MCTDH Approach to Strong Field Dynamics

Similar documents
May 29, 2018, 8:45~10:15 IB011 Advanced Lecture on Semiconductor Electronics #7

Time-Dependent Density Functional Theory in Condensed Matter Physics

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Let s treat the problem of the response of a system to an applied external force. Again,

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190

Time-Dependent Density Functional Theory in Optical Sciences

Name of the Student:

Born Oppenheimer Approximation and Beyond

calculating electromagnetic

Muffin Tins, Green s Functions, and Nanoscale Transport [ ] Derek Stewart CNF Fall Workshop Cooking Lesson #1

Mechanics Physics 151

Mechanics Physics 151

CHAPTER 10: LINEAR DISCRIMINATION

Motion of Wavepackets in Non-Hermitian. Quantum Mechanics

Field due to a collection of N discrete point charges: r is in the direction from

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

1 Constant Real Rate C 1

ESS 265 Spring Quarter 2005 Kinetic Simulations

The Feigel Process. The Momentum of Quantum Vacuum. Geert Rikken Vojislav Krstic. CNRS-France. Ariadne call A0/1-4532/03/NL/MV 04/1201

Chapter 3: Vectors and Two-Dimensional Motion

Fall 2010 Graduate Course on Dynamic Learning

Chapter 6: AC Circuits

Handling Fuzzy Constraints in Flow Shop Problem

MIMO Capacity for UWB Channel in Rectangular Metal Cavity

Material Science Simulations using PWmat

Lecture 9: Dynamic Properties

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Mechanics Physics 151

s = rθ Chapter 10: Rotation 10.1: What is physics?

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Lecture 2 M/G/1 queues. M/G/1-queue

Lecture 5. Plane Wave Reflection and Transmission

Density Functional Theory I

Determining Modern Energy Functional for Nuclei And The Status of The Equation of State of Nuclear Matter. Shalom Shlomo Texas A&M University

SUPPLEMENTARY INFORMATION

Relative controllability of nonlinear systems with delays in control

Complex atoms and the Periodic System of the elements

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition

Linear Response Theory: The connection between QFT and experiments

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

Nonlinearity versus Perturbation Theory in Quantum Mechanics

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

to Assess Climate Change Mitigation International Energy Workshop, Paris, June 2013

Solution in semi infinite diffusion couples (error function analysis)

Multi-Fuel and Mixed-Mode IC Engine Combustion Simulation with a Detailed Chemistry Based Progress Variable Library Approach

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

On One Analytic Method of. Constructing Program Controls

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

Basic molecular dynamics

p E p E d ( ) , we have: [ ] [ ] [ ] Using the law of iterated expectations, we have:

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

Lecture VI Regression

Real-coded Quantum Evolutionary Algorithm for Global Numerical Optimization with Continuous Variables

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

( ) () we define the interaction representation by the unitary transformation () = ()

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

Accelerated Sequen.al Probability Ra.o Test (SPRT) for Ongoing Reliability Tes.ng (ORT)

Rotations.

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

) from i = 0, instead of i = 1, we have =

University of California, Davis Date: June xx, PRELIMINARY EXAMINATION FOR THE Ph.D. DEGREE ANSWER KEY

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic *

Lecture 17: Kinetics of Phase Growth in a Two-component System:

2/20/2013. EE 101 Midterm 2 Review

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

WAKEFIELD UNDULATOR RADIATION

b g b g b g Chapter 2 Wave Motion 2.1 One Dimensional Waves A wave : A self-sustaining disturbance of the medium Hecht;8/30/2010; 2-1

E For K > 0. s s s s Fall Physical Chemistry (II) by M. Lim. singlet. triplet

Comprehensive Integrated Simulation and Optimization of LPP for EUV Lithography Devices

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

Lecture 6: Learning for Control (Generalised Linear Regression)

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

Relative and Circular Motion

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations.

Efficient Optimal Control for a Unitary Operation under Dissipative Evolution

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

Modern Time-Rate Relations

CHAPTER 10: LINEAR DISCRIMINATION

The sound field of moving sources

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment

A capacitor consists of two conducting plates, separated by an insulator. Conduction plates: e.g., Aluminum foil Insulator: air, mica, ceramic, etc

Lattice-Boltzmann model for axisymmetric thermal flows

FTCS Solution to the Heat Equation

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria

8. Superfluid to Mott-insulator transition

8. HAMILTONIAN MECHANICS

2-d Motion: Constant Acceleration

Electromagnetic waves in vacuum.

Transcription:

MCTDH ppoach o Song Feld Dynamcs Suen Sukasyan Thomas Babec and Msha Ivanov Unvesy o Oawa Canada Impeal College ondon UK KITP Sana Babaa. May 8 009

Movaon Song eld dynamcs Role o elecon coelaon Tunnel onzaon HHG - Thee-Sep model Sngle acve elecon appomaon S HHG Recombnaon Wha s he ole o hghe eced saes o he on n song eld dynamcs?

Ovevew Mul-Conguaon Tme-Dependen Haee MCTDH pplcaon o he song eld dynamcs. Numecal eac soluon o TDS o daomc sysem wh elecons n D each. Song eld dynamcs Role o elecon coelaon. Ogn o mul-elecon ecaons. Hgh hamonc geneaon HHG Ionc gensae Resolved Hamonc Geneaon. Role o mul-elecon coelaon n hamonc emsson.

Mulconguaon Tme-dependen Haee MCTDH MCTDH Wave Funcon nsaz q q q q J n n J J Φ - panson Coecens - Bass Funcons q 0 H l l δ 0 0 0 0 0 l & Dac-Fenkel Vaaonal Pncple Consans o dene coecens and uncons unquely Reeence: M.H.Beck.JāckleG..Woh and H.-D.Meye Phys.Rep. 34 000 MCTDH TD Bass Funcons opmally epesen he WF!

J J J H Φ Φ & H P φ ρ & Φ J n P ρ l l l l H H whee l l + + + + - Poeco - Densy ma - Mean-Feld ma MCTDH quaons o Moon - Sngle-Hole Funcons Complee bass se J J H φ & & 0 MCTDH WF monooncally conveges owad he numecal eac soluon! N n Sandad appoach Reeence: M.H.Beck.JāckleG..Woh and H.-D.Meye Phys.Rep. 34 000

Hamlonan epesenaon n MCTDH MCTDH Wave Funcon nsaz q q q q n n Reeence: M.H.Beck.JāckleG..Woh and H.-D.Meye Phys.Rep. 34 000 J J J H Φ Φ & H P φ ρ & The mul-dmensonal negaons n can be ecenly calculaed J l H H Φ Φ The Hamlonan s epesened s c h H l s J h h c H Φ Φ Ma elemens - MCTDH quaons o Moon Convegence n MCTDH Densy opeao ˆ ρ ρ Q Q Q Q l n l l e-08 e-07 e-06 e-05 0.000 0.00 0.0 0. 0 5 0 5 0 5 30 me[s] Naual populaons o mode z

MCTDH pplcaons Phoodssocaon Phooabsopon Molecule-suace scaeng Reacve scaeng lecon-scaeng pocesses Densy opeao popagaon MCTDHF pplcaons o mul-elecon song eld dynamcs s s n n n n n n K K K MCTDH vs MCTDHF ew-elecon sysems MCTDHF - ; y ; z ; ; y ; z - nn-/ conguaons MCTDH - ; ; y ; y ; z ; z - n 3 conguaons - ; y ; ; y ; z ; z - n 3 conguaons - ; y ; ; y ; z ; z - n 4 conguaons q q q q n n

Model sysem : H wh D elecons N MCTDH Wave Funcon Spn s ncluded n calculaon! Inal sae: s symmec g 4 3 4 3 4 3 y y 0 ˆ ˆ ˆ ˆ Η Η S S Model daomc sysem n song lase elds + 0.6 ev 6 ev g

Model sysem : H wh D elecons N MCTDH Wave Funcon 4 3 4 3 4 3 y y Model daomc sysem n song lase elds + 0.6 ev 6 ev g Numecal scalng: NlogN + N y y u v a y y V s ee + + d v d v v l l l l l l lecon-elecon poenal epanson Ma elemens usng he Convoluon Theoem FFT

Model daomc sysem n song lase elds Model sysem : H wh D elecons N MCTDH Wave Funcon y y 3 4 3 4 3 4 Compuaonal mes Feld : Sn π / T Cos ω T π N ω 0 HHG : I.0 4 W/cm λ800 nm N0 n 5 -- ~ 4 h NSDI : I.0 4 W/cm λ800 nm N n 9 -- ~ 0 h sngle coe CPU 0.6 ev 6 ev g +

Ionzaon Ionc bound sae dynamcs I.0 4 W/cm Gound Ionzaon WF -s eced I Ionc WF φ I m m m Ionc populaon p φ φ ~ 6% o gound sae populaon

Ionzaon Ionc bound sae dynamcs Ogn o Ionc ecaons. lecc Feld. lecon escaeng + 3. Tunnelng va eced saes o he neual

Ionzaon Ionc bound sae dynamcs Ogn o Ionc ecaons. lecc Feld + Populaon o -s onc eced sae p φ

Ionzaon Ionc bound sae dynamcs 3. Tunnelng va eced saes o he neual p m m

Ionzaon Ionc bound sae dynamcs 3. Tunnelng va eced saes o he neual Gound -s eced Is possble o ealsc 3D mul-elecon sysems!

Ionzaon Ionc bound sae dynamcs. lecon escaeng ma 3.U p 8eV 0.6 ev + + ε y

Ionzaon Ionc bound sae dynamcs. lecon escaeng ma 3.U p 8eV 0.6 ev ε 0. + + ε y

Ionzaon Ionc bound sae dynamcs. lecon escaeng ma 3.U p 8eV 0.6 ev ε 0. ; 0.4 + + ε y

Ionzaon Ionc bound sae dynamcs. lecon escaeng ma 3.U p 8eV 0.6 ev ε 0. ; 0.4 ; 0.6 + + ε y

Ionzaon Ionc bound sae dynamcs. lecon escaeng ma 3.U p 8eV Conclusons 0.6 ev lecon escaeng s he man mechansm o he onc ecaon o he model daom! + + ε y Fo hghe lase nenses he eec may be enhanced! The eec wll be moe ponounced o ealsc 3D mul-elecon sysems! S s no vald o pecse descpon o song eld mul-elecon dynamcs!

Ionzaon Role o elecon escaeng Dependence o escaeng on. ase pulse duaon 0.6 ev Gound + ma 3.U p 8eV -s eced ~ 8% o gound sae populaon

Ionzaon Role o elecon escaeng Dependence o escaeng on 0.6 ev. Molecula oenaon 6 ev + ma 3.U p 8eV Gound -nd eced -s eced ~ 3% o gound sae populaon caon va escaeng depends on onc obal symmey!

Hgh hamonc geneaon HHG Role o Ionc ecaons I.0 4 W/cm λ800 nm N0 Ionc gensae Resolved HHG φ [ ] + M M IR φ φ IR â Ω Ω d e M g I M α g HHG specum â V HHG â ψ â D g g g φ α φ α Dec change â g g φ α Ionc gensaes

Two-cene Ineeence n HHG R R Cos θ λ k 0 0 3 0 5 I G kn+ - Desucve neeence kn - Consucve neeence 0 7 0 9 kn+ - Consucve neeence kn - Desucve neeence 0 5 9 3 7 5 9 33 37 Hamonc ode Reeence: M.en e al Phys.Rev.e. 83903 00

Two-cene Ineeence n HHG R R Cos θ λ k 0 0 3 0 5 I G kn+ - Desucve neeence kn - Consucve neeence 0 7 0 9 kn+ - Consucve neeence kn - Desucve neeence 0 5 9 3 7 5 9 33 37 Hamonc ode Two-cene Ineeence s pesen only n Dec hamonc emsson Dec D α g g â φ α g ψ â φ change α â φ g g

HHG Role o Ionc ecaons R I.0 4 W/cm λ800 nm N0

HHG Role o Ionc ecaons R I.0 4 W/cm λ800 nm N0

HHG Role o Ionc ecaons R I.0 4 W/cm λ800 nm N0 θ0 o M M M4 4.0 3.0 I M /I.0.0 5 9 3 7 5 9 Hamonc ode 0.5

HHG Role o Ionc ecaons 9e 06 θ0 o 6e 06 Gound Dec s ced Dec 3e 06 0 3e 06 6e 06 I I Cosφ 9e 06 5 7 9 3 5 7 Hamonc ode ψ D â φ ψ D â φ ψ D ψ D Desucve neeence!

HHG Role o Ionc ecaons θ0 o s ced sae 0 3 Dec change 0 5 0 7 0 9 0 0 3 3 7 5 9 3 7 3 35 39 Hamonc ode Desucve neeence! Dec D ψ D ψ D ψ g change D ψ D ψ ψ >> D D ψ

HHG Role o Ionc ecaons 0 0 θ0 o 0 0 4 M M 0 6 0 8 M 0 0 0 M 5 9 3 7 5 9 33 37 4 Hamonc ode Role o onc ecaons n HHG econsucon o Molecula Obals s sgncan!

Summay MCTDH s mplemened o sudy he coelaed dynamcs o elecons n song lase elds. Role o elecon escaeng n he mul-elecon ecaons s sgncan. Developmen o Ionc gensae Resolved HHG echnque o analyze he ole o onc egensaes n hamonc emsson. The nluence o mul-elecon ecaons and echange n HHG s sgncan. lecon coelaon can lead o nceasng/loweng o Two-Cene Ineeence n HHG.