Masaharu Aoki Osaka University

Similar documents
Lepton Flavor Violation Experimental Overview

Intense Slow Muon Physics

Muon Experiments. Masaharu Aoki, Osaka University. NP02 International workshop on Nuclear and Particle Physics at 50-GeV PS Kyoto

Experimental Searches for Muon to Electron Conversion

Overview of the COMET Phase-I experiment

LFV with µ-beams: status and perspectives

Lepton Flavour Violation

New Physics with a High Intensity PS (in Italy)


The Mu3e PSI

J-PARC μ-e --- PRISM/Phase-1 ---

Electroweak Physics: Lecture V

Charged Lepton Flavour Violation:

COMET muon conversion experiment in J-PARC

K + Physics at J-PARC

Fundamental Symmetries III Muons. R. Tribble Texas A&M University

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Muon to Electron Conversion: Experimental Status in Japan and the US

Search for heavy neutrinos in kaon decays

Lepton Flavor Violating Decays Review & Outlook

New Limits on Heavy Neutrino from NA62

The Mu3e PSI

The MEG/MEGII and Mu3e experiments at PSI. Angela Papa Paul Scherrer Institut on behalf of the MEG/MEGII and Mu3e collaborations

(Lifetime and) Dipole Moments

Lecture 11. Weak interactions

Search for K + π + νν decay at NA62 experiment. Viacheslav Duk, University of Birmingham for the NA62 collaboration

The Why, What, and How? of the Higgs Boson

R. D. McKeown. Jefferson Lab College of William and Mary

Contents. Preface to the First Edition Preface to the Second Edition

PoS(ICHEP2016)552. The Mu3e Experiment at PSI. Alessandro Bravar University of Geneva

clfv searches using DC muon beam at PSI

Search for Lepton Number Violation at LHCb

An Experimental Proposal on Nuclear and Particle Physics Experiments at the J-PARC 50 GeV Proton Synchrotron

DIRAC vs MAJORANA? Neutrinos are the only electrically neutral fermions. ff (quarks, charged leptons) If a fermion is charged, ff

Prospects for early discoveries in final states. LRSM and Leptoquarks

Status and Future of the PSI Experiment *

Mu2e: Coherent μ e Conversion Experiment at Fermilab. David Brown, LBNL representing the mu2e collaboration

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles

Jacopo Pinzino CERN HQL /05/2018

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

Modern Accelerators for High Energy Physics

Anything but... Leptogenesis. Sacha Davidson IPN de Lyon/CNRS, France

BABAR results on Lepton Flavour Violating (LFV) searches for τ lepton + pseudoscalar mesons & Combination of BABAR and BELLE LFV limits

Kenji Ozone (ICEPP, Univ. of Tokyo, Japan) Outline. Introduction prototype R&D ー PMTs ー small & large type summary

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

The PIENU Experiment a sensitive probe in the search for new physics

EDMs and flavor violation in SUSY models

arxiv: v1 [hep-ex] 7 Sep 2016

FYS3510 Subatomic Physics. Exam 2016

Is the Neutrino its Own Antiparticle?

PoS(FPCP2009)057. Chloé Malbrunot (for the PIENU collaboration ) University of British Columbia Vancouver, Canada

New Limits on Heavy Neutrino from NA62

The Mu2e Transport Solenoid

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics

The SHiP experiment. Colloquia: IFAE A. Paoloni( ) on behalf of the SHiP Collaboration. 1. Introduction

Reminder : scenarios of light new physics

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Study of Strange Quark in the Nucleon with Neutrino Scattering

First light from. Gagan Mohanty

Lecture 8. CPT theorem and CP violation

Lepton-flavor violation in tau-lepton decay and the related topics

PSI. Muon Experiment at the PSI, KEK

The Mu3e Experiment - Goal

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles

Evidence for Single Top Quark Production. Reinhard Schwienhorst

SSA Measurements with Primary Beam at J-PARC

Lepton-flavor violation in tau-lepton decay and the related topics

Charged Lepton Flavor Violation: an EFT perspective

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

The Nature and Magnitude of Neutrino Mass

R. Fantechi CERN and INFN Sezione di Pisa on behalf of the NA62 Collaboration

Searches for Lepton Flavor Violation. Update on BaBar Searches for Lepton Flavor Violation using Tau Decays

Measurement of the e + e - π 0 γ cross section at SND

NA62 status and prospects

Results from B-Physics (LHCb, BELLE)

Final Results from the MEG Experiment and the Status of MEG-II

Testing lepton flavour and lepton number violation at ATLAS

Particle Physics: Neutrinos part II

Lee Roberts Department of Physics Boston University

Neutrino Mass Seesaw, Baryogenesis and LHC

Low Energy Precision Tests of Supersymmetry

Rare B decay searches with BABAR using hadronic tag reconstruction

Neutrino Oscillation and CP violation

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

Mu2e Experiment at Fermilab

arxiv: v1 [physics.ins-det] 1 Sep 2009

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Is the Neutrino its Own Antiparticle?

Search for Heavy Majorana Neutrinos

Dark Matter Search with Belle II

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

FYS3510 Subatomic Physics. Exam 2016

SuperB. Adrian Bevan. CIPANP 09, San Diego, May 2009.

Seaches fo log-lived paticles with displaced signatues at the LHC. Daniela Salvatore (INFN Cosenza) on behalf of the ATLAS and CMS Collaborations

NA62 & Kaon Experiments

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

New Physics Searches with Muons. Electromagnetic Interactions with Nucleons and Nuclei Paphos, Cyprus November 4, 2015

Transcription:

Muon Particle Physics Masaharu Aoki Osaka University

Overview Introduction Static Properties Muon g-2 Muon EDM Dynamic Properties Lepton Flavor Violations e (MEG), e conversion (MECO,PRISM) Michel parameters Muon Factory Summary

Introduction Muon has been historically important Generation Structure (Flavor Conservation) V-A Structure of Weak Interaction VEV of Higgs field: Muon has been theoretically simple Pure Dirac fermion Muon has been experimentally convenient Easy to produce: T p > ~300 MeV Easy to handle: = 2.2 s Is Muon still attractive? YES OF CAUSE

NuFact04 6th International Workshop on Neutrino Factories and Neutrino Superbeams 26th July, 2004 ~ 1st August, 2004 Osaka University Working Group 4: Muon Physics MEG, MECO, PRISM, TWIST, e + polarization meas., Lan, FAST, g-2, EDM, etc.

Muon g-2

g-2 magnetic moment for spin 1/2 a is not zero

Theory J. Miller@NuFact04

BNL-E821 Results J. Miller@NuFact04

NEW Physics in g-2 J. Miller@NuFact04

Muon EDM

Muon Electric Dipole Moment Violate T, P SM prediction d ~2 x 10-38 e.cm The current experimental bound d ~(3.7 3.4) x 10-19 e.cm Beyond SM LRS + SeeSaw + -mixing: d ~ x 10-23 e.cm

EDM & g-2

Lepton Flavor Violation

Lepton Flavor Violation L i =1 Obviously LF is Violated for neutrinos. LFV referes to LFV for charged leptons. e, 3e, - A e - A, A A K L e, K L 0 e, K + + e e e e 0 ~ ~ 0 L i =2 + e - - e + A e e A, - A e + A, - A + A L =0 L =2

Recent Limits Reaction 90% CL Upper Limit + e + 1.2 x 10-11 + e + e - e + 1.0 x 10-12 - Ti e - Ti 4.3 x 10-12 - Pb e - Pb 4.6 x 10-11 - Au e - Au 4.4~6.8 x 10-13 - Ti e + Ca 3.6 x 10-11 - e + + e - 8.3 x 10-11 e 2.7 x 10-6 1.1 x 10-6 e e e 2.9 x 10-6 1.9 x 10-6 K L e 4.7 x 10-12 K L 0 e 6.2 x 10-9 K + + e 2.8 x 10-11 D 0 e, e 8.1 x 10-6, 3.4 x 10-5 B e, K e 1.5 x 10-6, 8 x 10-7 e, e, 1.7 x 10-6, 9.8 x 10-6, 1.2 x 10-5 J/, e 2.0 x 10-6, 8.3 x 10-6 Muon provides most sensitive limits Large number of muons available at Meson Factories Relatively longer muon life time = 2.2 s K = 12 ns

Oscillation & Muon LFV Lepton Flavor is already VIOLATED at sector. contribution to muon LFV process GIM suppression Very small Muon LFV indicates a physics beyond the simple oscillation

SUSY with RH Majorana neutrino SUSY + See-Saw Solar neutrino MSW large angle -LFV provides a clue to understand the oscillation MEG Goal MECO Goal PRISM/PRIME Goal

SUSY-GUT Prediction Process ~ Curren t Limit SUSY-GUT level Future Exp. PRISM/PRIME Goal N e N 10-13 10-16 10-18 (1) e 10-11 10-14 10-13 (2) 10-6 10-9 10-8 (3) e e 2 0-1 ab 1 ab -1 (4) (1) PRISM (2) MEG (3) Super-B (4) LC

SUSY Mass Matrix -LFV -EDM ~ ~ g-2 ~ ~ SUSY Mass Matrix Physics important as CKM and MNS

Leptogenesis CPV in CKM is not enough to explain Baryon Asymmetry New sources of CPV beyond the SM Oscillation + CPV in lepton sector leptogenesis (Fukugida & Yanagida 86) AND if SUSY exists T-violation in muon LFV muon EDM Imaginary part slepton mass matrix

New Generation of -LFV Experiments MEG BR( + e + ) < 10-13 MECO BR( - N e - N) < 10-16 PRISM/PRIME BR( - N e - N) < 10-18

MEG @ PSI + e + ICEPP, KEK, Waseda U., INFN, PSI, Budker Inst. PSI- E5 Beam Line R : 0.2-0.3 x 10 8 /s Run: 2006- Running Time: 4 x 10 7 s S.E.S.: 4 x 10-14

Signal and Background e + + e = 180 E e = E = 52.8 MeV T e = T signal + e + e + background correlated accidental e e e ee ez ez + e + + +

Required Performances Accidental Background Limited FWHM Exp./Lab Year Ee/Ee (%) E /E (%) te (ns) e (mrad) Stop rate (s-1) Duty cyc.(%) BR (90% CL) SIN 1977 8.7 9.3 1.4-5 x 10 5 100 3.6 x 10-9 TRIUMF 1977 10 8.7 6.7-2 x 10 5 100 1 x 10-9 LANL 1979 8.8 8 1.9 37 2.4 x 10 5 6.4 1.7 x 10-10 Crystal Box 1986 8 8 1.3 87 4 x 10 5 (6..9) 4.9 x 10-11 MEGA 1999 1.2 4.5 1.6 17 2.5 x 10 8 (6..7) 1.2 x 10-11 MEG 2007 0.7 4.5 0.1 19 2.5 x 10 7 100 1 x 10-13 - Liquid Xenon calorimeter (scintillation) - DC beam @PSI

Detector Outline Surface muon beam: 2~3 x 10 7 /sec in a 150 m target Solenoid spectrometer & drift chambers for e + momentum Scintillation counters for e + timing Liquid Xenon calorimeter for detection (scintillation) - fast: 4 / 22 / 45 ns - high LY: ~ 0.8 * NaI - short X 0 : 2.77 cm Construction on going Data Taking: 2006 ~

MECO @ BNL-AGS Superconducting Detector Solenoid (2.0 T 1.0 T) Muon Stopping Target Straw Tracker Crystal Calorimeter Muon Beam Stop Collimators Superconducting Transport Solenoid (2.5 T 2.1 T) Superconducting Production Solenoid (5.0 T 2.5 T) - Al e - Al BNL-AGS, pulsed proton beam Run: 2009- S.E.S.: 2 x 10-17 (equivalent to 5 x 10-15 of e ) Boston U., BNL, UCI, U. Houston, UMA, INR, NYU, Osaka U., U. Pennsylvania, Syracuse U., CWM

- -e - Conversion Muonic atom (1s state) nuclear muon capture nucleus - muon decay in orbit Source of BG Neutrinoless muon nuclear capture Single mono-energetic e - : E e = (M -B ) MeV (~105 MeV) Rate is normalized to the kinematically similar weak capture process:

Models: - N e - N SUSY-GUT (photonic process) BR ~ 10-15 SUSY with R-parity Violation Leptquarks Heavy Z -MZ > (5-100) TeV for R e~10-16 J. Bernabeu et al., NPB 409 (1993)69-86 Compositeness Multi-Higgs Models Higgs-Mediated Doubly Charged Higgs Boson

Potential Backgrounds No Accidental Background Muon Decay in Orbit Muon Decay in Orbit E max = E e, dn/de e (E max -E e ) 5 E e =900 kev FWHM N bg = 0.25 for R e =2 10-17 Energy Loss in the muon stopping target For the better resolution: thinner muon stopping target Thinner muon stopping target: narrow E spread of muon Signal

- N e - N vs. e - N e - N e Sensitive to non-photonic process Require new beam line No accidental background. New muon beam will boost the experiment further more. B( e ) = 200 B( - N e - N) for photonic process Strong physics motivation for both Existing surface muon beam Rate-limited due to accidental background. Possibly different systematics, thus complementary each others. Both should be done to maximize discovery potential -narrow p spread - thiner target

PRISM/PRIME Phase-Rotated Intense Slow Muon source PRIsm Muon Electron conversion exp. Accelerator Technology High Intensity 10 11-10 12 / sec High Brightness Phase Rotation dp/p: 20% 2% energy energy phase phase not in scale High Purity BR( N e N) < 10-16 BR( N e N) < 10-18

PRISM-Phase-Rotator Development AWARDED Grant-in-Aid for Creative Scientific Research A Study of A Super Muon Beam for New initiative on Muon Physics Five-years termed JFY2003 ~ JFY2007 Prove Phase Rotation Ionization Cooling Schedule 2003 : RF-PS development Mag. design 2004 : RF test Mag. prototyping 2005 : Mag. construction Ring construction 2006 : Commissioning 2007 : Phase Rotation Test Cooling Test Proposing to Install at J-PARC 0 5 10 15 20 0 5 10 15 (m)

L =2 i

L =0 Muonium-Antimuonium Conversion + e - - e double charged Higgs boson ++ heavy Majorana : M R > 10 4 GeV T.E. Clark, S.T. Love, Mod. Phys. Lett. A 19(2004)297-306 neutral scaler N bileptonic gauge boson X ++ Current limit: P MM < 8.3 x 10-11 @ PSI Future Plan: no concrete plans yet pulsed, high intensity, high brightness + beam (after K.P. Jungmann, however he mentioned slightly lower intensity and energy than PRISM, I think it s OK.) PRISM

Lepton No. Violation Majorana nature of e e N - e + N Conversion MECO by-product: BR( - e + N ) ~ 10-17 Correponding Kaon Process: K + - + e + BNL-E865 result: BR(K + - + e + ) = 5.0 x 10-10 equivalents to BR( - e + N ) ~ 3 x 10-11 L.S. Littenberg and R. Shrock, PLB 491(2000)285-290 - + N Conversion J.H.Missimer et al. PRD50(1994)2067-2070 BNL-E865 result: BR(K + - + + ) = 3.0 x 10-9 No direct measurements yet. R-parity violating SUSY: 5 x 10-9 y (BR~10-24 ) Need radioactive target high intensity, high brightness - beam

Muon Factory J-PARC 1 MW 50 GeV PS g-2: 0.05 ppm PRISM μ- Ν e- Ν: 10-18 PRISM-II μ-edm: 10-24~10-26 e.cm Muon Beam Manipulation Neutrino Factory Muon-Muon Collider

Summary Muon has been playing an important role in particle physics. is still providing us very important clues to understand the nature: g-2 will be also important in future of the particle physics: g-2, EDM, LFV Muon Factory

End of Slide