QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

Similar documents
Chiral Symmetry Breaking from Monopoles and Duality

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

THE QCD VACUUM AS AN INSTANTON LIQUID

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

String / gauge theory duality and ferromagnetic spin chains

Origin and Status of INSTANTONS

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

String/gauge theory duality and QCD

Phase Transitions in High Density QCD. Ariel Zhitnitsky University of British Columbia Vancouver

Phases and facets of 2-colour matter

Holographic study of magnetically induced ρ meson condensation

The Big Picture. Thomas Schaefer. North Carolina State University

towards a holographic approach to the QCD phase diagram

Orientifold planar equivalence.

Baryonic Spectral Functions at Finite Temperature

The Phases of QCD. Thomas Schaefer. North Carolina State University

QCD Phases with Functional Methods

The instanton and the phases of QCD

HUGS Dualities and QCD. Josh Erlich LECTURE 5

Holographic study of magnetically induced QCD effects:

QCD and a Holographic Model of Hadrons

Deconfinement and Polyakov loop in 2+1 flavor QCD

Termodynamics and Transport in Improved Holographic QCD

QCD Symmetries in eta and etaprime mesic nuclei

Quark Model of Hadrons

Axial symmetry in the chiral symmetric phase

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The Phases of QCD. Thomas Schaefer. North Carolina State University

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov.

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011

Putting String Theory to the Test with AdS/CFT

Glueballs and their decay in holographic QCD

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

QCD-like theories at finite density

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Lecture 12 Holomorphy: Gauge Theory

Themodynamics at strong coupling from Holographic QCD

arxiv: v2 [hep-lat] 23 Dec 2008

Medium Modifications of Hadrons and Electromagnetic Probe

The E&M of Holographic QCD

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

A Brief Introduction to AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Chiral symmetry breaking, instantons, and monopoles

Bethe Salpeter studies of mesons beyond rainbow-ladder

Introduction to AdS/CFT

arxiv:hep-lat/ v1 24 Jun 1998

Hadronic phenomenology from gauge/string duality

Nucleons from 5D Skyrmions

The SU(2) quark-antiquark potential in the pseudoparticle approach

Instanton constituents in sigma models and Yang-Mills theory at finite temperature

Hadrons in a holographic approach to finite temperature (and density) QCD

This research has been co-financed by the European Union (European Social Fund, ESF) and Greek national funds through the Operational Program

12.2 Problem Set 2 Solutions

Banks-Casher-type relations for complex Dirac spectra

Dual quark condensate and dressed Polyakov loops

't Hooft anomalies, 2-charge Schwinger model, and domain walls in hot super Yang-Mills theory

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Strong CP problem and axion on the lattice

Mesonic and nucleon fluctuation effects in nuclear medium

Development of a hadronic model: general considerations. Francesco Giacosa

Dimensional reduction near the deconfinement transition

arxiv: v1 [hep-ph] 10 Jan 2019

The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling

PNJL Model and QCD Phase Transitions

Non-Abelian holographic superfluids at finite isospin density. Johanna Erdmenger

Magnetized QCD phase diagram

Holographic Entanglement Entropy for Surface Operators and Defects

EDMs from the QCD θ term

Microscopic Model of Charmonium Strong Decays

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

QCD Instantons: SUSY and NOT

The scalar meson puzzle from a linear sigma model perspective

Goldstone bosons in the CFL phase

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

The symmetries of QCD (and consequences)

Random Matrix Theory for the Wilson-Dirac operator

QCD Vacuum, Centre Vortices and Flux Tubes

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Chiral Symmetry in the String Representation of the Large N QCD

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT

QCD in an external magnetic field

Meson Condensation and Holographic QCD

G 2 -QCD at Finite Density

Meson-Nucleon Coupling. Nobuhito Maru

Random Matrix Theory

Large-N c universality of phases in QCD and QCD-like theories

Mesonic and nucleon fluctuation effects at finite baryon density

Transcription:

QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1

ESQGP: A man ahead of his time 2

Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2 η aµνx ν x 2 + ρ 2, X=0 τ X=1 1976 ( t Hooft): Fermion zero modes G a µν G a µν = 192ρ4 (x 2 + ρ 2 ) 4. u L d L u R d R L = G det f ( ψ L,f ψ R,g ) G = dρ n(ρ) violates U(1) A but preserves SU(2) L,R... and contributes to the η mass 3

Phenomenology: Vector Channels (ρ and a 1 ) 1.5 1 + α s π c 1 G 2 x 4 + c 2 qq 2 x 6 1.25 u L 1 Π(x)/Π 0 (x) 0.75 1 + α s π c 1 G 2 x 4 c 2 qq 2 x 6 d L 0.5 0.25 ρ Aleph a 1 Aleph ρ OPE a 1 OPE +/ (L< >R) 0 0 0.25 0.5 0.75 1 x [fm] 4

Phenomenology: Scalar Channels (π and δ) 10 Π(x)/Π 0 (x) 1 π lattice δ lattice π OPE δ OPE π,δ! 1 + c α α s π + c 1 G 2 x 4 + c 2 qq 2 x 6 u d L R +/ (L< >R) 0.1 0 0.25 0.5 0.75 1 x [fm] 5

Phenomenology: OZI Violation 2 1.5 1 σ δ u L d R Π(x)/Π 0 (x) 0.5 0-0.5-1 -1.5 σ δ η π ω ρ 3 loop O(αs,α 2 s) 3 O(1/Nc ) ω ρ η π u R +/ (L< >R) d L -2 0 0.2 0.4 0.6 0.8 1 x [fm] 6

Phenomenology: Summary Only small effects in ( LL ± RR) 2. Sign changes for ( LR + RL) ( LR RL). Sign changes for (ūd)(ūd) (ūu)( dd). L = G det f ( ψ L ψ R ) + (L R) 7

The Instanton Liquid ES (1982): Instantons provide a quantitative description of QCD correlations functions (a) (b) 4 0.0505 3 15 0 15 ρ = 0.3 fm N V = 1 fm 4 2 5 10 t 15 20 5 10 z -0.05 5 10 t 15 20 5 10 z (c) (d) S 10 1 0.03 0.002 δs 1 S 0.0202 0.01 0 10 15 0.00101 0-0.001 10 15 5 10 t 15 20 5 z 5 10 t 15 20 5 z 8

The Instanton Ensemble Instanton liquid described by partition function (one parameter) Z = 1 N I!N A! N I +N A I [dω I n(ρ I )] det(d/ ) exp( S int ) Quark propagator S(x, y) = IJ ψ I (x) ( 1 ) T + im IJ ψ J (y) + S NZM(x, y) Instantons in QCD, Rev. Mod. Phys (1998) 9

Meson Correlation Functions 6.0 5.0 pion delta (a 0 ) rho 3.0 2.0 Π(OZI) 0 + Π(OZI) 0 ++ Π(OZI) 1 4.0 1.0 Π(x)/Π 0 (x) 3.0 Π(x)/Π 0 (x) 0.0 2.0 1.0 1.0 2.0 0.0 0.0 0.5 1.0 x [fm] 3.0 0.0 0.5 1.0 x [fm] m π = 140 MeV (f π = 71 MeV) m ρ = 795 MeV m a0 1 GeV m ρ m ω m σ 580 MeV m η 1 GeV 10

V A Correlation Functions υ 1 a 1 2.5 2 1.5 1 ALEPH τ (V,A, I=1) ν τ parton model/perturbative QCD Π V-A / (2Π 0 ) 1 0.1 0.01 ALEPH data Instanton OPE 0.5 0.001 0-0.5 0.0001-1 0 0.5 1 1.5 2 2.5 3 3.5 Mass 2 (GeV/c 2 ) 2 Aleph spectral function τ (V, A, I =1)ν τ 1e-05 0 0.5 1 1.5 x [fm] coordinate space correlator OPE, instanton liquid, data 11

Instantons in QCD: 12 Years Later Chirality and zero modes on the lattice High density QCD SUSY, large N c, AdS/CFT, AdS/QCD 12

Chiral Symmetry Breaking on the Lattice ψ λ L R L R 1.5e+05 01 000 111 000 111 00000 11111 00000 11111 00000 11111 000000 111111 0000000 1111111 000000000 111111111 0000000000000 1111111111111 0000000000000 1111111111111 01 000 111 000 111 00000 11111 00000 11111 00000 11111 000000 111111 0000000 1111111 000000000 111111111 0000000000000 1111111111111 0000000000000 1111111111111 1e+05 n(x) Number λ<λ( crit) 50000 λ>λ( crit) 1 (L) X +1 (R) 0 1 0.5 0 0.5 1 Χ H (x)/ω H (x) chirality distribution from T. Blum et al., [hep-lat/0105006] 13

Instantons and Color Superconductivity [MeV] 100 50 20 N f =2 (OGE) N f =2 (OGE+INST) N f =3 (OGE) N f =3 (OGE+INST) = 10 + 5 500 1000 1500 2000 2500 3000 µ [MeV] 100 MeV, T c 60 MeV RSSV (1998), ARW (1998) 14

A pqcd Instanton Plasma (µ Λ QCD ) Schematic phase diagram (Here: N f = N c = 2) T <qq> <qq> µ diquark condensate breaks U(1) B and U(1) A q L q L = ρ e i(χ+φ)/2 q R q R = ρ e i(χ φ)/2 Effective lagrangian for U(1) A Goldstone boson Son, Stephanov, Zhitnitsky φ [ L = f2 2 ( 0 φ) 2 v 2 ( i φ) 2] V (φ + θ) + L(ρ, χ) ρ V (φ + θ) vanishes in perturbation theory 15

η Mass at Large Baryon Density Instanton induced effective interaction for quarks with p p F 1 q q n(ρ, µ) = n(ρ,0) exp [ N f ρ 2 µ 2] u L u R L/R d L d R ρ µ 1 Λ 1 QCD Instanton contribution to vacuum energy L L = A cos(φ + θ) G I L R R A = C N Φ [ 2 log ( )] ( µ 4 Λ Λ µ ) 8 Λ 2 η mass satisfies Witten-Veneziano relation f 2 m 2 φ = A 16

Very dilute instanton gas R D ρ r IA R D ρ µ 1 r IA = A 1/4 R D = m 1 φ A is the local topological susceptibility A = χ top (V ) = Q2 top V V r 4 IA V R4 D Global topological susceptibility vanishes χ top = lim V Q 2 top V V = 0 (m = 0) 17

Instantons and Large N c n(ρ) 1.0 10 5 N c =3 N c =4 N c =5 N c =6 µ ¾ 5.0 10 4 ½ 0.0 0 0.1 0.2 0.3 0.4 0.5 ρ [Λ 1 ] ¼ ¼ ½ ¾ ½¼ ½½ ½¾ B. Lucini, M. Teper qq N c χ top 1 m 2 η 1/N c 18

From Instanton to Monopoles Kraan, van Baal: Instantons with non-zero holonomy Monopole constituents with fractional top charge ( confinement?) New WCI calculation of gluino condensate 1 16π 2 Tr[ λλ] = Λ 3 exp(2πik/n c ) 19

AdS/CFT: N = 4 SUSY Yang Mills String/field theory duality (Maldacena) N = 4 SUSY YM IIB strings on AdS 5 S 5 λ = g 2 N (l s /R) 4 0 (g 2 0) (g s 0) String theory contains D-instantons characterized by location on AdS 5 S 5 field theory instantons d 4 x dρ ρ 5 dλ ab Charge k instanton amplitudes AdS 5 S 5 (AdS 5 S 5 ) k (AdS 5 S 5 ) k instantons in commuting SU(2) s (bound by fermions) 20

Instantons and AdS/QCD Add singlet field Y = Y e ia to AdS/QCD ( axion ) S = d 5 x { 1 g 2 DY 2 + κ 0 ( Y N f det(x) + h.c. ) } 2 Katz & Schwartz (2007) Topological charge correlator: Treat κa 2 as a perturbation Π P (Q) = 1 zm [ ] 2 dz 1 2N f z 5 κ 2 (Qz)2 K 2 (Qz), Compare to instanton result 0 AdS 5 measure (Bulk-to-boundary prop) 2 Π P (Q) = 2 dρ ρ 5 d(ρ) [ ] 2 1 2 (Qρ)2 K 2 (ρq), instanton measure (F-trafo of G G I ) 2 21

Happy Birthday Edward!! ES ES 22