Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres

Similar documents
Solution of the radiative transfer equation in NLTE stellar atmospheres

PHAS3135 The Physics of Stars

Opacity and Optical Depth

Lecture 3 Numerical Solutions to the Transport Equation

Energy transport: convection

Lecture 2 Solutions to the Transport Equation

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

RADIATIVE TRANSFER IN AXIAL SYMMETRY

Radiative Transfer Plane-Parallel Frequency-Dependent

TRANSFER OF RADIATION

2. Basic Assumptions for Stellar Atmospheres

arxiv: v1 [astro-ph.sr] 14 May 2010

7. Non-LTE basic concepts

Stellar atmospheres: an overview

2. Basic assumptions for stellar atmospheres

NLTE solar flare models with stationary velocity fields

7. Non-LTE basic concepts

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5]

In this method, one defines

Radiative Transfer in Axial Symmetry

Model Photospheres with Accelerated Lambda Iteration

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies,

SIMPLE RADIATIVE TRANSFER

Modelling stellar atmospheres with full Zeeman treatment

Atomic Physics 3 ASTR 2110 Sarazin

Astro 305 Lecture Notes Wayne Hu

Equations of Stellar Structure

2. Basic assumptions for stellar atmospheres

On the NLTE plane-parallel and spherically symmetric model atmospheres of helium rich central stars of planetary nebulae

Stellar Atmospheres: Basic Processes and Equations

9.1 Introduction. 9.2 Static Models STELLAR MODELS

2. Basic assumptions for stellar atmospheres

Lecture Notes on Radiation Transport for Spectroscopy

Assignment 4 Solutions [Revision : 1.4]

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

Topics ASTR 3730: Fall 2003

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

11.1 Local Thermodynamic Equilibrium. 1. the electron and ion velocity distributions are Maxwellian,

Radiative Transfer and Stellar Atmospheres

arxiv:astro-ph/ v1 16 Jun 2005

XXIX IAC Winter School of Astrophysics

Fundamental Stellar Parameters

VII. Hydrodynamic theory of stellar winds

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities

Limb Darkening. Limb Darkening. Limb Darkening. Limb Darkening. Empirical Limb Darkening. Betelgeuse. At centre see hotter gas than at edges

2. Stellar atmospheres: Structure

Astronomy 421. Lecture 14: Stellar Atmospheres III

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Astronomy. Astrophysics. On the importance of the wind emission to the optical continuum of OB supergiants. M. Kraus 1, J. Kubát 1, and J.

Model Atmospheres. Model Atmosphere Assumptions

Introduction to the School

Stellar Structure. Observationally, we can determine: Can we explain all these observations?

SPA7023P/SPA7023U/ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum

Atomic Physics ASTR 2110 Sarazin

Beer-Lambert (cont.)

Radiation Transfer and Radiation Hydrodynamics

Black Hole Formation in the Early Universe

Radiative transfer in planetary atmospheres

Spectroscopy Lecture 2

Stellar structure Conservation of mass Conservation of energy Equation of hydrostatic equilibrium Equation of energy transport Equation of state

Linear Theory of Stellar Pulsation

Lecture Notes: Basic Equations

Nearly everything that we know about stars comes from the photons they emit into space.

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377

Observational Appearance of Black Hole Wind Effect of Electron Scattering

Environment of the Radiation Field ...

SISD Training Lectures in Spectroscopy

Non-LTE models for synthetic spectra of Type Ia supernovae

Radiative Transfer and Molecular Lines Sagan Workshop 2009

Stellar Winds: Mechanisms and Dynamics

Review from last class:

Radiative transfer theory (Pure gas atmosphere)

PHYS 231 Lecture Notes Week 3

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009

The structure and evolution of stars. Introduction and recap

Stellar Atmospheres. University of Denver, Department of Physics and Astronomy. Physics 2052 Stellar Physics, Winter 2008.

Summary of Results. 1. Mass Conserva-on. dr dm = 1. dm dr = 4πr 2 ρ. 4πr 2 ρ

I ν. di ν. = α ν. = (ndads) σ ν da α ν. = nσ ν = ρκ ν

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

23 Astrophysics 23.5 Ionization of the Interstellar Gas near a Star

= m H 2. The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e << m p, the mean mass of hydrogen is close to 1/2 the mass of a proton.

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE

Physics 160: Stellar Astrophysics. Midterm Exam. 27 October 2011 INSTRUCTIONS READ ME!

ASTRONOMY AND ASTROPHYSICS Theoretical X-ray spectra of hot H-rich white dwarfs. Impact of new partition functions of iron, Fe V through Fe VII

The structure of radiative shock waves. V. Hydrogen emission lines

arxiv: v1 [astro-ph.sr] 2 Jan 2009

Bremsstrahlung. Rybicki & Lightman Chapter 5. Free-free Emission Braking Radiation

arxiv: v1 [astro-ph.sr] 13 Jun 2014

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg

PHYS-633: Introduction to Stellar Astrophysics

Solar and Stellar Atmospheric Modeling Using the Pandora Computer Program

P M 2 R 4. (3) To determine the luminosity, we now turn to the radiative diffusion equation,

Computing radiative equilibria with Monte Carlo techniques

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

2 The Radiative Transfer Equation

Introduction to Solar Radiative Transfer II Non-LTE Radiative Transfer

Transcription:

Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres Jiří Kubát Astronomický ústav AV ČR Ondřejov Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Outline 1. Basic equations for stellar atmospheres 2. Radiative transfer equation in spherical symmetry 3. Formal solution 4. Equations of statistical equilibrium 5. Λ-iteration and accelerated Λ-iteration 6. Model atmosphere problem 7. Linearization 8. Applications 9. Conclusions Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Role of radiation in stellar atmospheres source of information about star and stellar atmosphere influence on matter in stellar atmosphere non-local (long distance) interaction (photon mean free path particle mean free path) change of the population numbers (non-equilibrium values) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Basic equations assume static atmosphere ( v = 0) stationary atmosphere ( / t = 0) 1-dimensional spherically symmetric atmosphere equations to be solved (numerically): radiative transfer equation equations of statistical equilibrium equation of radiative equilibrium equation of hydrostatic equilibrium radial depth equation Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Basic equations assume static atmosphere ( v = 0) stationary atmosphere ( / t = 0) 1-dimensional spherically symmetric atmosphere equations to be solved (numerically): radiative transfer equation equations of statistical equilibrium equation of radiative equilibrium equation of hydrostatic equilibrium radial depth equation account for full angle and frequency dependence (I (µ, ) I µ ) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Radiative transfer equation µ I µ(r) r + 1 µ2 r I µ (r) µ = χ (r)i µ (r) + η (r) η (z) emissivity χ (z) opacity θ µ = cos θ r Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Radiative transfer equation µ I µ(r) r + 1 µ2 r I µ (r) µ = χ (r)i µ (r) + η (r) = χ (r) [I µ (r) S (r)] η (z) emissivity χ (z) opacity S (z) = η (z) χ (z) source function Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Radiative transfer equation with scattering µ I µ(z) r + 1 µ2 r I µ (r) µ = [κ (r) + σ (r)]i µ (r) + η (r) + σ (r)j (r) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Radiative transfer equation with scattering µ I µ(z) r + 1 µ2 r I µ (r) µ = [κ (r) + σ (r)]i µ (r) + η (r) + σ (r) 0 I µ (r)dµ Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Moment radiative transfer equations ( ) 1 d r 2 H r 2 dr = χ J + η + σ J. where J = 1 2 we introduce f = K J 1 dq q dr 1 3 f = r dk dr + 3K J = χ H, r 1 1 I µ dµ, H = 1 1 2 1 µi µ dµ, K = 1 2 variable Eddington factor the sphericity function 1 1 µ2 I µ dµ. d (f q J ) dx = r 2 H Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Moment radiative transfer equations d 2 (f q J ) dx 2 where dx = q χ /r 2 dr boundary conditions = r4 q ( J η ) + σ J, χ where g = d (f q J ) = r 2 ( g J H ) dx d (f q J ) = r 2 ( H + ) g J dx ( ) 1 0 µj µ dµ / (J ) at the surface at depth Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Formal solution of the RTE solution for given χ and η (given S ) relatively simple crucial for the total accuracy of the whole problem solution Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p.

Formal solution of the RTE ray method Hummer & Rybicki (1971, MNRAS 152, 1) µ = cos ϑ µ r + 1 µ2 r µ = d ds ± di± µ(r) ds = χ (r)i ± µ(r) + η (r) + σ (r)j (r) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Feautrier solution of the RTE solution along a ray (specific intensities I + and I ) introduce Feautrier variables j µ = 1 2 h µ = 1 2 ( I + µ + I µ) ( I + µ I µ) the transfer equation d 2 j µ dτ 2 s = j µ S where S = η + σ J κ + σ, dτ s = (κ + σ ) ds (µ absorbed to ds) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Feautrier solution of the RTE boundary conditions upper lower dj µ dτ s = j µ I µ dj µ dτ s = I + µ j µ dj µ dτ s = 0 core rays (at depth) tangent rays (in the middle of the ray). Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Formal solution of the RTE with scattering 1. determine j µ by solution along each ray (J given): d 2 j µ dτ 2 s = j µ η + σ J κ + σ 2. f = 1 0 µ2 j µ dµ 1 0 j µ dµ, g = 1 0 µj µ dµ 1 0 j µ dµ, 1 dq q dr = 3 f 1 r 3. determine J by solution: 4. check if δf < ε d 2 (f q J ) dx 2 = r4 q ( J η ) + σ J, χ Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Opacities and emissivities opacity χ = i emissivity l>i [ n i g ] i n l α il () + g l i k ( n i n i e h kt n e n k α kk (, T) ) α ik ()+ ( 1 e h kt ) + n e σ e η = 2h3 c 2 [ i l>i n l g i g l α il () + i n i α ik ()e h kt + k n e n k α kk (, T)e h kt ] Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Opacities and emissivities opacity χ = i emissivity l>i [ n i g ] i n l α il () + g l i k ( n i n i e h kt n e n k α kk (, T) ) α ik ()+ ( 1 e h kt ) + n e σ e η = 2h3 c 2 [ i l>i n l g i g l α il () + i n i α ik ()e h kt + n e n k α kk (, T)e h kt ] k Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Equations of statistical equilibrium in LTE: n i = f (n e, T) Saha-Boltzmann distribution Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Equations of statistical equilibrium outside LTE: n i = f (n e, T, J ) statistical equilibrium for i = 1,...NL {n l [R li + C li ] n i (R il + C il )} = 0 l i Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Equations of statistical equilibrium outside LTE: n i = f (n e, T, J ) statistical equilibrium for i = 1,...NL collisional rates {n l [R li + C li ] n i (R il + C il )} = 0 l i n i C il = n i n e q il (T), Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Equations of statistical equilibrium outside LTE: n i = f (n e, T, J ) statistical equilibrium for i = 1,...NL {n l [R li + C li ] n i (R il + C il )} = 0 l i radiative rates αil () n i R il = n i 4π h J d ( g i αij () 2h 3 n l R li = n l 4π g j h c 2 + J ) d Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Equations of statistical equilibrium outside LTE: n i = f (n e, T, J ) statistical equilibrium for i = 1,...NL {n l [R li (J ) + C li ] n i (R il (J ) + C il )} = 0 radiative rates l i αil () n i R il = n i 4π h J d ( g i αij () 2h 3 n l R li = n l 4π g j h c 2 + J ) d Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Final radiative transfer equation d 2 (f q J ) dx 2 f = K J = r4 q K = 1 dq q dr = 3 f 1 r χ = f χ (, n e, T, n i ) Z 1 [ J η ] + σ J, χ 1 «µ 2 I µ dµ η = f η (, n e, T, n i ) X {n l [R li (J ) + C li ] n i (R il (J ) + C il )} = 0 l i Z n i R il = n i 4π Z g i n l R li = n l 4π g j αil () h αij () h J d 2h 3 c 2 + J «d Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Λ iteration radiative transfer equation for J d 2 (f q J ) dx 2 = r4 q [ J η ] + σ J, χ formally may be written as J = Λ S iteration scheme: J ESE S RTE J ESE S l i J (n+1) { [ ] n (n) l R li (J (n) ) + C li = Λ S (n) n (n) i [ R il (J (n) ) + C il ]} = 0 converges extremely slowly for stellar atmospheres (τ 1) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Accelerated lambda iteration simple Λ-iteration convergence problems huge matrices in complete linearization laborious and computationally expensive way out > Accelerated lambda iteration (ALI) formal solution (Cannon 1973, JQSRT 14, 627; ApJ 185, 621) J = Λ S Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Accelerated lambda iteration simple Λ-iteration convergence problems huge matrices in complete linearization laborious and computationally expensive way out > Accelerated lambda iteration (ALI) formal solution (Cannon 1973, JQSRT 14, 627; ApJ 185, 621) J = Λ S + Λ S Λ S Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Accelerated lambda iteration simple Λ-iteration convergence problems huge matrices in complete linearization laborious and computationally expensive way out > Accelerated lambda iteration (ALI) formal solution (Cannon 1973, JQSRT 14, 627; ApJ 185, 621) J = Λ S + (Λ Λ )S Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Accelerated lambda iteration simple Λ-iteration convergence problems huge matrices in complete linearization laborious and computationally expensive way out > Accelerated lambda iteration (ALI) formal solution iteration scheme (Cannon 1973, JQSRT 14, 627; ApJ 185, 621) J = Λ S + (Λ Λ )S J (n+1) = Λ S (n+1) + (Λ Λ )S (n) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Accelerated lambda iteration simple Λ-iteration convergence problems huge matrices in complete linearization laborious and computationally expensive way out > Accelerated lambda iteration (ALI) formal solution (Cannon 1973, JQSRT 14, 627; ApJ 185, 621) J = Λ S + (Λ Λ )S iteration scheme J (n+1) = Λ S (n+1) + (Λ Λ )S (n) }{{} J (n) correction term Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Accelerated lambda iteration simple Λ-iteration convergence problems huge matrices in complete linearization laborious and computationally expensive way out > Accelerated lambda iteration (ALI) formal solution (Cannon 1973, JQSRT 14, 627; ApJ 185, 621) J = Λ S + (Λ Λ )S iteration scheme J (n+1) = Λ S (n+1) + (Λ Λ )S (n) }{{} J (n) correction term compare: J (n+1) = Λ S (n) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Accelerated lambda iteration iteration scheme J (n+1) = Λ S (n+1) + (Λ Λ ) S (n) = Λ S (n+1) + J (n) J (n) correction term S RTE J, J ESE+ALI S solution of the radiative transfer equation is transferred to the solution of the statistical equilibrium equations Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Accelerated lambda iteration iteration scheme J (n+1) = Λ S (n+1) + (Λ Λ ) S (n) = Λ S (n+1) + J (n) J (n+1) radiative rates αil () n i R il = n i 4π h g i αij () n l R li = n l 4π g j h [ Λ S (n+1) ( 2h 3 c 2 + ] + J (n) d [ Λ S (n+1) ] ) + J (n) d Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 1

Accelerated lambda iteration equations of statistical equilibrium {n l [R li (n i, n l ) + C li ] n i (R il (n i, n l ) + C il )} = 0 l i for i = 1,...NL ALI eliminated radiation field from the explicit solution equations of statistical equilibrium are nonlinear in n i, n l savings important, for a typical problem NF 10000 Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Accelerated lambda iteration equations of statistical equilibrium {n l [R li (n i, n l ) + C li ] n i (R il (n i, n l ) + C il )} = 0 l i for i = 1,...NL ALI eliminated radiation field from the explicit solution equations of statistical equilibrium are nonlinear in n i, n l savings important, for a typical problem NF 10000 solution by Newton-Raphson method (linearization) preconditioning Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Model atmosphere problem additional structural equations hydrostatic equilibrium radiative equilibrium radial depth preconditioning does not help for them, linearization necessary Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Radial optical depth equation modified column mass depth ( ) R 2 dm = ρ r 2 dr m independent variable in model atmosphere calculation Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Hydrostatic equilibrium equation upper boundary condition: dp g dm = GM R 2 4π c 0 1 d [q f J ] q dm d p 1 = GM m 1 R 2 4π c ( r1 ) 2 R 0 χ 1 ρ 1 [ g1 J 1 H ] d g 1 = 1 0 µj 1µ dµ/ 1 0 j 1µ dµ H is the incident flux at the upper boundary Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Hydrostatic equilibrium equation dp g dm = GM R 2 4π c upper boundary condition: 0 1 d [q f (Λ S + J )] q dm d p 1 = GM m 1 R 2 4π c ( r1 ) 2 R 0 χ 1 ρ 1 [ g1 (Λ S 1 + J 1 ) H ] d g 1 = 1 0 µj 1µ dµ/ 1 0 j 1µ dµ H is the incident flux at the upper boundary J was eliminated using ALO: J = Λ S + J Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Equation of radiative equilibrium integral form 0 [κ J η ] d = 0 κ [J S ] d = 0 differential form (from F = 0) L (4πR) 2 = 0 ρ d [q f J ] q χ dm d Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Equation of radiative equilibrium integral form 0 [κ (Λ S + J ) η ] d = 0 κ [(Λ 1)S + J ] d = 0 differential form (from F = 0) L (4πR) 2 = 0 ρ d [q f (Λ S + J )] q χ dm d J was eliminated using ALO: J = Λ S + J Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Complete linearization to stellar atmospheres introduced by Auer & Mihalas (1969, ApJ 158, 641) for the case of NLTE model atmospheres solution of equations: radiative transfer (J ) hydrostatic equilibrium (ρ) radiative equilibrium (T ) statistical equilibrium (n i ) radial depth (r) vector of solution ψ = (n e, T, r, n 1,...,n NL, J 1,...,J NF ) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Complete linearization to stellar atmospheres introduced by Auer & Mihalas (1969, ApJ 158, 641) for the case of NLTE model atmospheres solution of equations: radiative transfer (J ) included with a help of ALO hydrostatic equilibrium (ρ) radiative equilibrium (T ) statistical equilibrium (n i ) radial depth (r) vector of solution ψ = (n e, T, r, n 1,...,n NL, J 1,...,J NF ) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Summary of equations equations of statistical equilibrium X {n l [R li (n i, n l ) + C li ] n i (R il (n i, n l ) + C il )} = 0 i = 1,... NL l i n i R il = n i 4π R α il h [Λ g S + J ]d, n l R li = n i l 4π R α ij g j h 2h 3 c 2 + [Λ S + J ] d equation of hydrostatic equilibrium dp g dm = GM R 2 4π c equation of radiative equilibrium Z 0 1 d[q f (Λ S + J )] q dm d Z 0 κ [(Λ 1) S + J ] d = 0. or H 0 = Z 0 ρ d[q f (Λ S + J )] q χ dm d. radial depth equation R 2 «dm = ρ r 2 dr Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Solution by linearization vector of solution ψ = (n e, T, r, n 1,...,n NL ), dimension 3 + NL formally F ( ) ψ = 0 current estimate ψ 0 correct solution ψ = ψ 0 + δψ corrections δ ψ = [ F ψ ( ψ0 ) ] 1 F ( ψ0 ) matrix NL + 3 for each depth point d Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Accelerated linearization if we express the linearized b-factors as δb i = b i n e δn e + b i T δt + b i r δr from equations of statistical equilibrium (cf. Auer 1973, ApJ 180, 469; Anderson 1987, NRT, 163), [ b i x = A ij + A im b j b m B i b j ] 1 ( Ajm x b m B j x ) (x stands for n e, T, r) further reduction of the number of explicitly linearized variables Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Accelerated linearization solution of equations: hydrostatic equilibrium (ρ) radiative equilibrium (T ) radial depth (r) statistical equilibrium (n i ) vector of solution ψ = (n e, T, r, n 1,...,n NL ) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Accelerated linearization solution of equations: hydrostatic equilibrium (ρ) radiative equilibrium (T ) radial depth (r) statistical equilibrium (n i ) included with a help of implicit linearization of b-factors vector of solution ψ = (n e, T, r, n 1,...,n NL ) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 2

Solution by linearization vector of solution ψ = (n e, T, r), dimension: 3 significant savings of computing time Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 3

Application of static spherically symmetric model atmospheres generalization of plane-parallel atmospheres in extended atmospheres large radiaton pressure O and B stars strong stellar wind static approximation unusable Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 3

Application of static spherically symmetric model atmospheres generalization of plane-parallel atmospheres in extended atmospheres large radiaton pressure O and B stars strong stellar wind static approximation unusable Do static extended atmospheres exist? Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 3

Application of static spherically symmetric model atmospheres generalization of plane-parallel atmospheres in extended atmospheres large radiaton pressure O and B stars strong stellar wind static approximation unusable Do static extended atmospheres exist? they existed! Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 3

Application of static spherically symmetric model atmospheres generalization of plane-parallel atmospheres in extended atmospheres large radiaton pressure O and B stars strong stellar wind static approximation unusable Do static extended atmospheres exist? they existed! first stars in the Universe consisted only of primordial hydrogen and helium Krtička & Kubát (2006, A&A 446, 1039) showed that such stars can not have stellar winds Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 3

Application to moving atmospheres static radiative transfer equation may be used for continuum radiative transfer in moving stellar atmospheres, as it was done by Krtička & Kubát (2004, A&A 417, 1003) static spherically symmetric model atmospheres can be used as a lower boundary condition in calculations of stellar winds (core-halo approximation) Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 3

Final remarks 1. static spherically symmetric model atmospheres are the first step towards more complicated structures 2. for stellar wind calculations they provide the lower boundary condition 3. for axially symmetric problems they give the zeroth order approximation 4. for the first stars in the Universe they provide full description Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. 3