Coherent Λ-Σ Coupling in Neutron-rich Hypernuclei

Similar documents
Four-, Five-, and. Double Strangeness

E. Hiyama. Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, , Japan. M.

Effect of Λ(1405) on structure of multi-antikaonic nuclei

Experimental Study of the Kaonic Bond State

E438: Study of Σ-Nucleus Potential by the (π -, K + ) Reaction on Heavy Nuclei

Experimental Tests of Charge Symmetry Breaking in Hypernuclei

Prospects of the Hadron Physics at J-PARC

Present Status and Future Plans of Hypernuclear experiments -- S = -1 sector --

Kenji Sasaki (YITP, Kyoto University) Collaboration

Atsushi Sakaguchi (Osaka University) for the J-PARC E10 Collaboration

Strangeness Nuclear Physics

arxiv: v1 [nucl-th] 17 Apr 2010

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions

Baryon-Baryon Forces from Lattice QCD

arxiv: v1 [nucl-ex] 2 Apr 2009

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory

Relativistic EOS of Supernova Matter with Hyperons 1

Hypernuclei Production by K at rest

arxiv:nucl-th/ v3 13 Jul 2004

Kaonic nuclei excited by the in-flight (K -,n) reaction. T. Kishimoto Osaka University

Hypernuclear experiments at K1.1 in future. Tohoku University H. Tamura

Author(s) Fujiwara, Y; Kohno, M; Nakamoto, C; Citation PHYSICAL REVIEW C (2001), 64(5)

2007/11/11 J-PARC ハドロン実験施設ビームライン整備拡充に向けて S= 2 原子核実験. T.Takahashi (KEK)

J-PARC (Japan Proton Accelerator Research Complex)

Study of Lambda hypernuclei with electron beams

Interplay of kaon condensation and hyperons in dense matter EOS

Atsushi Sakaguchi (Osaka University) for the J-PARC E10 Collaboration

Nuclei with strangeness. (From hypernuclei to kaonic nuclei) Nuclear Physics Institute, Rez/Prague

arxiv:nucl-th/ v1 17 Jan 2005

Dense QCD and Compact Stars

Interactions between Octet Baryons in the SU 6 Quark model. Abstract. nucl-th/ Y. Fujiwara 1, M. Kohno 2, C. Nakamoto 3, and Y.

Current theoretical topics on K - pp quasi-bound state

Yoshiharu Hirabayashi Information Initiative Center, Hokkaido University, Sapporo, , Japan. (Dated: September 26, 2017) Abstract

Production and Structure of Hypernuclei

Strangeness nuclear physics at J-PARC

PoS(Hadron 2013)182. Search for deeply-bound K-nuclear states via the. 3 He(inflight-K, n) reaction at J-PARC

Photoproduction of typical hypernuclei

Towards lattice QCD baryon forces at the physical point: First results

Production of neutron-rich Λ hypernuclei by the (π,k + ) double-charge-exchange reaction

Light nuclear systems with an antikaon

Dense QCD and Compact Stars

Condensed Kaonic-Proton Ma/er (KPM) composed of Lambda* = K - p

Light hypernuclei based on chiral and phenomenological interactions

Baryon Interactions from Lattice QCD with physical masses

Relativistic EOS for Supernova Simulations

Few-Body Hypernuclei. - dependence on NN and 3N force - separation energies based on chiral interactions - CSB of four-body hypernuclei

Proton induced reactions in search for kaonic nuclear clusters

Nuclear Landscape not fully known

International Conference on Hypernuclear XIand Strange Particle Physics

Unitary-model-operator approach to nuclear many-body problems

Baryon-Baryon interaction and neutron-star EOS. Y. Yamamoto

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Branching ratio change in K absorption at rest and the nature of the Λ(1405)

1. Introduction. 2. Recent results of various studies of K pp. 3. Variational cal. vsfaddeev

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

Nuclear Force from Lattice QCD. [1] Why nuclear force now? [2] NN force from lattice QCD [3] BB and BM forces from lattice QCD [4] Summary and Future

Study on Λ-hypernuclei at J-PARC with intense pion beams

Cluster Models for Light Nuclei

Hypernuclear weak decay :

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear equation of state for supernovae and neutron stars

Vale. Femtoscopy in pp and pa collisions at TeV energies. Andi Bernie Oton Dimitar.

arxiv:nucl-th/ v1 24 Jun 2003

Structure of Atomic Nuclei. Anthony W. Thomas

Equation of state for hybrid stars with strangeness

Hyperons and Resonances in Nuclei and Neutron Stars. H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances

A Monte Carlo approach to the study of medium-light hypernuclei properties

Coupled-cluster theory for nuclei

Nuclear structure I: Introduction and nuclear interactions

The Nuclear Many Body Problem Lecture 3

Production and Searches for Cascade Baryons with CLAS

Θ + and exotic hadrons

Hadron-Hadron Interactions from Lattice QCD

Nuclear equation of state for supernovae and neutron stars

Quantitative understanding nuclear structure and scattering processes, based on underlying NN interactions.

Nuclear Force from Lattice QCD

Chiral Model in Nuclear Medium and Hypernuclear Production

Baryon correlators containing different diquarks from lattice simulations

Pairing Correlations in Nuclei on Neutron Drip Line

arxiv:nucl-th/ v1 27 Nov 2002

Modern Theory of Nuclear Forces

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

arxiv: v1 [nucl-th] 1 Jun 2012

Production of medium and heavy hypernuclei

Spectroscopy of hypernuclei. Spectroscopy of hypernuclei. Alessandro Feliciello I.N.F.N. - Sezione di Torino

Hyperon-Nucleon Scattering

Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction

Observation of neutron-rich -hypernuclei by the FINUDA experiment

arxiv:nucl-ex/ v1 13 Dec 2005

The Nuclear Equation of State

Deeply bound Ξ tribaryon. Abstract

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

Hyperon interactions & H-dibaryon from recent Lattice QCD Simulation. Takashi Inoue, Nihon Univ. HAL QCD Collaboration

Overview of Strangeness Nuclear Physics. Benjamin F. Gibson, T-5

arxiv:nucl-th/ v1 28 Aug 2001

Clebsch-Gordan Coefficients

Transcription:

RIKEN Lecture January 6, 2006 Coherent - Coupling in Neutron-rich Hypernuclei Yoshinori AKAISHI

Exotics? The exotic nucleus, 11 Li

The overbinding problem H -0.1 MeV H He 1 + -0.99 MeV 1 + -1.2 MeV 5 He 0 + -2.0 MeV 0 + -2.9 MeV (Exp) -.12 MeV R.H. Dalitz, R.C. Herndon & Y.C. Tang, Nucl. Phys. B7 (1972) 109 Overbound

Singlet interaction is more attractive than triplet interaction.

Central YN interaction Pictures 1-channel 2-channel D0 D2 N Coupling N A.R. Bodmer (1966) Phase-equivalent to Nijmegen D 0 N phase shift S 1 20 1 S 0 0 0 20 0 (MeV)

Two pictures N int. D0 Overbinding problem N-N int. D2 Underbinding problem H He 5 He H He 5 He -0.1-0.1 Underbinding? 0+ -2.9 Exp -.12 MeV 0+ -2.9 MeV Exp -.12? Overbinding N N N V N, N Q V e N, N Pauli suppression R.H. Dalitz et al. (1972)

Coherent - coupling T=0 T=1 1116 MeV/c 2 119 MeV/c 2

(MeV) 0 He D2 interaction 20 U ( 0 + ) 10 U ( 1 + ) 1 + -1.0 0 + -1.0-1.0 1 + -1.2 0-10 U ( + 0 ) U ( + 1 ) -2.27 0 + -2.9 MeV Exp -20 0 1 2 r (fm) Y. Akaishi, T. Harada, S. Shinmura and Khin Swe Myint, Phys. Rev. Lett. 8 (2000) 59

= = = 1 0 1 0 1 2 p n n s s s = = = + + 1 0 1 0 1 2 n p p s s s H 1 + 0 + S=1 pairs Contribution to U - coupling energy 1 : 9 1/2 /2 +1/2 +1/2 +1/2 +1/2 +1/ -1/ Cancel Coherently added

The 0 + -1 + difference is not a measure of N spin-spin interaction. B. Gibson (Maui, 199) N N (MeV) 0.0 1 + -1.2-1.0-1.0 1 + -1.0-1.20-1.52 He 1 + -1.21-0.68-1. 1 + -0.7 N N -0.06-0.07 1 + -0.97-2.10-2.18-2.9-2.27 0 + 0 + 0 + 0 + -2.51 P coh =1.9 % 0 P coh =0.7 % + P coh =0.9 % P coh =2.0 % Exp D2 SC97e(S) SC97f(S) SC89(S) Th.A. Rijken Y. Akaishi, T. Harada, S. Shinmura & Khin Swe Myint, Phys. Rev. Lett. 8 (2000) 59

CRC

Faddeev-Yakubovsky calculation of He Real space SC97e 1 E E P V V V + V V V V + V A. Nogga, (2001) 0 + 1 + 1.57% 1.08% -5.0-1. -0. -5.90-0.12-0.17-0.0 1.16 1.18-11.98-9.6 1.55 2.00-1.6 (MeV) -1.9-10.08 1 + 1 1 5 V ( E) + V ( E) 0 + 2 2 Model space N 2 N 1 ( E) ( E) V N + V N 2 Is the 1 S 0 YN int. more attractive than the S 1 YN int.? No! Is there any evidence for coherently enhanced - coupling in 0 +? No!

Single-channel description of He Model space SC97e (MeV) 0 + 1 + 1 E V sc V, sc -5.8-1.5-5.7-0.09-0.02-1.7 E V sc V, sc 1.18-6.09 -.91 1.57-6.89-5.2 Coherently enhanced x/5 -.1 Cooking! 1 S 0 sc S 1 is more attractive than. sc V, V + V + sc = V P + V { T + P ΔM } { T } + 1 P = 1 1 P V

Stochastic variational calculation of 5 He H. Nemura, Y. Akaishi & Y. Suzuki, Phys. Rev. Lett. 89 (2002) 1250 The first successful ab initio 5-body calculation including degrees of freedom J.A. Carlson, AIP Conf. Proc. 22 (1991) 198 SC89: unbound H -0.10 [0.15%] -0.1 H -0.92 [0.98%] -0.99 5 He SC97e(S) NN:GRS -2.0-2.06 [1.9%] p -2.75 [1.55%] -.12 (MeV)

Rearrangement of He due to sticking α -28 MeV - MeV -2 MeV -8 MeV Rearrangement in α M. Kohno et al., Phys. Rev. C68 (200) 002 H. Nemura et al., Phys. Rev. Lett. 89 (2002) 1250 N (D) N N P D (α)=10.2% 9.% 1 C V ( E) V ( T E) N V T π (S) N C V ( E) - MeV, MeV, V T π T = 85 MeV N

Repulsion? Attraction? Y. Nogami et al. Nucl. Phys. B19 (1970) 9 N N Y. Akaishi et al. Phys. Rev. Lett. 8 (2000) 59 H He 5 He H He 5 He -0.1-0.1 Underbinding 0 + -2.9 Exp 0 + -2.9 MeV -.12 MeV -.12 An extraordinary state Overbinding

5 He Single channel n n n p p n n p p n 0 p n n Attractive n n p n p n p n p Repulsive Nogami s BF n p

He Single channel n p p n p p n p p 0 p n n Attractive n n p p p n p p 0 n p n p n p Attractive Akaishi s BF Repulsive Nogami s BF

Effects of NN three-body force 0.0 (MeV) He 5 He 1 + 0 + -2.10 Exp 1 + -1.7-1.0-1.2-2.0-2.9 0 + Exp -.12 p p 0 Origin of overbinding Restoration of Pauli principle Coherent - coupling -5.9 Essential dynamics in T=0 nuclei

Three-body force due to coherent - coupling : [for D0] U α r r 1 r r r = W 1 2 α α 1 2 α 1 α= tt, ts, ss 2 ( r, r ) a + b ( σ σ ) + c σ ( σ + σ ) NN 2 NN spin-spin a a a tt ts ss W 7 b tt ctt 16 16 8 1 1 1 bts cts = 8 8 b ss css 5 1 1 8 8 8 t 1 t r, r ' ) = VN, N( r ) VN, ΔM * tt ( N ( r ' ) V t V t 5 He H(1+ ) H(0 + ) H 1 2 ( β ) W tt 2 + MeV 1 2 ( 9 + 2β + β ) W tt 8 1 2 ( 6β + 5β ) W tt 8 1 2 ( 1 6β + β ) W tt 8 s 5 t 1.0 MeV -0. MeV -0.05 MeV VN, N = β VN, N, β = 0.67

Light hypernuclei A.R. Bodmer & Q.N. Usmani, Nucl. Phys. A77 (1988) 621 R. Sinha & Q.N. Usmani, Nucl. Phys. A68 (2001)586c V N 1 r r 2 = ( Vcore( r ) V )( 1 ε + εpx ) + VσσσN Tπ ( r ) Spin-spin DS 2 2 1 r r r V NN = W0Tπ ( r i ) Tπ ( r j ) 1+ σ( σ i + σ j ) 6 Spin-spin H 5 He π N 2 N 1 0 + -1 + splitting 0.8 + 0.86 MeV (70%) The major part is attributed to NN and not to N. 1 + 0 + -1.08 MeV Exp -2.28 MeV -.0 MeV 0.56 + 0.92 (62%) MeV for SC97f Variational Monte Carlo J. Lomnitz-Adler, V.R. Pandharipande & R.A. Smith, Nucl. Phys. A61 (1981) 99

The first observation of a bound state E167 : Phys. Lett. 21 (1989) 55 R.S. Hayano T. Ishikawa M. Iwasaki H. Outa E. Takada H. Tamura A. Sakaguchi M. Aoki T. Yamazaki

Nucleus, He T. Harada, S. Shinmura, Y.Akaishi & H. Tanaka, Nucl. Phys. A507 (1990) 715 100 (MeV) U nucl r r = V + V T t 0 τ nucl Lane term 50 U =V 0 h 0 U t + h 0 T - t + t + 0 2 R (fm) -50 1 U + = V 2 τ 0 h -t

Observation of a He bound state T. Nagae, R.E. Chrien et al., Phys. Rev. Lett. 80 (1998) 1605 He B + =. ± 0. ± 1MeV Γ = 7. 0 ± 0. 7 + 1. 2 0. 0 MeV.6 MeV 7.9 MeV T. Harada, Y.Akaishi et al., Nucl. Phys. A507 (1990) 715

Theory: T. Harada, Phys. Rev. Lett. 81 (1998) 5287

Neutron-excess hypernuclei 0 0 0 p 1 V t 0 p 1 t ( V +V 12 s ) Proton induced Cancellation due to isospin selection n n Neutron induced 1 V t 1 12 t ( V +V s )

Incoherent + n p n p Coherent T T + 1 for T = T z = N 2 0 + 0 coh =/ 0 n p n p n p

SC89 S. Shinmura et al.

Relativistic mean field model Baryons: n, p,, Mesons: σ, ρ, ω X X Coherent - mixing X Normal state of infinite matter Baryons in the medium carry the same quantum numbers in vacuum. N.K. Glendenning, Astrophys. J. 29 (1985) 70.

C58 AD1181

1 H ( 6 He, 2 He ) 5 H 1.7 (MeV) Superheavy hydrogen A.A. Korsheninnikov et al, Phys. Rev. Lett. 87 (2001) 092501 0.0 H H + + 2n 2n+ -. MeV -2.0 H + 2n -.1-1. MeV NN force 6 Li ( π -, K + ) 6 H Hyperheavy hydrogen Khin Swe Myint & Y. Akaishi, Prog. Theor. Phys. Suppl. 16 (2002) 599 7 H 8 H H.I.

Double-charge & strangeness exchange reaction E521 @KEK P.K. Saha, T. Fukuda 10 B ( π -,K + ) 10 Li = 6 H + α = H + 2n + α Stabilizer 11 B ( π -,K + ) 11 Li n 9 Li C. Kurokawa et al.

10 B(π -,K + ) spectrum J-PARC P.K. Saha, T. Fukuda et al., Phys. Rev. Lett. 9 (2005) 952502 P.K. Saha et al., KEK-PS-E521 collaboration Preliminary!! ~0 counts

10 Li 1 - -12.09 2 - D2 int. -12.11-12.17 NN force 0.21 MeV -12.28 (P coh =0.1%) γ 2-1 - SVM cal. beyond -body model α + t + + n + n Coherent - coupling BHF cal. Y. A. & K.S. Myint

0 Y- [ NNN ] T=1/2 : interactions from D2 0 20 U ( 0 + ) Coherent - coupling 10 U ( + 1 ) 0 U ( 1 + ) 1 2 r (fm) 5-10 U ( + 0 ) -20 U ( + 1 ) -0 (MeV) + U ( 0 ) T = 1/ 2 H formation San Dar Myint Oo

Coupling scheme n - Coherent - coupling H formation α formation h n-n 0 -p - coupling n 0 p - n 0 p - t t n n Participant Spectator t α

Coupling scheme of t-t- - 0 H formation h t t t Coherent - coupling t t

7 He t + t + H + t [MeV] 12.1 10.28 7. 0.98 0.0-2.1-2.1 α + n + n + 5 He + n + n 6 He + n 6 He +

J-Lab O. Hashimoto et al. 7 He t + t + H + t [MeV] 12.1 10.28 7. Feshbach resonance? 6 He +

Hyperon mixing in 5 H H. Nemura et al.

Fully coupled channel (-NΞ--) calculations H. Nemura, S. Shinmura, Y. Akaishi & K.S. Myint, Phys. Rev. Lett. 9 (2005) 202502 0 -B -2 [MeV] H H H 5 He 0-2 - 5 H - -6 Nagara -6 -B -8 6 He -8 [MeV]

6 Li (K -,K + ) 6 H 6 H = [ t---n ] [ t---n ] Alpha formation Coherent - coupling [ α-ξ - -n ] Large Ξ - mixing Nemura s mechanisn Missing-mass spectroscopy in S=-2 sector via one-step process!

Concluding remarks 5 The overbinding problem of He has been virtually solved. NN force Repulsive/attractive : D0 picture Attractive : D2 picture consistency A necessary condition for YN interaction to study A. Effective N interaction Coherent - coupling is essential dynamics. + + He(0 ) - He(0 coh (- 0 mixing) in dense neutron matter ) Neutron-rich hypernuclei can provide additional evidences for coherent - coupling. 6 Li ( π,k + ) 6 H H.I. 7 H, 8 H,, 5 H, 7 H, etc.

Excitation energy (MeV) 500 00 00 200 100 A 1 Ξ 0 [ Z ] - 1 Ξ A [ Z + 1] A 2 [ Z ] + A 1 [ Z 1] A 1 0 [ Z ] - 1 A [ Z + 1] A 1 [ Z ] Issue @J-PARC Coherent - mixing in neutron-rich medium. π - A [ Z + 1] ( K -,K + ) - + - + (K, π ),( π,k ) ( K -, π ),( π +,K + ) 0 S=-2 S=-1 A [ Z ] A A [ Z + 1] [ Z + 2 ] S=0 nuclei

Thank you very much!