CLASS NOTES FOR APRIL 14, 2000

Similar documents
Problem Set 2: Solutions Math 201A: Fall 2016

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

Spaces of continuous functions

Functional Analysis Exercise Class

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

Mid Term-1 : Practice problems

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015

Analysis III. Exam 1

Exam 2 extra practice problems

7 Complete metric spaces and function spaces

Metric Spaces and Topology

METRIC SPACES KEITH CONRAD

Math 117: Topology of the Real Numbers

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

The uniform metric on product spaces

Introduction to Proofs

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005

Chapter 2 Metric Spaces

Chapter 3: Baire category and open mapping theorems

Real Analysis on Metric Spaces

Math 5210, Definitions and Theorems on Metric Spaces

2.31 Definition By an open cover of a set E in a metric space X we mean a collection {G α } of open subsets of X such that E α G α.

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

MATH 202B - Problem Set 5

Maths 212: Homework Solutions

Math General Topology Fall 2012 Homework 11 Solutions

Economics 204 Fall 2012 Problem Set 3 Suggested Solutions

2 Metric Spaces Definitions Exotic Examples... 3

01. Review of metric spaces and point-set topology. 1. Euclidean spaces

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3

HW 4 SOLUTIONS. , x + x x 1 ) 2

Your first day at work MATH 806 (Fall 2015)

Measures and Measure Spaces

Lecture Notes on Metric Spaces

Chapter II. Metric Spaces and the Topology of C

Some Background Material

Completeness and quasi-completeness. 1. Products, limits, coproducts, colimits

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1.

P-adic Functions - Part 1

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015

Lecture Notes DRE 7007 Mathematics, PhD

CHAPTER 5. The Topology of R. 1. Open and Closed Sets

Part III. 10 Topological Space Basics. Topological Spaces

Definition 2.1. A metric (or distance function) defined on a non-empty set X is a function d: X X R that satisfies: For all x, y, and z in X :

Solutions to Tutorial 7 (Week 8)

Mathematics for Economists

FUNCTIONAL ANALYSIS CHRISTIAN REMLING

Solutions to Tutorial 8 (Week 9)

Real Analysis Notes. Thomas Goller

Metric Spaces Math 413 Honors Project

U e = E (U\E) e E e + U\E e. (1.6)

THEOREMS, ETC., FOR MATH 515

2. Metric Spaces. 2.1 Definitions etc.

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Course 212: Academic Year Section 1: Metric Spaces

Notes on the Point-Set Topology of R Northwestern University, Fall 2014

Math 101: Course Summary

4 Countability axioms

ANALYSIS WORKSHEET II: METRIC SPACES

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES

REVIEW OF ESSENTIAL MATH 346 TOPICS

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then

MA651 Topology. Lecture 10. Metric Spaces.

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

1 Lecture 4: Set topology on metric spaces, 8/17/2012

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012

MAT 544 Problem Set 2 Solutions

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Classes of Polish spaces under effective Borel isomorphism

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

Metric Spaces Math 413 Honors Project

MATH 31BH Homework 1 Solutions

A LITTLE REAL ANALYSIS AND TOPOLOGY

Math 426 Homework 4 Due 3 November 2017

Part A. Metric and Topological Spaces

MATH 426, TOPOLOGY. p 1.

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S)

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS

Filters in Analysis and Topology

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Introduction to Dynamical Systems

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Measures. Chapter Some prerequisites. 1.2 Introduction

M17 MAT25-21 HOMEWORK 6

Ordinary differential equations. Recall that we can solve a first-order linear inhomogeneous ordinary differential equation (ODE) dy dt

FOURIER SERIES OF CONTINUOUS FUNCTIONS AT GIVEN POINTS

Math 140A - Fall Final Exam

Topological vectorspaces

The Arzelà-Ascoli Theorem

Topological properties

Introduction to Real Analysis Alternative Chapter 1

(convex combination!). Use convexity of f and multiply by the common denominator to get. Interchanging the role of x and y, we obtain that f is ( 2M ε

MORE ON CONTINUOUS FUNCTIONS AND SETS

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

POL502: Foundations. Kosuke Imai Department of Politics, Princeton University. October 10, 2005

CHAPTER 8: EXPLORING R

ECARES Université Libre de Bruxelles MATH CAMP Basic Topology

Transcription:

CLASS NOTES FOR APRIL 14, 2000 Announcement: Section 1.2, Questions 3,5 have been deferred from Assignment 1 to Assignment 2. Section 1.4, Question 5 has been dropped entirely. 1. Review of Wednesday class Let (X, d) be a metric space. A set E X is said to be dense if E = X. Theorem 1.1. (Baire category theorem) If X is complete and V 1, V 2,... are open dense sets, then n=1 V n is dense. A set E X is said to be nowhere dense if E has no interior. Examples: Z is nowhere dense in R. The set {1, 1/2, 1/4, 1/8, 1/16,...} is also nowhere dense in R. The set Q [0, 1] is not nowhere dense in R (it s closure has interior (0, 1)). 2. Conclusion of Wednesday class Another example of nowhere dense sets: any line or circle in R 2 is nowhere dense. Nowhere dense sets are in some sense the opposite of dense sets. A precise connection is: Exercise 2.1. A set E is nowhere dense if and only if E c is open and dense. Proof (Optional) We first prove the only if part. Suppose E is nowhere dense. Then E has no interior. Since closures are closed, E is closed, which means that E c are open. Now we have to show that E c is dense. Let B be an open ball. We have to show that E c intersects the ball B. Suppose for contradiction that E c did not intersect B. Then B would be contained in E, contradicting the fact that E has no interior. Now suppose that E c is open and dense. Then every ball must contain at least one point in E c, which means that no ball can be completely contained inside E. This means that E has no interior, which means that E is nowhere dense. 1

2 CLASS NOTES FOR APRIL 14, 2000 Example: the set R is nowhere dense in R 2. R is closed (the only points adherent to R are the points that are already on R, so the above Exercise implies that R 2 \R is open and dense in R 2. We can use the Baire category theorem to say something about nowhere dense sets: Theorem 2.2. Let X be a complete metric space, and let E 1, E 2,... be a sequence of nowhere dense sets in X. Then X E n. (1) n=1 In other words, a complete metric space cannot be covered by a countable number of nowhere dense sets. Proof The sets E n are nowhere dense. By the above exercise, this means that the c sets E n are open and dense. By the Baire category theorem, this implies that the set n=1 E n c is dense. In particular, it is non-empty (since the empty set is not dense). Thus we c can find a point x X such that x E n for all n. This implies that x En for any n. Thus we have found a point in X which is not in n=1 E n, which proves (1). This theorem is quite powerful. As just one example, it shows that if you take a totally arbitrary sequence C 1, C 2,... of circles in R 2, then the circles do not completely fill out R 2, i.e. there is always at least one point in R 2 which is not covered by any one of the circles. This is a typical example of how the theorem is used: to show that given any sequence of nowhere dense sets, that there is always at least one point which avoids all of them. We ll see some more applications in a couple weeks. (Optional): Of course, if you take the set of all circles in R 2, of arbitrary center and radius, then these circles will definitely fill out R 2 (every point in R 2 is certainly contained in at least one circle). However, this does not contradict Theorem 2.2 because the set of all circles in R 2 is uncountable - it cannot be organized as a sequence. By the way, René-Louis Baire (1874-1932) divided sets into two categories. He defined a set of the first category to be any set which could be written as the countable union of nowhere dense sets. For instance, any set which is made up of a countable number of circles is of the first category. Anything which is not of the first category was placed in the second category. Baire s theorem then says that every complete space is in the second category. (Nowadays, the concept of first and second category are not used very much, but this is the historical reason for the name Baire Category Theorem.

CLASS NOTES FOR APRIL 14, 2000 3 3. Compact sets We now turn to a trickier notion, that of compactness. Our motivation shall be the Extremal Value Theorem from lower-division math: Theorem 3.1. Let f : [a, b] R be a continuous function on an interval [a, b]. Then there are points x max, x min in [a, b] such that f(x max ) is the maximum of f and f(x min ) is the minimum of f on [a, b]. This theorem only works for closed intervals; for open intervals it is false (e.g. f(x) = 1/x on (0, 1)) and it is also false for unbounded sets (e.g. f(x) = x on [0, )). The topological explanation for this is that closed intervals have a special property, called compactness, which makes the Extreme Value Theorem (and many, many other results) work. Compactness is quite a tricky and unintuitive notion to pin down. Here is the formal definitions: Definition 3.2. Let (X, d) be a metric space. An open cover of X is a (possibly infinite) collection {V α } α A of open sets in X such that X V α. We say that a metric space is compact if every open cover has a finite subcover. α A For instance, consider R with the usual metric. This space has many open covers; for instance, one can use the balls B(x, 1), as x ranges over all real numbers, to cover R. Some of these balls are redundant (e.g. because B(1.9, 1) and B(2.1, 1) are in the open cover, the ball B(2, 1) is unnecessary and could be removed), but no matter how many redundant balls you remove, you still need an infinite number of balls in this collection to cover R, because one could never cover R with a finite number of balls. Thus, R is not compact. On the other hand, let s consider the set {1, 2, 3}. This set is compact for the following reason. Let {V α } α A be an open cover of {1, 2, 3}. Since 1 is an element of {1, 2, 3}, 1 must be contained in one of the V α ; let s say 1 V α1. Similarly we can find an α 2 A such that 2 V α2, and an α 3 A such that 3 V α3. The sub-collection {V α1, V α2, V α3 } is now a finite sub-cover of the original open cover which covers {1, 2, 3}. Since every open cover has a finite sub-cover, {1, 2, 3} is compact. As you can see already, this definition is very unwieldy. Fortunately, there are other ways to characterize compactness for metric spaces which are easier to deal with. To do this we first need some more definitions. Definition 3.3. A space X is said to be bounded if there is some ball B(x, r) which contains X. A space is said to be totally bounded if, for every ε > 0, one can cover X by a finite number of open balls of radius ε.

4 CLASS NOTES FOR APRIL 14, 2000 For instance, R is not bounded (it can t be enclosed inside a ball) and it is not totally bounded either. The set [0, 1] is both bounded and totally bounded (for any ε > 0 one can cover [0, 1] by a finite number of ε-balls). Now consider the integers Z with the discrete (or teleport ) metric { 1 if x y d(x, y) = 0 if x = y In other words, all the integers are distance 1 apart from each other under this metric. In this case, Z is actually bounded (e.g. it is contained in B(0, 2)) but it is not totally bounded (it is not possible to cover Z by balls of radius 1/2). Exercise 3.4. Show that every totally bounded set is bounded. Proof (Optional) Let X be a totally bounded set. Then it can be covered by a finite number of balls of radius 1 (for instance). Let s call these balls B(x 1, 1),..., B(x n, 1). Let R denote the radius R = 1 + max 1 i n d(x i, x 1 ). From the triangle inequality we see that B(x i, 1) B(x 1, R) for all 1 i n. Since the B(x i, 1) cover X, we thus see that and hence X is bounded. X B(x 1, R) Theorem 3.5. Let (X, d) be a metric space The following statements are equivalent: (i) X is compact. (ii) Every sequence in X has at least subsequence which converges in X. (iii) X is complete and totally bounded. The properties (ii) and (iii) are a bit more intuitive to work with than (i). For instance, from (ii) we can see why (0, 1) is not compact, and it is plausible that [0, 1] is compact. The proof of this theorem is somewhat complicated. There are three steps: showing that (i) implies (ii); showing that (ii) implies (iii); and showing that (iii) implies (i). Of these, the first two are fairly straightforward. The last one is nastier and will be left to the written notes. 4. Proof of (i) = (ii). Let X be a compact set, and suppose that x 1, x 2,... is a sequence in X. We have to find a subsequence of the x i which converges in X.

CLASS NOTES FOR APRIL 14, 2000 5 There are two cases: Case 1: There exists a point x X such that every open ball centered at x contained infinitely many elements of the sequence x 1, x 2,.... Then we would be done, for the following reason. Since the ball B(x, 1) contains infinitely many elements of the sequence, we can pick an element x n1 in B(x, 1). Then, since B(x, 1/2) contains infinitely many elements of the sequence, it must contain at least one element x n2 with n 2 > n 1. Repeating this, we can find an element x n3 B(x, 1/3) with n 3 > n 2. More generally, we can choose a subsequence x n1, x n2,... such that n j+1 > n j and x nj B(x, 1/j) for all j = 1, 2, 3,.... Then it is clear that this sequence is convergent to x, and we are done. Case 2: For every point x X there exists an open ball centered at x which contains at most finitely many elements of the sequence x 1, x 2,.... For every x X, let B x be an open ball centered at x which contains at most finitely many elements of the sequence x n. Then the collection of all these balls {B x } x X is an open cover of X, because every x X is contained in at least one ball in the collection, namely the ball B x centered at x. However, this open cover cannot have a finite sub-cover, because every ball only contains a finite number of elements of the sequence, and there are an infinite number of elements of the sequence to cover. This contradicts compactness. 5. Proof of (ii) = (iii). Let X satisfy property (ii), i.e. every sequence in X has a convergent subsequence. We need to show that X is complete and totally bounded. Let s first show that X is complete. Let x 1, x 2,... be a Cauchy sequence in X. We need to show that this sequence converges. By (ii), we can find a subsequence x n1, x n2, x n3,... of x 1, x 2,... which converges to some point in X, say x. This is almost what we want, but we need to show that the entire sequence converges to x, not just a subsequence. I ll leave this as an exercise: Exercise 5.1. If x n is a Cauchy sequence, and a sub-sequence x nj of x n converges to x, then x n itself converges to x. Proof (Optional) We need to show that for every ε > 0 there exists N > 0 such that d(x n, x) < ε for all n > N. Well, because x nj converges to x, we can find a J > 0 such that d(x nj, x) < ε/2 for all j > J. Also, since x n is Cauchy, we can find an N > 0 such that d(x n, x m ) < ε/2

6 CLASS NOTES FOR APRIL 14, 2000 for all n, m > N. Since n j is an increasing sequence, there must exist a j > J such that n j > N. Then for any n > N we have which is what we want. d(x n, x) d(x n, x nj ) + d(x nj, x) < ε/2 + ε/2 = ε Now we show that X is totally bounded. Pick any ε > 0. We want to show that X can be covered by a finite number of ε-balls. We will do this in the most naive way possible - simply by drawing ε-balls one by one until we exhaust the space X. More precisely, pick any x 1 X. If B(x 1, ε) already covers X, then we are done. Otherwise, let x 2 be a point not in B(x 1, ε). If B(x 1, ε) and B(x 2, ε) cover X, then we are done. Otherwise, let x 3 be a point which is not contained in either B(x 1, ε) or B(x 2, ε). We repeat this process indefinitely. If this process halts after a finite number of steps, we are done. Now suppose the process never halts, so we find an infinite sequence of points x 1, x 2,... such that each x n is not contained in any preceding ball B(x 1, ε),..., B(x n 1, ε). In particular, we have d(x n, x m ) ε for all n m. But this implies that this sequence can never have a Cauchy subsequence (because Cauchy sequences need to eventually get within ε of each other). Since all convergent sequences are Cauchy, this implies that the sequence x 1, x 2,... does not have any convergent subsequences, contradicting (ii). Hence the process described above must terminate in a finite number of steps, and we are done. 6. Proof of (iii) = (i). (Optional) We prove the following standard fact: Theorem 6.1. Every complete totally bounded metric space is compact. Proof Let (X, d) be a complete totally bounded metric space. We need to show that X is compact. Suppose that {V α } α A is an open cover of X. Our objective is to show that one only needs a finite number of these V α in order to cover X. This will be a proof by contradiction. Let s assume that the open cover {V α } α A has no finite subcover. In other words, any finite collection of V α will fail to cover X. We will obtain a contradiction from this.

CLASS NOTES FOR APRIL 14, 2000 7 We know that X is totally bounded. In particular, we can cover X by a finite number of balls of radius 1. Suppose every one of these balls of radius 1 could be covered by a finite number of V α. Then the whole space X could also be covered by a finite number of V α, which would be a contradiction. Thus there must be at least one ball, let s call it B(x 0, 1), which cannot be covered by a finite number of V α. Since X is totally bounded, and B(x 0, 1) is a subset of X, B(x 0, 1) is totally bounded. In particular, we can cover B(x 0, 1) by a finite number of balls of radius 1/2. We may assume that the centers of these balls are at a distance at most 1 + 1 2 from x 0, since otherwise the ball would not intersect B(x 0, 1) (why?), and so would play no role in the cover. Suppose every one of these balls of radius 1/2 could be covered by a finite number of V α. Then B(x 0, 1) could also be covered by a finite number of V α, which would be a contradiction. So there must be at least one ball, let s call it B(x 1, 1/2), which cannot be covered by a finite number of V α. Also, from the previous discussion we have d(x 0, x 1 ) 1 + 1 2. Since X is totally bounded, and B(x 1, 1/2) is a subset of X, B(x 1, 1/2) is totally bounded. In particular, we can cover B(x 1, 1/2) by a finite number of balls of radius 1/4. We may assume that the centers of these balls are at a distance at most 1 2 + 1 4 from x 1, by similar arguments to before. By similar arguments to before, we can find a ball, let s call it B(x 2, 1/4), which cannot be covered by a finite number of V α, and satisfies d(x 1, x 2 ) 1 2 + 1 4. Continuing in this vein, we can find a sequence x 0, x 1, x 2,... of points in X such that each ball B(x n, 2 n ) cannot be covered by a finite number of V α, and such that d(x n, x n+1 ) 2 n + 2 n 1 for all n = 0, 1, 2,.... In particular, this means that the x n are a fast Cauchy sequence: d(x n, x n+1 ) <. n=0 Thus the x n are a Cauchy sequence. Since X is complete, this means that x n is a convergent sequence, and has some limit x. Now, we are given that {V α } α A covers X. Since x X, this means that there must exist at least one α A such that V α contains x. Pick one such α. Since V α is open, this means that x is in the interior of V α. This implies that there exists some radius r > 0 such that B(x, r) is contained in V α.

8 CLASS NOTES FOR APRIL 14, 2000 The sequence x n converges to x, and the sequence 2 n converges to 0. Since r > 0, this implies that we can find an integer n such that and In particular, this implies that d(x n, x) < r/2 2 n < r/2. B(x n, 2 n ) B(x, r). But since B(x, r) is contained in V α, we have B(x n, 2 n ) V α. This implies that B(x n, 2 n ) can be covered by a finite number (in fact, just one) of the V α, which is a contradiction. The proof is complete.