2}y^{2}+\frac{1}{4}\circ\prime y^{4}]=0$ Thus (7) $\frac{1}{2}(\frac{dy}{dt}\mathrm{i}^{2}+\frac{1}{2}y^{2}+\frac{1}{4}\in y^{4}=c$ where is a constant By (2) we have $C$ $C= \frac{1}{2}+\frac{1}{4}\epsilon$ Therefore $ y(t) $ is bounded for all by $\sqrt{1+\epsilon/2}$ We have arrived at an apparent paradox We have proved that the exact solution $y(t)$ is bounded for all while the first-order or the second-order perturbative solutions are unbounded The resolution of this paradox lies in the sumnlation of the perturbative series (3) The most secular term in $y_{k}(t)$ has the form with $A_{k}t^{k}e^{it}$ $+\overline{a}_{k}tek$-it $A_{k}= \frac{1}{2}\frac{1}{n!}(\frac{3i}{8})^{k}$ The sum of the most secular ternls becomes a cosine function: $\sum_{k=0}^{\infty}\frac{1}{2}\epsilon^{k}t^{k}[\frac{1}{k!}(\frac{3i}{8})e^{i}kt+\frac{1}{k!}(\frac{-3i}{8})^{k}e-it]=\cos[t(1+\frac{3}{8}\epsilon)]$ This expression is bounded for all [BO] for details Less secular terms are negligible See

52 Thus the paradox has disappeared But this explanation needs lengthy calculation and requires an infinite sum Such a lengthy calculation can be avoided by using the method of multiple-scale analysis equa- 2 Multiple-scale analysis of $\mathrm{d}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{g}^{2}\mathrm{s}$ tion A shortcut for eliminating the secular terlns to all orders begins by introducing a new variable Multiple-scale analysis seeks solutions of (1) in $\tau=\epsilon t$ the form $y(t)=y(t \mathcal{t})$ where the both variables $\mathrm{y}(t \epsilon t)$ -derivative of is: and $\tau$ are treated as independent variables The $\frac{d}{dt}y(t et)=(\frac{\partial 1 \prime}{\partial t}+\hat{\mathrm{c}}\frac{\partial 1^{\nearrow}}{\partial\tau}) _{\tau=\epsilon t}$ Hence if $\mathrm{y}$ satisfies the partial differential equation (8) $( \frac{\partial}{\partial t}+\epsilon\frac{\partial}{\partial\tau})2\epsilon Y+Y+Y^{3}=0$ then $y(t)=y$ ( et) is a solution to (1) Equation (8) is rewritten in the form (9) $\frac{\partial^{2}y}{\partial t^{2}}+\mathrm{y}=-\epsilon(2\frac{\partial^{2}y}{\partial t\partial\tau}+y^{3})-\epsilon^{2}\frac{\partial^{2}\mathrm{y}}{\partial\tau^{2}}$ We construct a perturbative solution of this partial differential equation in the following manner Assume a perturbative expansion of the form (10) $Y= \sum_{n=0}^{\infty}\epsilon^{n}y(nt \tau)$ Substituting (10) into (9) and collecting powers of $\epsilon$ gives (11) $\frac{\partial^{2}y_{0}}{\partial t^{2}}+y_{0}=0$

53 ( 12) $\frac{\partial^{2}y_{1}}{\partial t^{2}}+y_{1}=-2\frac{\partial^{2}y_{0}}{\partial t\partial\tau}-y_{0}^{3}$ (13) $\frac{\partial^{2}y_{k}}{\partial t^{2}}+y_{k}=-2\frac{\partial^{2}y_{k-1}}{\partial t\partial\tau}-\sum_{kk_{1}+2+k3=k}yk_{1}yk_{2}]\nearrow k_{3^{-}}\frac{\partial^{2}y_{k-2}}{\partial\tau^{2}}$ $(k\geq 2)$ We forget the initial data and the reality of solutions for a while The most general solution to (11) is (14) $\iota_{0=}/^{r}it0)e^{-}a_{1}^{(0)(}e+a-1it$ where are arbitrary functions of $a_{\pm 1}^{(0)}=a_{\pm 1}^{(0)}(\tau)$ $a_{\pm 1}^{(0)}$ $\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{l}\dot{\mathrm{u}}\mathrm{n}\mathrm{e}\mathrm{d}$ $\tau$ will be by the condition that secular terms do not appear in the solution to (12) Fronu (14) the right-hand side of (12) is $-a_{1}^{(0})^{3}3ie-t[2i \frac{\partial a_{1}^{(0)}}{\partial\tau}+3a_{1}^{(0)}2a_{-1}(0)]e^{it}+[2i\frac{\partial a_{-1}^{(0)}}{\partial\tau}-3a_{1}a_{-1})^{2}(0)(0 $ $e-it-a_{-1}e^{-3}(0)3it$ $e^{\pm it}$ Therefore if one of the coefficients of on the right-hand side of (12) is nonzero then the solution will be secular (unbounded) in $Y_{1}(t \tau)$ To $e^{\pm it}$ preclude the appearance of secularity we require that the coefficients of on the right-hand side of (12) to be equal to zero: (15) $2i \frac{\partial a_{1}^{(0)}}{\partial\tau}+3a_{1}^{(0}a_{-1}=0)^{2}(0)$ (16) $2i \frac{\partial a_{-1}^{(0)}}{\partial\tau}-3a^{(0)}a_{-}=01(0)^{2}1$ This system of differential equations for $a_{\pm 1}^{(0)}$ is easily solved and we have (17) $a_{1}((0)\tau)=\alpha e^{3}\beta i\alpha \mathcal{t}/2$ (18) $a_{-1}((0)\mathcal{t})=\beta where $\alpha$ $\beta$ e-3i\alpha\beta_{\mathcal{t}}/2$ are arbitrary constants The right-hand side of (12) becomes $-\alpha^{3}e3i(3\alpha\beta\tau/2+t)-\beta^{3}e-3i(3\alpha\beta \mathcal{t}/2+t)$ Therefore (19) $Y_{1}= \frac{1}{8}\alpha e+\alpha\beta+ae+1a33i(3\tau/2t)(1)it(1)-it\frac{1}{8}\beta 3-e3i(3\alpha+\tau/\beta 2+t)-1e$

$\dot{\mathrm{f}}\mathrm{o}\mathrm{r}\mathrm{m}$ 54 $a_{\pm 1}^{(1)}$ 1}^{(1)}$ $\tau$ Here are arbitrary functions in will be determined by the nonsecularity condition in the next step: the coefficients of in the right-hand $e^{\pm it}$ side of (13) for $k=2$ are equal to zero This condition turns out to be a $a_{\pm 1}^{(1)}$ system of linear inhomogeneous differential equations for and we can find easily a special solution of this system as follows: $a_{\pm (20) $a_{1}^{(}() \tau)1\frac{5}{16}\alpha\beta=ei23\mathrm{q}\beta \mathcal{t}/2$ (21) $a_{-1}^{(1)}(_{\mathcal{t})}= \frac{5}{16}\alpha\beta^{z}\epsilon-3i\alpha\beta \mathcal{t}/2$ $Y_{1}$ Thus we have obtained that satisfies (12) and the non-secularity condition for (13) for $k=2$ Suppose that $Y_{0}$ $Y_{1\ldotsk-1}Y$ are obtained in the form (22) $Y_{j}=b_{2j1}(j)e^{(}12j+)+\Phi+b_{2j-}(j)e^{(}\Phi 12j-1)+e\cdot\cdot+b_{-2}(j)ej-11-(2j+)\Phi$ $b_{l}^{(j)}$ where $(j=0 \ldots k-1;l=2j+12j-1 \ldots -2j-1)$ are constants and $\Phi=i(3\alpha\beta\tau/2+t)$ so that the non-secularity condition of (13) is satisfied $Y_{k}$ Then we can solve (13) and get in the (23) $Y_{k}$ $=$ $b_{2k}^{(k)}+1e(2k+1)\phi+\cdots+b_{3}^{(k)\phi}e^{3}+a_{1}^{(k)t}e^{i}+a_{-1}^{(k)t}e^{-i}$ $+b_{-3}^{(k)3\phi}e+\cdots+b_{-}(k)e2k-1-(2k+1)\phi$ $b_{j}^{(k)}$ $a_{\pm 1}^{(k)}$ where $(j=\pm 3 \ldots \pm(2k+1))$ are deterlnined and are arbitrary $a_{\pm 1}^{(k)}$ $\tau$ functions of will be determined by the non-secularity condition of (13) for $k+1$ This condition can be written down in the form of a system of linear inhomogeneous differential equations of first order whose inhomogeneous terms are given and the homogeneous equations are the sallue as the $a_{\pm 1}^{(1)}$ equations for We can choose a special solution of this system of the form: $a_{1}((k))=\alpha cei(k)3\alpha \mathcal{t}\beta_{\mathcal{t}}/2$ (24) (25) $a_{-1}^{(k)/2}(\tau)=\beta Ce^{-}(k)3i\alpha\beta \mathcal{t}$ where is a constant Thus we have obtained $c^{(k)}$ $Y_{k}$ so that the non-secularity condition of (13) is satisfied $\mathrm{f}\mathrm{o}1k+1$ $Y_{k}$ By this procedure we can calculate term by term as nlany as we like

55 Thus we have constructed a family of perturbative solutions of (1) (26) $y=y(t \alpha \beta)=\sum_{n=0}^{\infty}\mathit{6}^{n}\iota_{n}\nearrow$ ( et) $\beta$ $\alpha$ including two arbitrary constants $a_{\pm 1}^{(k)}$ $\ln$ $Y_{k} \mathrm{s}$ each step of constructing we have chosen special solutions to the inhonlogeneous system of linear differential equations Hence there is $a_{\pm 1}^{(k)}$ some ambiguity for in each step But we can see that such ambiguity is $\beta$ $\epsilon$ $\alpha$ equivalent to replacing by arbitrary power series in : $\alpha=\alpha_{0}+\epsilon\alpha_{1}+\epsilon\alpha 2+2\ldots$ $\beta=\beta_{0+}\epsilon\beta 1+\epsilon\beta 22+\cdots$ $\tau$ Bender and Orszag wrote in their book [BO] that not only but infinitely many scales are needed to construct a perturbative solution of (1) with (2) in all order (see PROBLEM 117 in [BO]) But as we have shown forgetting initial conditions permits us to construct the general perturbative solutions by using double scales only If we choose $(t \tau)$ $\beta$ $\alpha$ so that (2) $\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}_{\mathrm{s}:}y(0 \alpha \beta)=1$ and hence $y (\mathrm{o} \alpha \beta)=0$ then we have $\alpha=\beta=1/2-7\epsilon/128+\cdots$ $\Phi=i(1+\cdot\frac{3}{8}\epsilon-\cdot\frac{21}{256}\epsilon 2)+\cdots t$ $\Phi$ The first two terms in the right-hand side of recovers the frequency shift that we calculated by using the naive perturvative solution Thus taking an infinite sum of the most secular terms in the naive perturvative solution has $Y_{0}$ been already built in the leading term Remark 1 Since Duffing s equation (1) is autonomous we can choose one free constant as the freedom of translation In other words $y(t \alpha \beta)=y(t+c \gamma\gamma)$ holds for $c= \frac{\log\alpha-\log\beta}{i(3\alpha\beta_{\mathrm{c}}^{\wedge}+1)}$ $\gamma=(\alpha\beta)^{\frac{1}{2}}$

$1_{1}^{\nearrow}$ $=$ 56 Remark 2 First six $Y_{k} \mathrm{s}$ are as follows: $Y_{0}$ $=\alpha e^{\phi}+\beta e^{-\phi}$ $\frac{\alpha^{3}}{8}c^{-} +3\Phi\frac{5\alpha^{2}\beta}{16}\epsilon\Phi\frac{5\alpha\beta^{2}}{16}e-\Phi+\frac{\beta^{3}}{8}e^{-}3+\Phi$ $Y_{2}$ $=$ $\frac{\alpha^{5}}{64}e^{5\phi\phi\phi\phi}-\frac{27\alpha^{4}\beta}{128}e^{3}+\frac{11\alpha^{3}\beta^{2}}{512}e+\frac{11\alpha^{2}\beta^{3}}{512}e^{-}$ $- \frac{27\alpha\beta^{4}}{128}e^{-3\phi}+\frac{\beta^{5}}{64}e^{-5\phi}$ $Y_{3}$ $=$ $\frac{\alpha^{7}}{512}e-7\phi\frac{61\alpha^{6}\beta}{1024}e\phi 5+\frac{1419\alpha^{5}\beta^{2}}{4096}e^{3}\Phi-\Phi+\frac{799\alpha^{4}\beta^{3}}{8192}e$ $- \frac{799\alpha^{3}\beta^{4}}{8192}e^{-\phi}+\frac{1419\alpha^{2}\beta^{5}}{4096-}e^{-3\phi}$ 61 $\alpha\beta^{6}-5\phi\beta^{7}$ $-7\Phi$ $-e\overline{1024}$ $\overline{512}e$ $Y_{4}$ $=$ $\frac{\alpha^{9}}{4096}e^{9\phi}-\frac{95\alpha^{8}\beta}{8192}e^{7\phi}+\frac{5255\alpha^{7}\beta^{2}}{32768}e5\phi$ $- \frac{33119\alpha\beta^{3}6}{65536}e^{3\phi}+\frac{61043\alpha^{5}\beta^{4}}{524288}e^{\phi}$ $+ \frac{61043\alpha^{4}\beta^{5}}{524288}e^{-\phi-3\phi}-\frac{33119\alpha\beta^{6}3}{65536}e$ $+ \frac{5255\alpha^{2}\beta^{7}}{32768}e^{-5\phi}-\frac{95\alpha\beta^{8}}{8192}e^{-7\phi}+\frac{\beta^{9}}{4096}e^{-9\phi}$ Y5 $=$ $\frac{\alpha^{11}}{32768}e^{11\phi}-\frac{129\alpha^{10}\beta}{65536}e9\phi+\frac{11403\alpha^{9}\beta^{2}}{262144}e^{7}\phi$ $- \frac{188565\alpha^{8}\beta^{3}}{524288}e^{5\phi 3\Phi}+\frac{2644083\alpha^{7}\beta^{4}}{4194304}e-\frac{458133\alpha^{6}\beta^{5}}{8388608}e^{\Phi}$ $-^{45813}\underline{3\alpha^{5}\beta 6}\underline{2644083\alpha\beta^{7}}e-\Phi+4e^{-}3\Phi$ 188565 $\alpha^{3}\beta^{8}-5\phi$ 8388608 4194304 $-e\overline{524288}$ $+ \frac{11403\alpha^{2}\beta^{9}}{262144}e^{-7\phi 9\Phi 11\Phi}-\frac{129\alpha\beta^{10}}{65536}e^{-}+\frac{\beta^{11}}{32768}e^{-}$

57 We constructed the general perturbative solution $y(t \alpha \beta)=\sum\epsilon \mathrm{i}_{n}^{\nearrow}n$ (27) $n=\infty 0t$ ( et) where $Y_{n}(t \tau)=2\sum_{k=0}^{n+1}b(n)e2n+1-2kk(2n+1-2)\phi$ $\Phi=i(\frac{3}{2}\alpha\beta\tau+t)$ At least formally we may change the order of summation in (27) alld write (28) $y(t \alpha\beta)=\sum_{\infty n=}c_{2n}\infty-+1ei(\frac{3}{2}\alpha\beta\epsilon+1)(2n+1)t$ where (29) $c_{2n+1}= \sum^{\infty}b^{(}n+k1n\mathrm{c}^{n+}2+\prime k=0)k$ Proposition 1 If $\epsilon \alpha\beta <1$ then (29) converges for every $n$ and $\varlimsup _{C_{2n+1}} ^{\frac{1}{2n+1}}<1$ holds Hence (28) makes sense as a Fourier series of a $pe\dot{n}odi_{c}$ analytic function on the real line with a period $4\pi/(3\alpha\beta\epsilon+2)$ 3 Exact solution of equation $\mathrm{d}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{g}^{2}\mathrm{s}$ its Fourier expansion and In this section we will see what really is the analytic function obtained in Proposition 1 To see this we first solve (1) with initial conditions (30) $y(0)=a$ $y (0)=0$ by quadrature (cf [KC] [L]) By (7) and (30) we have (31) $\frac{1}{2}(\frac{dy}{dt}\mathrm{i}^{2}+\frac{1}{2}y+\frac{1}{4}2=\hat{\mathrm{c}}y^{4}c$

58 wher$\mathrm{e}$ $C= \frac{a^{2}}{4}(2+\epsilon a^{2})$ Hence we have (32) $( \frac{dy}{dt})^{2}=(a^{2}-y)(1+\frac{1}{2}\hat{\mathrm{c}}a^{2}+\frac{1}{2}ey\mathrm{i}22$ and integrating this to obtain we find (33) $=$ $\sqrt{\frac{2}{\epsilon}}\int_{y}^{a}\frac{dy}{\sqrt{(a^{2}-y)2(2/\circ+\prime a2+y)2}}$ $=$ $\frac{1}{\sqrt{1+\epsilon a^{2}}}\mathrm{c}\mathrm{n}^{-1}(\frac{y}{a}$ $\sqrt{\frac{\epsilon a^{2}}{2+2\epsilon a^{2}}})$ Here cn is a Jacobi s elliptic function Therefore we have the solution of (1) with (30): (34) $y=a$ cn $(\sqrt{1+\epsilon a^{2}}t$ $k)$ $k=\sqrt{\frac{\epsilon a^{2}}{2+2ea^{2}}}$ Taking the freedom of translation into account we have the exact general solution to (1): (35) $y=a$ cn $(\sqrt{1+\epsilon a^{2}}(t+b)$ $\sqrt{\frac{\epsilon a^{2}}{2+2\epsilon a^{2}}})$ where and $a$ $b$ are arbitrary constants If we take the modulus of the elliptic function to be one of the constants we may write the general solution in the form : (36) $y=k\sqrt{\frac{2}{\epsilon(1-2k2)}}$ cn $( \frac{t+b}{\sqrt{1-2k^{2}}}$ $k)$ $b$ where and are arbitrary constants We consider real solutions and $k$ $b$ and $k$ are taken to be real and should satisfy $k$ $ k <1/\sqrt{2}$ Real period of the general solution (36) is given by $T=4\sqrt{1-2k^{2}}K$ where $K$ is the complete elliptic integral of the first kind:

59 The general solution (36) is a periodic function on the real line Hence it has a Fourier expansion which is given as follows in the case $b=0([\mathrm{l}])$ : (37) $y= \frac{\pi}{i\iota^{\nearrow}}\sqrt{\frac{2}{\epsilon(1-2k^{2})}}\sum_{n=0}^{\infty}\frac{q^{n+\frac{1}{2}}}{1+q^{2n+1}}2\cos((2n+1)\frac{\pi t}{2i\mathrm{f}\sqrt{1-2k^{2}}})$ where By the construction of the general solution by quadrature fixing a real period specifies an even solution to the Duffing equation uniquely up to signature Thus we have arrived at the following $q=e^{-\pi K /\backslash $I^{\nearrow\prime}I \iota=k(\sqrt{1-k^{2}})$ }$ Theorem 2 Let $\epsilon$ in Section 2 Let $y(t \alpha \beta)$ denote $\alpha$ and the general perturbative solution constructed satisfy $k$ $\epsilon \alpha ^{2}<1$ $\alpha k>0$ and $\frac{3}{2}\alpha^{2}\epsilon+1=\frac{\pi}{2i\iota \sqrt{1-2k^{\prime 2}}}$ Then $y(t \alpha \alpha)=k\sqrt{\frac{2}{\circ(\prime 1-2k2)}}$ cn $( \frac{t}{\sqrt{1-2k^{2}}}$ $k)$ holds Hence the coefficient $c_{2n+1}$ of $e^{i(3\alpha^{2_{\mathrm{p}}}}/2+1$ $k$ in terms of : )( $2n+1\rangle t$ in $y(t \alpha \alpha)$ is written $c_{2n+1}= \frac{\pi}{i\mathrm{i} }\sqrt{\frac{2}{\epsilon(1-2k^{2})}}\frac{q^{n+\frac{1}{2}}}{1+q^{2n+1}}$ $(n\in \mathrm{z})$ 4 Concluding remarks For Duffing s equation the perturbative solutions constructed by multiplescale method coincide with the Fourier expansion of the solutions obtained by quadrature The method of multiple-scales can be applied to construction of formal solutions of Painlev\ e equations ([A1] [A2] [AKT] [JK]) But in this case the meaning of convergence is not clear Costin [C] proved the convergence in the case where one of the two free parameters is equal to zero (As a matter of fact he treats more general equations) We hope that $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{u}$ our discussion gives some insight into the convergence of formal solutions to Painlev\ e equations

60 References $\dot{\mathrm{a}}$oki Multiple-scale [A1] T analysis for Painlev\ e transcendents with a large parameter Banach Center Publications Vol 39 1997 11-17 [A2] T Aoki Instanton-type fornlal solutions to the second Painlev\ e equations with a large parameter $/ New$ Trends in Microlocal Analysis (Eds J -M Bony and M Morillloto) Springer 1997 pp 103-112 $\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{v}\mathrm{e}\text{ }$ [AKT] T Aoki T Kawai and Y Takei WKB analysis of transcendents with a large parameter 1I $t Structure$ of Solutions of Differential Equations (Eds M and T Kawai) World Scientific $\mathrm{m}_{\mathrm{o}\mathrm{r}}\mathrm{i}\mathrm{n}\mathrm{l}\mathrm{o}\mathrm{t}\mathrm{o}$ 1996 pp 1-49 [BO] C M Bender and S T Orszag Advanced Mathematical Methods for Scientists and Engineers $\mathrm{m}\mathrm{c}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{w}$-hill 1978 [C] 0 Costin Exponential asymptotics transseries and generalized Borel sununation for analytic nonlinear rank-one system of ordinary differential equations International Mathematics Research Notices 8 (1995) 376-4I7 [H] E J Hinch Perturbation Methods Callubridge 1991 [JK] N Joshi and M Kruskal Connection results for the first Painlev\ e $ {}^{t}painlcv\acute{c}transce?\gamma dent\iota\backslash \cdot$ equation in: (Eds D Levi and P Winternitz) Plenulll Press New York 1992 pp 61-79 [KC] JKevorkian and J D Cole Multiple Scale and Singular Perturbation Methods Springer 1996 [L] D F Lawden Elliptic Functions and $App\iota i_{c}at\prime i_{on}s$ Springer 1989 [N] A Nayfeh Perturbation Methods John Wiley&Sons 1973