An optimal adaptive finite element method. Rob Stevenson Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam

Similar documents
Convergence and optimality of an adaptive FEM for controlling L 2 errors

Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates)

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

Institut für Mathematik

Axioms of Adaptivity

Rate optimal adaptive FEM with inexact solver for strongly monotone operators

where N h stands for all nodes of T h, including the boundary nodes. We denote by N h the set of interior nodes. We have

Axioms of adaptivity. ASC Report No. 38/2013. C. Carstensen, M. Feischl, M. Page, D. Praetorius

A Posteriori Existence in Adaptive Computations

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids

An a posteriori error estimator for the weak Galerkin least-squares finite-element method

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters

ADAPTIVE MULTILEVEL CORRECTION METHOD FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC OPTIMAL CONTROL PROBLEMS

Computation of operators in wavelet coordinates

Adaptive Finite Element Algorithms

Construction of wavelets. Rob Stevenson Korteweg-de Vries Institute for Mathematics University of Amsterdam

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University

Adaptive Boundary Element Methods Part 1: Newest Vertex Bisection. Dirk Praetorius

Enhancing eigenvalue approximation by gradient recovery on adaptive meshes

Space-Time Adaptive Wavelet Methods for Parabolic Evolution Problems

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

Numerische Mathematik

Convergence Rates for AFEM: PDE on Parametric Surfaces

OPTIMAL MULTILEVEL METHODS FOR GRADED BISECTION GRIDS

QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD

Schur Complements on Hilbert Spaces and Saddle Point Systems

Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates)

Besov regularity for the solution of the Stokes system in polyhedral cones

Key words. a posteriori error estimators, quasi-orthogonality, adaptive mesh refinement, error and oscillation reduction estimates, optimal meshes.

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates)

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

Adaptive Boundary Element Methods Part 2: ABEM. Dirk Praetorius

Adaptive Finite Element Approximations for Density Functional Models

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

On angle conditions in the finite element method. Institute of Mathematics, Academy of Sciences Prague, Czech Republic

Recovery-Based A Posteriori Error Estimation

INTRODUCTION TO FINITE ELEMENT METHODS

Symmetry-Free, p-robust Equilibrated Error Indication for the hp-version of the FEM in Nearly Incompressible Linear Elasticity

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators

element stiffness matrix, 21

Isogeometric mortaring

Applied Numerical Mathematics

Polynomial Preserving Recovery for Quadratic Elements on Anisotropic Meshes

Five Recent Trends in Computational PDEs

A Posteriori Error Estimation for Highly Indefinite Helmholtz Problems

ETNA Kent State University

A u + b u + cu = f in Ω, (1.1)

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A.

Two-Scale Composite Finite Element Method for Dirichlet Problems on Complicated Domains

Adaptive Uzawa algorithm for the Stokes equation

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS

Adaptive tree approximation with finite elements

A posteriori error estimation for elliptic problems

1. Introduction. In this paper, we shall design and analyze finite element approximations. q i δ i in R d,d=2, 3,

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems.

Polynomial-degree-robust liftings for potentials and fluxes

Yongdeok Kim and Seki Kim

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes

AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD

Quasi-Optimal Cardinality of AFEM Driven by Nonresidual Estimators

Find (u,p;λ), with u 0 and λ R, such that u + p = λu in Ω, (2.1) div u = 0 in Ω, u = 0 on Γ.

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems

Cell Conservative Flux Recovery and A Posteriori Error Estimate of Vertex-Centered Finite Volume Methods

Space-time sparse discretization of linear parabolic equations

Schemes. Philipp Keding AT15, San Antonio, TX. Quarklet Frames in Adaptive Numerical. Schemes. Philipp Keding. Philipps-University Marburg

RELIABLE A POSTERIORI ERROR CONTROL FOR NONCONFORMING FINITE ELEMENT APPROXIMATION OF STOKES FLOW

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media

arxiv: v2 [math.na] 23 Apr 2016

Numerische Mathematik

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE

Institut für Mathematik

ABSTRACT CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS. Khamron Mekchay, Doctor of Philosophy, 2005

Numerical Solutions to Partial Differential Equations

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions

arxiv: v2 [math.na] 17 Jun 2010

Adaptive Approximation of Curves

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian

AposteriorierrorestimatesinFEEC for the de Rham complex

A gradient recovery method based on an oblique projection and boundary modification

c 2008 Society for Industrial and Applied Mathematics

Institut für Mathematik

Convergence of an adaptive hp finite element strategy in higher space-dimensions

A posteriori error estimates in FEEC for the de Rham complex

DISCRETE MAXIMUM PRINCIPLES in THE FINITE ELEMENT SIMULATIONS

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Overview. A Posteriori Error Estimates for the Biharmonic Equation. Variational Formulation and Discretization. The Biharmonic Equation

A mixed finite element approximation of the Stokes equations with the boundary condition of type (D+N)

On a residual-based a posteriori error estimator for the total error

1 Definition of the Riemann integral

Daniel Kessler 1, Ricardo H. Nochetto 1, 2 and Alfred Schmidt 3

A POSTERIORI ERROR ESTIMATES BY RECOVERED GRADIENTS IN PARABOLIC FINITE ELEMENT EQUATIONS

Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part II: Hyper-singular integral equation

Transcription:

An optimal adaptive finite element method Rob Stevenson Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam

Contents model problem + (A)FEM newest vertex bisection convergence of AFEM quasi-optimal computational complexity 1/16

Optimal adaptive finite element methods Model problem: Poisson, 2D, newest vertex bisection. [Generalizations: A with A symm. pos. def. piecewise constant, any space dimension n, red-refinements.] Given f H 1 (Ω), find u H 1 0(Ω), a(u, v) := := a(, ) 1 2. Ω u v = Ω fv =: f(v) (v H 1 0(Ω)). τ conforming part. of Ω into triangles, V τ = H 1 0(Ω) T τ P d 1(T ). Find u τ V τ, a(u τ, v τ ) = f(v τ ) (v τ V τ ). AFEM: GALSOLVE, compute a post. error est, MARK, REFINE. 2/16

Initial, conforming partition τ 0 Newest vertex bisection τ := REFINE[τ, M] : Bisect all T M τ a few times. Complete. Th 1 (Binev, Dahmen, DeVore 04). With suitable assignment of newest vertices in initial mesh, #τ K #τ 0 K 1 i=0 #M i (unif. in K). (can be generalized to any space dimension [St. 08]) 3/16

Perspective: Approximation classes A s := {u H 1 0(Ω) : u A s := sup N N s inf {τ P:#τ #τ 0 N} u u τ H 1 < }, [i.e. u u τ H 1 ε generally requires #τ #τ 0 ε 1/s u 1/s A s. ] When P unif. refs, then u A (d 1)/n = u H d (Ω), i.e., α u L 2 (Ω), α d With P all partitions created by newest vertex bisection: u A (d 1)/n = u B d q(l p (Ω)), any p > ( d 1 n + 1 2 ) 1 i.e., α u L p (Ω) α d ([Binev, Dahmen, DeVore, Petrushev 02]) Regul. th: For suff sm f, n = 2, u in such a Besov space for any d ([Dahlke, DeVore 97]). 4/16

A posteriori error estimator η T (f, u τ ) := diam(t ) 2 f + u τ 2 L 2 (T ) + diam(t ) u τ n T 2 L 2 ( T ), Th 2 (Babu ska, Rheinboldt 78; Verfürth 96). u u τ C 1 E(τ, f, u τ ) := C 1 [ η T (f, u τ )] 1 2. T τ Proof. u u τ = sup v H 1 0 (Ω) a(u u τ,v) v. a(u u τ, v) = a(u u τ, v v τ ) = = T τ T (f + u τ )(v v τ ) Ω T f(v v τ ) a(u τ, v v τ ) u τ n(v v τ ). Th 3 (St. 06, Cascon,Kreuzer,Nochetto,Siebert 07). σ τ, R τ σ := {T τ : T σ}, u σ u τ C 1 [ η T (f, u τ )] 1 T R τ σ Note #R τ σ #σ #τ. 5/16 2.

A posteriori error estimator We call σ τ a full refinement with respect to T τ, when T and all its neighbours in τ, as well as all faces of T contain a vertex of σ in their interiors. T τσ Th 4 (Morin, Nochetto, Siebert 00). Let f T τ P d 2(T ), σ τ full ref w.r.t. T τ. Then η T (f, u τ ) T {T } {neighbours} u σ u τ 2 H 1 ( T ) 6/16

Corol 5. σ τ full ref w.r.t. T M τ. Then c 2 [ η T (f, u τ )] 2 1 uσ u τ (not true for any f L 2 (Ω)) T M In part, c 2 E(τ, f, u τ ) u u τ. AFEM converges (Dörfler 96, Morin, Nochetto, Siebert 00) MARK[τ, f, u τ ] M: Let θ (0, 1]. Select smallest M τ s.t. [ η T (τ, f, u τ )] 1 2 θ E(τ, f, uτ ). T M REFINE[τ, M] σ: Construct smallest (conforming) σ τ that is a full refinement w.r.t. all T M. u u τ 2 = u u σ 2 + u σ u τ 2 u σ u τ c 2 θe(τ, f, u τ ) c 2θ C 1 u u τ u u σ (1 c2 2θ 2 ) 2 1 u uτ C 2 1 u τ u u σ 7/16 V σ

AFEM converges with optimal rate [St 06] ([Binev,Dahmen,DeVore 04] using coarsening) AFEM[f, ε] [τ m, u τm ] % let f T τ 0 P d 2 (T ) compute Gal sol u τ0 V τ0 ; k := 0 while C 1 E(τ k, f, u τk ) > ε do M k := MARK[τ k, f, u τk ] τ k+1 := REFINE[τ k, M k ] compute Gal sol u τk+1 V τk+1 k := k + 1 end do m := k Th 6. If θ < c 2 C 1, then u u τm ε, #τ m #τ 0 m 1 k=0 #M k #M k inf { #ρ #τ 0 : u u ρ [1 C2 1 θ2 ] 1 2 u u c 2 τk } 2 [ [1 C2 1 θ2 ] 1 2 u u c 2 τk ] 1/s 1/s u A s when u As 2. #τ m #τ 0 m 1 k=0 u u τk 1/s u 1/s A s u u τ m 1 1/s u 1/s A s ε 1/s u 1/s A s. 8/16

AFEM converges with opt rate Pr. Th. 6. Let σ τ k s.t. u u σ [1 C2 1 θ2 ] 1 2 u u c 2 τk. Th.3 shows 2 C 2 1 T R τk σ η T (f, u τk ) u σ u τk 2 = u u τk 2 u u σ 2 i.e., [ C2 1θ 2 c 2 u u τk 2 C1θ 2 2 E(τ k, f, u τk ) 2, 2 η T (f, u τk )] 1 2 θe(τk, f, u τk ). T R τk σ M := MARK[τ k, f, u τk ] is smallest set with this prop, so #M #R τk σ #σ #τ k. For arb. ρ with u u ρ [1 C2 1 θ2 ] 1 2 u u c 2 τk, take σ := τ k ρ. Then 2 #M #σ #τ k #ρ #τ 0. 9/16

General right hand sides and inexact solves RHS[τ, f, δ] [σ, f σ ] % In: τ a partition, f H 1 (Ω) and δ > 0. % Out: f σ T τ P d 2(T ), where σ = τ, or, if necessary, σ τ, % such that f f σ H 1 (Ω) δ. If u A s, cost of RHS will not dominate if c f s.t. #σ #τ c 1/s f δ 1/s, and cost #σ. Such a pair (f, RHS) is called s-optimal. For suff. smooth f, s-optimality with s = d n (> d 1 n ) can be realized. GALSOLVE[τ, f τ, u (0) τ, δ] w τ % In: τ, f τ (S τ ), and u (0) τ S τ. % Out: w τ S τ with u τ w τ H 1 (Ω) δ. % The call should require max{1, log(δ 1 u τ u (0) τ H 1 (Ω))}#τ ops. 10/16

AFEM has opt compl AFEM[f, ε] [τ m, w τm ] % ω, β > 0 suff small constants. w τ0 := 0; k := 0; δ 0 f H 1 (Ω) do do δ k := δ k /2 [τ k, f τk ] := RHS[τ k, f, δ k /2] w τk := GALSOLVE[τ k, f τk, w τk, δ k /2] if η k := (2 + C 1 c 1 2 )δ k/2 + C 1 E(τ k, f τk, w τk ) ε then stop endif until δ k ωe(τ k, f τk, w τk ). M k := MARK[τ k, f τk, w τk ] τ k+1 := REFINE[τ k, M k ] w τk+1 := w τk, δ k+1 := 2βη k, k := k + 1 enddo m := k Th 7. u w τm H 1 (Ω) ε. If u A s, and (f, RHS) is s-optimal, then both #τ m and work ε 1/s ( u 1/s A s + c1/s f ). 11/16

Realizations of RHS ex. f L 2 (Ω). Q σ being L 2 -orth.proj. onto T σ P d 2(T ). f Q σ f H 1 (Ω) T σ vol(t ) 2 n f Q T f 2 L 2 (T ) =: osc(f, σ) Given θ (0, 1), run MARK and REFINE algorithm on osc until δ. Is quasi-optimal in the sense that whenever f Ās := {f L 2 (Ω) : sup N N s inf osc(f, τ) < }, {τ:#τ #τ 0 N} then (f, RHS) is s-optimal (assuming T fp d 2 exact in O(1) operations) So greedy works (thanks to factor vol(t ) 2 n). 12/16

Realizations of RHS ex. General d, n > 1. ( 1 2 + 1 n ) 1 < q 2, f L q (Ω) ( H 1 (Ω)). Generalization of previous case with osc(f, σ) := T σ vol(t ) 1 2 q + 2 n inf p P d 2 (T ) f p 2 L q (T ). ex. n = 2, d = 2, f(v) = K v, K a smooth curve. RHS[τ, f, δ] [σ, f σ]: Refine those T that intersect K until their diameters δ 2. (f σ ) T := length(k T ) vol(t ). s-optimal for s = 1 2 (=d 1 n ). 13/16

References [1] P. Binev, W. Dahmen, and R. DeVore. Adaptive finite element methods with convergence rates. Numer. Math., 97(2):219 268, 2004. [2] P. Binev, W. Dahmen, R. DeVore, and P. Petruchev. Approximation classes for adaptive methods. Serdica Math. J., 28:391 416, 2002. [3] S. Dahlke and R. DeVore. Besov regularity for elliptic boundary value problems. Comm. Partial Differential Equations, 22(1 & 2):1 16, 1997. [4] W. Dörfler. A convergent adaptive algorithm for Poisson s equation. SIAM J. Numer. Anal., 33:1106 1124, 1996. [5] P. Morin, R. Nochetto, and K. Siebert. Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal., 38(2):466 488, 2000. 14/16

[6] R.S. Optimality of a standard adaptive finite element method. Found. Comput. Math., 7(2):245 269, 2007. [7] R.S. The completion of locally refined simplicial partitions created by bisection. Math. Comp., 77:227 241, 2008. [8] R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, 1996. 15/16

Extensions [Cascon,Kreuzer,Nochetto,Siebert 07]: One bisection of marked cells suffices (no interior node). Marking for reducing osc can be omitted, assuming f L 2 (Ω), exact integration, and with exact solving of Gal systems. L. Chen, M.J. Holst, and J. Xu. Convergence and optimality of adaptive mixed finite element methods. Accepted by Mathematics of Computation, 2007. Y. Kondratyuk, R. S. An optimal adaptive algorithm for the Stokes problem. To appear in SIAM J. Numer. Anal. 16/16