Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Similar documents
Steve King, DCPIHEP, Colima

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

Neutrino masses respecting string constraints

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Neutrinos, GUTs, and the Early Universe

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS

symmetries and unification

Lecture 18 - Beyond the Standard Model

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Updating the Status of Neutrino Physics

Flavor Symmetries: Models and Implications

Neutrinos as Pathfinders

Duality in left-right symmetric seesaw

Neutrino Models with Flavor Symmetry

arxiv: v1 [hep-ph] 6 Mar 2014

Quarks and Leptons. Subhaditya Bhattacharya, Ernest Ma, Alexander Natale, and Daniel Wegman

Leptonic CP violation theory

Lepton Flavor and CPV

The Matter-Antimatter Asymmetry and New Interactions

Recent progress in leptogenesis

Leptogenesis and the Flavour Structure of the Seesaw

CP Violation Predictions from Flavour Symmetries

arxiv:hep-ph/ v1 5 Oct 2005

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

Neutrinos and the Flavour Problem

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

A Novel and Simple Discrete Symmetry for Non-zero θ 13

Quo vadis, neutrino flavor models. Stefano Morisi Università Federico II di Napoli, INFN sez. Napoli

arxiv:hep-ph/ v1 26 Jul 2006

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

Flavour and CP Violation Phenomenology in SUSY with an SU(3) Flavour Symmetry

Testing leptogenesis at the LHC

Models of Neutrino Masses & Mixings

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Theoretical Implications of Neutrino Masses

Aspetti della fisica oltre il Modello Standard all LHC

Flavour and Higgs in Pati-Salam Models

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy

Leptogenesis with type II see-saw in SO(10)

arxiv:hep-ph/ v2 20 Jul 2005

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Fermion Masses and Mixing Angles from SU(3) Family Symmetry and Unification

Supersymmetric Seesaws

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Models of Neutrino Masses & Mixings

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

University College London. Frank Deppisch. University College London

Overview of mass hierarchy, CP violation and leptogenesis.

Standard Model & Beyond

arxiv: v2 [hep-ph] 7 Apr 2018

A SUSY SU (5) T 0 Uni ed Model of Flavour with large θ13

Lepton-flavor violation in tau-lepton decay and the related topics

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrino Mass Models

Nonzero θ 13 and Models for Neutrino Masses and Mixing

Probing Seesaw and Leptonic CPV

Neutrino Mass in Strings

Neutrino Mass Models: a road map

Neutrino Mixing and Mass Sum Rules

arxiv:hep-ph/ v1 15 Sep 2000

Theoretical Particle Physics Yonsei Univ.

Pati-Salam GUT-Flavour Models with Three Higgs Generations

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Testing supersymmetric neutrino mass models at the LHC

Interplay of flavour and CP symmetries

New Jarlskog Determinant from Physics above the GUT Scale

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Strings, Exceptional Groups and Grand Unification

A to Z of Flavour with Pati-Salam

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Yang-Hwan, Ahn (KIAS)

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

A Domino Theory of Flavor

The Standard Model and beyond

E 6 Spectra at the TeV Scale

RG evolution of neutrino parameters

The Standard Model of particle physics and beyond

Yang-Hwan, Ahn (KIAS)

Leptogenesis and low-energy phases

Proton Decay Without GUT. Hitoshi Murayama (IAS) UCLA Dec 3, 2003

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrinos: status, models, string theory expectations

The S 3. symmetry: Flavour and texture zeroes. Journal of Physics: Conference Series. Related content. Recent citations

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics

Electric Dipole Moment and Neutrino Mixing due to Planck Scale Effects

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

What is the impact of the observation of θ 13 on neutrino flavor structure?

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

Physics beyond the Standard Model: Neutrinos & Dark matter

Neutrino Mixing and Cosmological Constant above GUT Scale

SU(3)-Flavons and Pati-Salam-GUTs

Spontaneous Parity Violation in a Supersymmetric Left-Right Symmetric Model. Abstract

Neutrinos and CP Violation. Silvia Pascoli

arxiv: v2 [hep-ph] 3 Jul 2018

Transcription:

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Number of light neutrinos 3? Masses + Mixing Angles 6 (15) CP violating phases 3 (6)

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 q l See-saw with sequential domination Symmetry GUT Family Abelian, Non-Abelian, Discrete, String? Tri-bi-maximal mixing Non-Abelian discrete symmetry

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 q l See-saw with sequential domination Symmetry GUT Family Abelian, Non-Abelian, Discrete, String? Tri-bi-maximal mixing Non-Abelian discrete symmetry parameter constraints

Masses DATA :? ν i i l di u i 12 10 10 9 10 6 3 Mixing Quarks 1 10 10 3 Leptons GeV V CKM 1 0.218 0.224 0.002 0.005 0.218 0.224 1 0.032 0.048 0.004 0.015 0.03 0.048 1 V MNS 0.79 0.88 0.48 0.61 < 0.2 = 0.27 0.49 0.45 0.71 0.52 0.82 0.28 0.5 0.51 0.65 0.57 0.81 10-1 10-2 10-3 10-4 ev 2 1 3 3 0 1 1 1 6 3 2 1 1 1 6 3 2 Bi-Tri Maximal Mixing Discrete Non Abelian Structure?

DATA : L = Y Q u H + Y Q d H u i c, j d i c, j Yukawa ij ij M u ij = Y ij u < H 0 > M d ij = Y ij d < H 0 > M u = V u L M Diag V R M d = U d L M Diag U R V CKM = V L U L The data for quarks is consistent with a very symmetric structure : M d,u m b,t < ε 4 ε 3 ε 3 ε 3 ε 2 ε 2 ε 3 ε 2 1 ε d = 0.15 ε u = 0.05

q l symmetry? Charged leptons are consistent with a similar form M d,l,u b,τ,t m < ε 4 ε 3 ε 3 ε 3 aε 2 aε 2 ε 3 aε 2 1 ε d = 0.15, a d = 1 ε l = 0.15, a l = 3 ε u = 0.05, a u = 1

Symmetry 1. GUT relations e.g. ψ α SU(4) SO(10) d d = d l

Symmetry GUT relations e.g. ψ α SU(4) SO(10) d d = d l Det( M l ) = Det( M d ) M X ψ α ψ α m b m τ ( M X ) = 1 M d,l m 3 = < ε 4 ε 3 ε 3 ε 3 aε 2 aε 2 ε 3 aε 2 1 ε d = 0.15, a d = 1 ε l = 0.15, a l = 3

Symmetry 1. GUT relations e.g. SU(4) SO(10) ψ α d d = d l ψ α 1 Σ 45 = 1 1 3 ψ α m s m µ ( M X ) = 1 3 Georgi Jarlskog M d,l m 3 = < ε 4 ε 3 ε 3 ε 3 aε 2 aε 2 ε 3 aε 2 1 ε d = 0.15, a d = 1 ε l = 0.15, a l = 3

Neutrinos??? L ν eff = m 3 φ i 23 ν i φ j i j 23 ν j + m 2 φ 123 ν i φ 123 ν j i < φ > = (0,1, 1), < φ > = (1,1,1) i 23 123

Neutrinos??? L ν eff = m 3 φ i 23 ν i φ j i j 23 ν j + m 2 φ 123 ν i φ 123 ν j i < φ > = (0,1, 1), < φ > = (1,1,1) i 23 123 Can one have a unified description of quark, charged lepton and neutrinos? q,l c. f. L Dirac = m 3 φ 3 i ψ i φ 3 j ψ j c +... < φ 3 > i = (0,0,1)???

Neutrinos??? L ν eff = m 3 φ i 23 ν i φ j i j 23 ν j + m 2 φ 123 ν i φ 123 ν j i < φ > = (0,1, 1), < φ > = (1,1,1) i 23 123 See-Saw Quarks, charged leptons, neutrinos can have similar Dirac mass : q,l,ν i = α ψ i φ 3ψ c j i j φ 3 + β ψ i φ 123 ψ c φ j j 23 L Dirac i + ψ i φ 23 ψ c φ j i j 123 + γ ψ i φ 123 ψ c φ j j 23 Σ 45 α > β M Dirac m 3 = < ε 4 ε 3 + ε 4 ε 3 + ε 4 ε 3 + ε 4 aε 2 + ε 3 aε 2 + ε 3 ε 3 + ε 4 aε 2 + ε 3 1 ε d = 0.15, a d = 1 ε l = 0.15, a e = 3 ε u = 0.05, a u = 1 ε ν = 0.05, a ν = 0

See-saw with sequential domination M M M 1 M2 M 3 M M 1 < M 2 << M 3 ν = M ν D M 1 M M νt D H H ν R ν L ν L Minkowski Gell-Mann, Ramond, Slansky; Yanagida, King ν L Dirac i = α ψ i φ 3ψ c j i j φ 3 + β ψ i φ 123 ψ c φ j j 23 i + ψ i φ 23 ψ c φ j j 123 α > β ν L eff = β 2 i j ψ M i φ 123 ψ j φ 123 1 + β 2 ψ M i φ i j 23 ψ j φ 23 2 + (α + β)2 ψ M i φ i j 3 ψ j φ 3 3

See-saw with sequential domination M M M 1 M2 M 3 M ν M 1 << M 2 << M 3 = M ν D M 1 M M νt D Minkowski Gell-Mann, Ramond, Slansky; Yanagida, King ν L Dirac i = α ψ i φ 3ψ c j i j φ 3 + β ψ i φ 123 ψ c φ j j 23 i + ψ i φ 23 ψ c φ j j 123 α > β small ν L eff = β 2 i j ψ M i φ 123 ψ j φ 123 1 + β 2 ψ M i φ i j 23 ψ j φ 23 2 + (α + β)2 ψ M i φ i j 3 ψ j φ 3 3

Symmetry 2. Family symmetry Non-Abelian family symmetry Promote φ i to fields transforming under SU(3) family Vacuum alignment φ 3 = 0 0 1 φ 23 = 0 1 1 1 φ = 1 123 1 Discrete non Abelian symmetry

List of models with discrete flavour symmetry (incomplete, by symmetry) S 3 :Pakvasa et al.(1978), Derman(1979), Ma(2000), Kubo et al.(2003), Chen et al.(2004), Grimus et al.(2005), Dermisek et al (2005), Mohapatra et al.(2006), Morisi(2006), Caravaglios et al.(2006), Haba et al(2006), S 4 :Pakvasa et al.(1979), Derman(1979), Lee et al.(1994), Mohapatra et al.(2004),ma(2006), Hagedorn et al.(2006), Caravaglios et al.(2006), Lampe(2007), Sawanaka(2007), A 4 :Wyler(1979), Ma et al.(2001), Babu et al.(2003), Altarelli et al.(2005-8), He et al.(2006), Bazzocchi, Morisi, et al.(2007/8), King et al.(2007), D 4 :Seidl(2003), Grimus et al.(2003/4), Kobayashi et al.(2005), D 5 :Ma(2004), Hagedorn et al.(2006), D n :Chen et al.(2005), Kajiyama et al.(2006), Frampton et al.(1995/6,2000), Frigerio et al (2005), Babu et al.(2005), Kubo(2005),... T :Frampton et al.(1994,2007), Aranda et al.(1999,2000),feruglio et al.(2007), Chen et al.(2007), Δ n :Kaplan et al.(1994), Schmaltz(1994), Chou et al.(1997), de Madeiros Varzielas et al(2006/7). T 7 :Luhn et al.(2007). Adapted from Lindner, Manchester

Symmetry 2. Family symmetry Non-Abelian family symmetry Promote φ i to fields transforming under SU(3) family Vacuum alignment φ 3 = 0 0 1 φ 23 = 0 1 1 1 φ = 1 123 1 Discrete non Abelian symmetry e.g. Δ(27) SU(3) f, φ i triplets φ i Z 3 φ i Z ' 3 φ i φ 1 φ 2 φ 1 φ 2 φ 3 αφ 2 φ 3 φ 1 α 2 φ 3

Symmetry 2. Family symmetry Non-Abelian family symmetry Promote φ i to fields transforming under SU(3) family Vacuum alignment φ 3 = 0 0 1 φ 23 = 0 1 1 1 φ = 1 123 1 Discrete non Abelian symmetry e.g. Δ(27) SU(3) f, φ i triplets φ i Z 3 φ i Z 3 ' φ i Δ 27 φ 1 φ 2 φ 1 φ 2 φ 3 αφ 2 ( ) { Z3 Z 3, < φ > = (1,1,1) λ > 0 ', <φ> = (0,0,1) λ < 0 φ 3 φ 1 α 2 φ 3 V (φ) = m 2 φ φ +...+ λ m 2 φ i φ i φ i φ i

A complete model Δ(27) SO(10) G (G = R U (1)) Varzielas, GGR c i i ( ) ψ, ψ 16, 3 No mass while SU(3) unbroken Spontaneous symmetry breaking i i i φ, φ, φ, H 3 23 123 45 c.f. Georgi-Jarskog (1,3) (1,3) (1,3) ( 45,1) 0 0 1 0 1 ε 1 1 1 1 2 M ε M M 1 i j c 1 i j c 1 i j c 1 i j c PY = φ 2 3ψ iφ3 ψ j H + φ 3 23ψ iφ23ψ j HH 45 + φ 2 23ψ iφ123ψ j H + φ 2 123ψ iφ23ψ j H M M M M only terms allowed by G

Neutrino Parameters

Neutrino Parameters Tri-bi-maximal mixing Degenerate and normal spectra favoured 10 10 0 10-1 10-2 10-3 10-4 ev? Degenerate Normal Inverted

Neutrino Parameters Tri-bi-maximal mixing Degenerate and normal spectra favoured 10 10 0 10-1 10-2 10-3 10-4 ev? Degenerate Normal Inverted Mixing angles sin 2 θ 12 1 3 ± 0.03 sin 2 θ 23 1 2 ± 0.03 sinθ 13 m e 2m µ = 0.053 ± 0.05 (3 ± 3 o ) From charged lepton mixing King; GGR, Varzielas

Neutrino Parameters Tri-bi-maximal mixing Degenerate and normal spectra favoured 10 10 0 10-1 10-2 10-3 10-4 ev? Degenerate Normal Inverted Mixing angles 3cos(δ π ) sin 2 θ 12 1 3 ± 0.03 θ θ 12 + 1 C 2 3 cos( δ π ) 35.26 ± 2o Antusch, King sinθ 13 sin 2 θ 23 1 2 ± 0.03 m e 2m µ = 0.053 ± 0.05 (3 ± 3 o ) From charged lepton mixing King; GGR, Varzielas

Neutrino Parameters Tri-bi-maximal mixing Degenerate and normal spectra possible Neutrinoless double β decay (3 light neutrinos) 10 10 0 10-1 10-2 10-3 10-4 ev? Degenerate Normal Inverted

Neutrino Parameters Tri-bi-maximal mixing Degenerate and normal spectra possible Neutrinoless double β decay (3 light neutrinos) 10 10 0 10-1 10-2 10-3 10-4 ev? Degenerate Normal Inverted?

See saw parameters

See saw parameters Masses + Mixing Angles 6 (15) CP violating phases 3 (6) κ = Y ν T M 1 Y ν P = Y ν Y ν Insufficient information RGE for sleptons (SUSY) In principle all parameters determined by neutrino structure and radiative corrections (assuming degenerate sleptons at GUT scale) Davidson, Ibarra

See saw parameters Masses + Mixing Angles 6 (15) CP violating phases 3 (6) κ = Y ν T M 1 Y ν P = Y ν Y ν Insufficient information RGE for sleptons (SUSY) In principle all parameters determined by neutrino structure and radiative corrections (assuming degenerate sleptons at GUT scale) Davidson, Ibarra Thermal Leptogenesis (Baryogenesis) M νr > 10 9 GeV, T Reheat > 10 10 GeV (hierarchical spectrum) / / ββ phase CP = CP(δ,φ ',φ i=1,2,3 ) see saw phases ν factory phase

See saw parameters Masses + Mixing Angles 6 (15) (8) CP violating phases 3 (6) (3) κ = Y ν T M 1 Y ν P = Y ν Y ν Insufficient information RGE for sleptons (SUSY) In principle all parameters determined by neutrino structure and radiative corrections (assuming degenerate sleptons at GUT scale) Davidson, Ibarra Thermal Leptogenesis (Baryogenesis) Fukugita, Yanagida M νr > 10 9 GeV, T Reheat > 10 10 GeV (hierarchical spectrum) / / ββ phase CP = CP(δ,φ ',φ i=1,2,3 ) see saw phases ν factory phase Sequential see saw and symmetry (texture zero) simplifies structure

Sequential see saw and (1,1) texture zero (1,1) texture zero M Dirac m 3 = < ε 4 ε 3 + ε 4 ε 3 + ε 4 ε 3 + ε 4 aε 2 + ε 3 aε 2 + ε 3 ε 3 + ε 4 aε 2 + ε 3 1

Sequential see saw and (1,1) texture zero (1,1) texture zero Quark sector zero V us = m d m s e iδ m u m c M Dirac m 3 = < ε 4 ε 3 + ε 4 ε 3 + ε 4 ε 3 + ε 4 aε 2 + ε 3 aε 2 + ε 3 ε 3 + ε 4 aε 2 + ε 3 1

Sequential see saw and (1,1) texture zero (1,1) texture zero Lepton sector zero sin 2 θ 23 1 2, sinθ 13 m e 2m µ M Dirac m 3 = < ε 4 ε 3 + ε 4 ε 3 + ε 4 ε 3 + ε 4 aε 2 + ε 3 aε 2 + ε 3 ε 3 + ε 4 aε 2 + ε 3 1

Sequential see saw and (1,1) texture zero (1,1) texture zero Lepton sector zero sin 2 θ 23 1 2, sinθ 13 m e 2m µ M Dirac m 3 = < ε 4 ε 3 + ε 4 ε 3 + ε 4 ε 3 + ε 4 aε 2 + ε 3 aε 2 + ε 3 ε 3 + ε 4 aε 2 + ε 3 1 Y B sin 2 θ 13 sin( 2δ φ) Abada et al

Summary Sequential see saw consistent with quark-lepton unification

Summary Sequential see saw consistent with quark-lepton unification Discrete non Abelian family symmetry readily generates near Tri-Bi-Maximal mixing

Summary Sequential see saw consistent with quark-lepton unification Discrete non Abelian family symmetry readily generates near Tri-Bi-Maximal mixing Neutrino parameters strongly constrained: Mixing angles to ±3 o m ββ Number of see saw parameters reduced measureable? Sign of matter-antimatter asymmetry sin(2δ-φ) - measureable?

Summary Sequential see saw consistent with quark-lepton unification Discrete non Abelian family symmetry readily generates near Tri-Bi-Maximal mixing Neutrino parameters strongly constrained: Mixing angles to ±3 o m ββ Number of see saw parameters reduced measureable? Sign of matter-antimatter asymmetry sin(2δ-φ) - measureable? Other model implications SUSY models: sparticles have related mass structure (m 2 φ i φ i... degeneracy split by small fermion mass related terms) FCNC : L i, B i violation close to present bounds (µ eγ, mercury EDM within a factor of 10 of present limits)