Antonio Pich. IFIC, CSIC University of Valencia. 1. Gauge Theories 2. Renormalization 3. Renormalization Group 4.

Similar documents
8.324 Relativistic Quantum Field Theory II

Lecture 10 :Kac-Moody algebras

Frame-like gauge invariant formulation for mixed symmetry fermionic fields

d 2 Area i K i0 ν 0 (S.2) d 3 x t 0ν

PARTICLE PHYSICS Major Option

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics

CHAPTER II: The QCD Lagrangian

Color Superconductivity in High Density QCD

Fierz transformations

A study of ghost gluon vertices in MAG: Feynman rules

Quantization Of Massless Conformally Vector Field In de Sitter Space-Time

The hadronization into the octet of pseudoscalar mesons in terms of SU(N) gauge invariant Lagrangian

Topological Insulators in 2D and 3D

Field-Induced Axion Luminosity of Photon Gas via a-interaction N.V. Mikheev, A.Ya. Parkhomenko and L.A. Vassilevskaya Yaroslavl State (Demidov) Univer

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain

6.1 Quadratic Casimir Invariants

Antonio Pich. IFIC, CSIC Univ. Valencia.

Chern Simons D = 3, N = 6 superfield theory

Perturbative QCD Lecture 1

From confinement to new states of dense QCD matter

Bypassing no-go theorems for consistent interactions in gauge theories

Physics Graduate Prelim exam

Lecture 9 Valence Quark Model of Hadrons

Cornell University, Department of Physics

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

EXTENDED BRST SYMMETRIES IN THE GAUGE FIELD THEORY

Problem 1(a): In N N matrix form, the local SU(N) symmetry acts on the adjoint matter field Φ(x) and the gauge field A µ (x) according to

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

QCD β Function. ǫ C. multiplet

MIXED SYMMETRY TENSOR FIELDS IN MINKOWSKI AND (A)dS SPACES

Vector potential quantization and the photon wave-particle representation

Physics 444: Quantum Field Theory 2. Homework 2.

A Remark on Gauge Invariance in Wavelet-Based Quantum Field Theory

Hadronic Superpartners from Superconformal and Supersymmetric Algebra

Decay constants and masses of light tensor mesons (J P = 2 + )

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

ORGANIZING THE SPIN-FLAVOR STRUCTURE OF BARYONS. Jose L Goity Hampton University and Jefferson Lab

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

THE STANDARD MODEL. Thomas Teubner. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K.

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

PHY4605 Introduction to Quantum Mechanics II Spring 2005 Final exam SOLUTIONS April 22, 2005

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field:

Latest results. Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase

lim P(t a,b) = Differentiate (1) and use the definition of the probability current, j = i (

Introduction to Gauge Theories

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.

Finite-temperature Field Theory

PAPER 305 THE STANDARD MODEL

July 19, SISSA Entrance Examination. Elementary Particle Theory Sector. olve two out of the four problems below

Introduction to Elementary Particle Physics I

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006

Phases and facets of 2-colour matter

Gian Gopal Particle Attributes Quantum Numbers 1

arxiv: v2 [hep-lat] 18 Nov 2016

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

Functional determinants

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

Nobuhito Maru (Kobe)

Introduction to the SM (5)

PNJL Model and QCD Phase Transitions

12.2 Problem Set 2 Solutions

11 Group Theory and Standard Model

Quantum ElectroDynamics III

Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions

YANG-MILLS THEORY. This theory will be invariant under the following U(1) phase transformations

Anomalies and discrete chiral symmetries

PAPER 51 ADVANCED QUANTUM FIELD THEORY

PAPER 43 SYMMETRY AND PARTICLE PHYSICS

Topological Quantum Compiling

Renormalization according to Wilson

The Recursive Relation between the Field Equation and the Quantization of the Field

Lectures April 29, May

Theory toolbox. Chapter Chiral effective field theories

Charm CP Violation and the electric dipole moment of the neutron

Banks-Casher-type relations for complex Dirac spectra

3.3 Lagrangian and symmetries for a spin- 1 2 field

The symmetries of QCD (and consequences)

Absence of Luttinger s Theorem

Evaluation of Triangle Diagrams

Complex Saddle Points in Finite Density QCD

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

Two Fundamental Principles of Nature s Interactions

Discrete symmetries, t Hooft anomalies, and adiabatic continuity

QED and the Standard Model Autumn 2014

Currents and scattering

Lecture 10. September 28, 2017

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

Electric Dipole Moments and the strong CP problem

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

QCD and Models : introduction

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

SISSA entrance examination (2007)

Top quark effects in composite vector pair production at the LHC

Vectors. Three dimensions. (a) Cartesian coordinates ds is the distance from x to x + dx. ds 2 = dx 2 + dy 2 + dz 2 = g ij dx i dx j (1)

Overview of low energy NN interaction and few nucleon systems

Introduction to Particle Physics strong interactions

Problem 1(a): In N N matrix form, the local SU(N) symmetry acts on the adjoint matter field Φ(x) and the gauge field A µ (x) according to

Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects

Transcription:

Antonio Pich IFIC, CSIC University of Vlenci 1. uge Theories 2. Renormliztion 3. Renormliztion roup 4. QCD Phenomenology 5. Chirl Perturbtion Theory TAE 2005, Bensue, Spin, 12-24 September 2005

uge Symmetry Quntum Electrodynmics (QED) SU(N) Algebr Non-Abelin uge Symmetry Quntum Chromodynmics (QCD) uge Fixing A. Pich uge Theories 1

FREE Dirc fermion: L = ψ ( iγ m) ψ Phse Invrince: ψ ψ = ψ ; ψ ψ = ψ e iqθ Absolute phses re not observble in Quntum Mechnics AUE PRINCIPLE: θ = θ ( x) Phse Invrince should hold LOCALLY e iqθ BUT e iq θ θ ψ ( + iq ) ψ SOLUTION: Covrint Derivtive D ( i A ) e iq θ ψ eq ψ D ψ One needs spin-1 field 1 A stisfying A A + e θ A. Pich uge Theories 2

L = ψ ( iγ D m) ψ γ = ψ ( iγ m) ψ + e QA ( ψγ ψ ) ψ e Q ψ Kinetic term: 1 LK = Fν F ν 4 Mss term: L 1 M = m A A 2 2 γ ν ν F = eq ( ψ γ ψ ) Mxwell 16 [exp: m < 2 10 ev ] Not uge Invrint m γ = 0 γ uge Symmetry QED Dynmics A. Pich uge Theories 3

Successful Theory e γ e + + Anomlous Mgnetic Moment l g l e 2 m l l 1 ( gl 2) 2 e 11 1 = (115 965 218.59 ± 0.38) 10 α = 137.035 999 11 ± 0.000 000 46 th = (116 591 922 ± 88) 10 11 11 [ Exp: (116 592 080 ± 60) 10 ] A. Pich uge Theories 4

FREE QUARKS: L N C = 3 = [ iγ m] SU(3) Colour Symmetry: U ; U UU UU 1 U = = ; det = 1 A. Pich uge Theories 5

β α β α A. Pich uge Theories 6

AB - BA = C A B B A B C A A. Pich uge Theories 7

N N = = = mtrices: UU U U 1 ; det U 1 U exp { i θ } = T ; T = T ; Tr ( T ) = 0 ; = 1,, N 1 2 Commuttion Reltion:, Structure Constnts f bc b bc c T T = if T rel, ntisymmetric Fundmentl Representtion: A bc Adjoint Representtion: ( T ) 1 TF = λ N N 2 = if bc 2 2 ( N 1) ( N 1) ( ) A A A b ( ) b b b αβ F Tr ( TF TF) = TF δ ; Tr T T = C δ ; TF TF = C δ α β 2 1 N 1 TF = ; CA = N ; CF = 2 2N A. Pich uge Theories 8

2 2 mtrices: UU = U U = 1 ; det U = 1 U exp { i θ } = T ; T = T ; Tr ( T ) = 0 ; = 1,, 3 Commuttion Reltion: b bc c, T T = i ε T Fundmentl Representtion: T F = 1 σ 2 Puli 1 0 1 2 0 i 3 1 0 σ = ; σ = ; σ = 1 0 i 0 0 1 A. Pich uge Theories 9

b bc c [ T, T ] = if T Fundmentl Representtion: T F = 1 λ 2 ell-mnn 0 1 0 0 i 0 1 0 0 0 0 1 1 2 3 4 λ = 1 0 0 ; λ = i 0 0 ; λ = 0 1 0 ; λ = 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 i 0 0 0 0 0 0 1 0 0 5 6 7 8 1 λ = 0 0 0 ; λ = 0 0 1 ; λ = 0 0 i ; λ = 0 1 0 3 i 0 0 0 1 0 0 i 0 0 0 2 1 123 147 156 246 257 345 367 1 458 1 678 1 f = f = f = f = f = f = f = f = f = 2 3 3 2 A. Pich uge Theories 10

FREE QUARKS: L N C = 3 = [ iγ m] SU(3) Colour Symmetry: U = exp i λ θ 2 uge Principle: Locl Symmetry θ = θ ( ) x D ( I i ) U 3 g s A. Pich uge Theories 11 D i D U D U ; U U ( U) U g 1 ( α β λ ) α β 2 [ ] ( x ) 8 luon s Fields

Infinitesiml SU(3) Trnsformtion: δ c αβ α λ β 1 bc = i δθ ; ( ) 2 δ = δθ f δθb gs bc Non Abelin roup: f 0 δ depends on Universl g s No Colour Chrges A. Pich uge Theories 12

Kinetic Term: i ν [ D, D ν ] = ν ν igs[, ν ] U ν U g s ν ν ν ν ν c ν λ bc ; = + gs f b 2 L K 1 1 Tr ( ) 2 4 ν ν ν ν = = Mss 1 2 Term: LM = m 2 Not uge Invrint m = 0 Mssless luons A. Pich uge Theories 13

L QCD 1 = 2 Tr ( ν ) [ i m ] ν + γ D ( ) ( ) 1 = ν ν + [ iγ m ] 4 1 + 2 α αβ β g [ ( λ ) γ ] s ν ν α α 1 1 g f g f 2 4 2 d e s bc ( ) b ν ν ν ν c s bc fd e b c ν luon Self interctions Universl Coupling g s 3 4, (No Colour Chrges) A. Pich uge Theories 14

Z A. Pich uge Theories 15

Z A. Pich uge Theories 16

Z Z A. Pich uge Theories 17

AUE FIXIN L F = 1 2ξ ( ) ( ν ν ) A. Pich uge Theories 18

AUE FIXIN L F = 1 2ξ ( ) ( ν ν ) 0 T [ (x) b ν (y)] 0 i δ b D ν F (x y) = i δ b d 4 k (2π) 4 e ik (x y) k 2 + i ɛ { g ν + (1 ξ) k k ν } k 2 + i ɛ A. Pich uge Theories 18

AUE FIXIN L F = 1 2ξ ( ) ( ν ν ) 0 T [ (x) b ν (y)] 0 i δ b D ν F (x y) = i δ b d 4 k (2π) 4 e ik (x y) k 2 + i ɛ { g ν + (1 ξ) k k ν } k 2 + i ɛ + + ) b) c) T = J b ν ε,r εν b,s A. Pich uge Theories 18

AUE FIXIN L F = 1 2ξ ( ) ( ν ν ) 0 T [ (x) b ν (y)] 0 i δ b D ν F (x y) = i δ b d 4 k (2π) 4 e ik (x y) k 2 + i ɛ { g ν + (1 ξ) k k ν } k 2 + i ɛ + + ) b) c) T = J b ν ε,r εν b,s P T 1 2 Jb ν (Jρσ) cd 2 r=1 ε,r ερ c,r 2 s=1 ε ν b,s ε σ d,s P C 1 2 Jb ν (Jcd ρσ ) g ρ g νσ A. Pich uge Theories 18

AUE FIXIN L F = 1 2ξ ( ) ( ν ν ) 0 T [ (x) b ν (y)] 0 i δ b D ν F (x y) = i δ b d 4 k (2π) 4 e ik (x y) k 2 + i ɛ { g ν + (1 ξ) k k ν } k 2 + i ɛ Probbility problem: + + ) b) c) T = J b ν ε,r εν b,s P T 1 2 Jb ν (Jρσ) cd P C 2 r=1 ε,r ερ c,r 2 s=1 ε ν b,s ε σ d,s 1 2 Jb ν (Jcd ρσ ) g ρ g νσ P C > P T A. Pich uge Theories 18

Sme problem for virtul gluons: + + ) b ) c ) +... Im [T ( )] T ( ) 2 Unphysicl contribution from non-trnsverse gluon polriztions (c,c ) uge fixing: = 0 k J ν 0 A. Pich uge Theories 19

Sme problem for virtul gluons: + + ) b ) c ) +... Im [T ( )] T ( ) 2 Unphysicl contribution from non-trnsverse gluon polriztions (c,c ) uge fixing: = 0 k J ν 0 HOSTS: (Fddeev Popov) φ φ L FP = φ D φ φ φ d) d ) D φ φ g s f bc φ b c Wrong (Fermi) Sttistics Probbility < 0 A. Pich uge Theories 19