C PLANE ELASTICITY PROBLEM FORMULATIONS

Similar documents
C PLANE ELASTICITY PROBLEM FORMULATIONS

MEMBRANE ELEMENT WITH NORMAL ROTATIONS

Plate Theories for Classical and Laminated plates Weak Formulation and Element Calculations

Instituto Tecnológico de Aeronáutica FINITE ELEMENTS I. Class notes AE-245

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method

One Dimensional Axial Deformations

EQUATION CHAPTER 1 SECTION 1STRAIN IN A CONTINUOUS MEDIUM

Frame element resists external loads or disturbances by developing internal axial forces, shear forces, and bending moments.

Bruce A. Draper & J. Ross Beveridge, January 25, Geometric Image Manipulation. Lecture #1 January 25, 2013

Chapter 1. Foundation of Solid Mechanics and Variational Methods

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

Finite Element Modelling of truss/cable structures

Application to Plane (rigid) frame structure

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad

Rigid body simulation

Introduction to elastic wave equation. Salam Alnabulsi University of Calgary Department of Mathematics and Statistics October 15,2012

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

Module 3: Element Properties Lecture 1: Natural Coordinates

Professor Terje Haukaas University of British Columbia, Vancouver The Q4 Element

Module 6. Lecture 2: Navier-Stokes and Saint Venant equations

Finite Difference Method

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Delhi School of Economics Course 001: Microeconomic Theory Solutions to Problem Set 2.

In this section is given an overview of the common elasticity models.

Estimation of homogenized elastic coefficients of pre-impregnated composite materials

3/31/ = 0. φi φi. Use 10 Linear elements to solve the equation. dx x dx THE PETROV-GALERKIN METHOD

Experimental Errors and Error Analysis

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

PLATE BENDING ELEMENTS

MECHANICS OF MATERIALS

Lecture 10: Dimensionality reduction

Complex Numbers Practice 0708 & SP 1. The complex number z is defined by

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

5.76 Lecture #21 2/28/94 Page 1. Lecture #21: Rotation of Polyatomic Molecules I

Fracture analysis of FRP composites using a meshless finite point collocation method

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION

LAB 4: Modulus of elasticity

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2.

(5.1.1) v Here, u and v are the displacements parallel to x and y directions respectively.

PART 8. Partial Differential Equations PDEs

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

Chapter 1: Differential Form of Basic Equations

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam

UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 FINITE ELEMENT AND DIFFERENCE SOLUTIONS

Grid Generation around a Cylinder by Complex Potential Functions

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Fields, Charges, and Field Lines

), it produces a response (output function g (x)

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

Chapter 6 Elastic -Plastic Fracture Mechanics

L6. Discretization and FE formulation, assignment 1

Research Note NONLINEAR ANALYSIS OF SEMI-RIGID FRAMES WITH RIGID END SECTIONS * S. SEREN AKAVCI **

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

ESS 265 Spring Quarter 2005 Time Series Analysis: Error Analysis

STAT 511 FINAL EXAM NAME Spring 2001

y A A B B d Vasos Pavlika (1) (2)

Supplemental document

CHAPTER 4. Vector Spaces

Indeterminate pin-jointed frames (trusses)

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we

I have not received unauthorized aid in the completion of this exam.

CIVL 8/7117 Chapter 10 - Isoparametric Formulation 42/56

Physics for Scientists & Engineers 2

THE SMOOTH INDENTATION OF A CYLINDRICAL INDENTOR AND ANGLE-PLY LAMINATES

EMISSION MEASUREMENTS IN DUAL FUELED INTERNAL COMBUSTION ENGINE TESTS

Centre for Efficiency and Productivity Analysis

Lecture Note 3. Eshelby s Inclusion II

SUMMARY OF STOICHIOMETRIC RELATIONS AND MEASURE OF REACTIONS' PROGRESS AND COMPOSITION FOR MULTIPLE REACTIONS

FINITE DIFFERENCE ANALYSIS OF CURVED DEEP BEAMS ON WINKLER FOUNDATION

Week 9 Chapter 10 Section 1-5

Convexity preserving interpolation by splines of arbitrary degree

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Mathematical Preparations

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Modal Identification of the Elastic Properties in Composite Sandwich Structures

Non-linear Analysis of Reinforced Concrete Deep Beams using Finite Element Method

Second Order Analysis

Comput. Methods Appl. Mech. Engrg.

Fastener Modeling for Joining Composite Parts

total If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions.

ME 160 Introduction to Finite Element Method. Chapter 4 Finite Element Analysis in Stress Analysis of Elastic Solid Structures

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

The Finite Element Method

INTERMEDIATE FLUID MECHANICS

PHYS 1443 Section 003 Lecture #17

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method

RIGID BODY MOTION. Next, we rotate counterclockwise about ξ by angle. Next we rotate counterclockwise about γ by angle to get the final set (x,y z ).

CONTINUUM SOLUTION OF LATERAL LOADING OF LARGE PILE GROUPS CUED/D-SOILS/TR 334 (July 2004) By A. Klar, A.D. Spasojevic and K. Soga

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Unsteady MHD Free Convective Flow Through Porous Media Past on Moving Vertical Plate with Variable Temperature and Viscous Dissipation

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES

ON THE GEOMETRY OF FRAME BUNDLES. Kamil Niedziałomski

Macroscopic Momentum Balances

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur

coordinates. Then, the position vectors are described by

arxiv: v1 [math.co] 12 Sep 2014

Transcription:

C M.. Tamn, CSMLab, UTM

Corse Content: A ITRODUCTIO AD OVERVIEW mercal method and Compter-Aded Engneerng; Phscal problems; Mathematcal models; Fnte element method. B REVIEW OF -D FORMULATIOS Elements and nodes, natral coordnates, nterpolaton fncton, bar elements, consttte eatons, stffness matr, bondar condtons, appled loads, theor of mnmm potental energ; Eamples. C Constant-stran tranglar (CST) elements; Plane stress, plane stran; Asmmetrc elements; Stress calclatons; Programmng strctre; mercal eamples. M.. Tamn, CSMLab, UTM

Fnte Element n Elastct Task: To dere the element stffness matr for a -node tranglar element nder plane stress / plane stran condton n elastct. Rerements: Consttte eatons (Generalzed stress-stran relatons) For aratonal approach - Eamne the fnctonal (based on potental energ) Mnmze the fnctonal - eld fnte element eatons: [k]{} {f} M.. Tamn, CSMLab, UTM

Stress tensor σ Hook's law for an sotropc materal ndergong nfntesmal deformaton. j σ τ τ z τ σ τ z τ τ σ z z zz where τ τ τ z z τ τ τ z z σ ε j ν ν σ j δ j σ Ε Ε kronecker delta : δ j kk f f j j τz τ z τ σ Stran tensor ε j ε γ γ z γ ε γ z γ z γ z ε zz where γ γ γ z z z γ γ γ z z M.. Tamn, CSMLab, UTM 4

Generalzed Internal States τ τz σ σ ε ε σ σ { } ( ) ( ) ( ) z w z z,,,,,, Dsplacement components M.. Tamn, CSMLab, UTM 5 τ z z { } z z z γ γ γ ε ε ε stran components { } z z z τ τ τ σ σ σ stress components w z w z z z z,, z w,, deformato n, For small γ γ γ ε ε ε

Generalzed Hooke s Law Ε z z ε ε ε ν ν ν ν ν ν ν ν ν ν σ σ σ M.. Tamn, CSMLab, UTM 6 ( )( ) Ε z z z z z z γ γ γ ε ν ν ν ν τ τ τ σ { } [ ]{ } [ ] matr or elastct materal s a where D D ε σ

-D Problems T z Plane Stress Plane Stran z ( τ ), τ ( ) σ z, τ z z τ z ε zz z ( γ ), γ ( ), γ z z γ z z ε ε ε γ zz on-zero stran components Ε Ε Ε ( σ ν ( σ σ ) ( σ ν ( σ σ )) ( σ ν ( σ σ ) zz ν τ Ε zz zz M.. Tamn, CSMLab, UTM 7

Stran Stress { σ} Plane Stress and Plane Stran ε γ { ε } ε σ σ τ [ ] Hooke s Law [ D] { σ} [ D]{ ε} Elastct matr E E D ( )( ) Plane stress Plane stran M.. Tamn, CSMLab, UTM 8

General Loadng Tpes Tracton force, T(/m) Dsplacement (,) Fed bondar (,) Concentrated force () (P, P ) Bod force (/m ) (f b, f b ) M.. Tamn, CSMLab, UTM 9

Fnte Element Dscretzaton Dsplacement components at node j Q j- s -dsplacement Q j s -dsplacement Use smaller-szed elements to mproe accrac M.. Tamn, CSMLab, UTM

Formlaton of Tranglar Element () Local node nmbers are assgned n conter-clockwse drecton. -node tranglar element M.. Tamn, CSMLab, UTM { } 6 5 4

6 5 4 α α α α α α Assme a lnear araton of dsplacement feld wthn the element Formlaton of Tranglar Element () To dere nterpolaton fnctons (sng drect approach) M.. Tamn, CSMLab, UTM 6 5 4 6 5 4 6 5 4 : : node: α α α α α α α α α α α α α α α α α α Sole for α s

( ) ( ) ( ) c c c b b b a a a where,, a a a ( ) ( ) ( ) c c c b b b a a a Formlaton of Tranglar Element () M.. Tamn, CSMLab, UTM c, c, b, b, c b area of element ( ),,, c b a s are nterpolaton fnctons.

Dsplacement Feld 6 4 5 M.. Tamn, CSMLab, UTM 4 { } [ ]{ } { } 6 5 4 ( ),,, c b a { } 6 5 4

η ξ η ξ Interpolaton fnctons n terms of natral coordnates (ξ, η) M.. Tamn, CSMLab, UTM 5 η ξ

η ξ η ξ Interpolaton fnctons n terms of natral coordnates (ξ, η) η ξ M.. Tamn, CSMLab, UTM 6 6 4 5 ( ) ( ) ( ) ( ) 6 6 4 6 5 5 5 η ξ η ξ

Area Coordnate Representaton The shape fnctons can be phscall represented b area coordnates, A ; A A ; A A A where A s the area of the tranglar element,.e. A A A A M.. Tamn, CSMLab, UTM

Isoparametrc Representaton When the same shape fnctons (, and ) are also sed to represent the coordnates (,) of an pont wthn the element n terms of the nodal coordnates M.. Tamn, CSMLab, UTM 8 ( ) ( ) ( ) ( ) η ξ η ξ η ξ η ξ or j j j - j

Eample Consder a tranglar element shown below. Ealate the shape fnctons,, and at an nteror pont P. The tranglar element for solton. M.. Tamn, CSMLab, UTM 9

Jacoban Matr [ J ] Area A det [ J ] ( ) M.. Tamn, CSMLab, UTM

{ } γ ε ε ε Stran-Dsplacement Relatons () M.. Tamn, CSMLab, UTM γ

Stran-Dsplacement Relatons () ε ε γ det [ J ] { ε} [ B]{ } Stran-dsplacement matr Snce the strans for ths tranglar element depend onl on nodal coordnate ales that are constant, t s often termed constantstran-tranglar (CST) element. M.. Tamn, CSMLab, UTM

Potental Energ The fnctonal n the aratonal prncple s the potental energ of a -D elastc bod acted b srface and bod forces. π π (, ) U (, ) W (, ) [ ] tda [ B] [ D]{ } T * ε T (, ) [ B] [ D][ B]{ } π M - A A Fb { } ( e (, ) π ) (, ) e tda c T { }ds A o tda M.. Tamn, CSMLab, UTM

Mnmm Potental Energ Theorem () The dsplacement feld (,) whch satsfes the elbrm, and the condtons at the bondar srface s the one that mnmzes the potental energ. δπ δπ Μ e ( (, ) δπ ) (, ) ( e ) (, ) e r π ( e) ( e) δ r π δ Snce δ, δ are ndependent aratons and not necessarl zero, ths π ( e) ( e) π ;,,...,r M.. Tamn, CSMLab, UTM 4

Mnmm Potental Energ Theorem () π π ( e A ) ( e) [ Β] ( e) T ( e) [ D][ Β]{ } tda ( e A ) Ν [ ] ( e k ) { } { F } ( e) { T} ( e) b ( e) ( e) { } { } ( e ) ( e) F da Ν T ds b ( e ) s Element stffness matr T [ k] [ B] [ D][ B] t da ( A e ) M.. Tamn, CSMLab, UTM 5

Eample Determne the stffness matr for the straght-sded tranglar element of thckness t mm, as shown. Use E 7 GPa, ν. and assme a plane stress condton. Solton Element stffness matr s gen b where, e T [ k] t A [ B ] [ D ] [ B ] e t mm e e Ae det J.75 A.875 mm e [ ] () (Dmenson s n mm) M.. Tamn, CSMLab, UTM 6

The stran-dsplacement matr, [B] s gen b B det [ J ] [ ].5 7 7.5 4 7.5 4 7.5.75 4 7.5 7.5 4 7 7.5.5 [ B].5 5.5.5 5.5.75.5.5 5 5.5.5 M.. Tamn, CSMLab, UTM 7

The transpose of [B] matr s, [ B] T.5.5 5.5.75.5 5.5 5.5 5.5.5 For a plane stress condton, the materal matr [D] s gen b [ D] ν. E 7 ν. ν. ( ν ) (.) M.. Tamn, CSMLab, UTM 8

Sbstttng all the terms nto e.() we hae, [ k] e.5.5 5.5.875.75.5 5.5 5.5 5.5.5 5 7 (. )...5.75.5.5 5.5.5 5.5 5.5 5.5.5 M.. Tamn, CSMLab, UTM 9

Mltplng and smplfng, we obtan.494.5.49.45.85.68.5...87.74 4.4.6.994.549.49.74.65.79.868 smmetr 5.6 e 4 [ k] 4 5 6 ote: Connectt wth the local DOFs s shown. M.. Tamn, CSMLab, UTM

Element Force Vector Bod Force Sppose bod force components, f and f, act at the centrod of a tranglar element. The work done b these forces s gen b, T { } { } e ( ) e f t da t f f da e M.. Tamn, CSMLab, UTM

Recall, Also, da e e A Sbstttng the aboe nto e.(), we get 4 5 6 { } { f } t da { } { f } T T e e f t da f where {f} e s the element bod force ector, gen b t A f f f f f f f e e e { },,,,, ote: Phscal representaton of force ector {f} e s shown. T M.. Tamn, CSMLab, UTM

Tracton Force Sppose a lnearl arng tracton components act along edge - of a tranglar element. The potental energ de to the tracton force s, T { } { } ( ) e T tdl T T tdl l () Usng the relatons, 4 T T T T T T wth, ( ) ( ) l Also, dl l, dl l, dl l 6 l l l M.. Tamn, CSMLab, UTM

Sbsttton nto e.() elds, { } { } [,,, ] { } T T tdl T T e e 4 where {T} e s the ealent nodal force ector de to tracton force, gen b e tel { } [( T T ) ( T T ) ( T T ) ( T T )] T T 6 ote: The phscal representaton of the nodal force ector {T} e s shown. M.. Tamn, CSMLab, UTM 4

Specal Case: If the tracton forces are nform, then T T T ; T T T Ths, the nodal force ector n e.() becomes t l T T T T T e e { },,, T M.. Tamn, CSMLab, UTM 5

Concentrated Force The concentrated force term can be easl consdered b hang a node at the pont of applcaton of the force. If concentrated load components P and P are appled at a pont, then T { } { } P Q P Q P Ths, P and P,.e. the and components of {P} get added to the ( - )th component and ( )th components of the global force ector, {F}. ote: The contrbton of the bod, tracton and concentrated forces to the global force ector, {F} s represented b, ( e ) { } e { } { } { } F f T P e M.. Tamn, CSMLab, UTM 6

Eample Consder a porton of fnte element model of a plate as shown. A nform tracton force of k/m acts along the edges 7-8 and 8-9 of the model. Determne the ealent nodal forces at nodes 7, 8, and 9. M.. Tamn, CSMLab, UTM 7

Sggested solton We wll consder the two edges, 7-8 and 8-9 separatel, and then merge the fnal reslts. 4 4 cosθ T T cosθ.6 k/m.6 /mm 5 5 5 5 snθ T T snθ. k/m. /mm 5 5 5 For edge 7-8 (edge - local) l t e mm ( 85) ( 4) 5 mm Ealent nodal forces de to nform tracton force T k/m s, { } ( 5) [ ] T.6..6. [ 5 5] T T M.. Tamn, CSMLab, UTM 8

For edge 8-9 (edge - local) l t e mm ( 85 7) ( 4 6) 5 mm Ealent nodal forces de to nform tracton force T k/m s, { } ( ) [ ] 5 T.6..6. { T } [ ] T 5 5 These loads add to global forces F, F 4,,F 8 as shown. T M.. Tamn, CSMLab, UTM 9

Strans and Stress Calclatons a) Strans The strans n a tranglar element are, { ε} e ε ε γ d d d d ( d d ) d d e { ε} [ B]{ } ote: We obsered that {ε} e depends on the [B] matr, whch n trn depends onl on nodal coordnates (, ), whch are constant. Therefore, for a gen nodal dsplacements {}, the strans {ε} e wthn the element are constant. Hence the tranglar element s called a constant-stran trangle. M.. Tamn, CSMLab, UTM 4

b) Stresses The stresses n a tranglar element can be determned sng the stress-stran relaton, ote: σ e e e { σ} σ [ D]{ ε} [ D][ B]{ } τ. Snce the strans {ε} e are constant wthn the element, the stresses are also the same at an pont n the element.. Stresses for plane stress problem dffer from those for plane stran problem b the materal s matr [D].. For nterpolaton prposes, the calclated stresses ma be sed as the ales at the centrod of the element. 4. Prncpal stresses and ther drectons are calclated sng the Mohr crcle. M.. Tamn, CSMLab, UTM 4

Eample Consder a thn plate hang thckness t.5 n. beng modeled sng two CST elements, as shown. Assmng plane stress condton, (a) determne the dsplacements of nodes and, and (b) estmate the stresses n both elements. M.. Tamn, CSMLab, UTM

astran Solton Dstrbton of Total Translaton n the plate. CST elements sed. Magnfcaton 4X. M.. Tamn, CSMLab, UTM

astran Solton Dstrbton of Total Translaton n the plate. CST elements sed. Magnfcaton 4X. M.. Tamn, CSMLab, UTM

Sggested solton Element connectt Local odes Element o 4 4 For plane stress problem, the materals matr s gen b [ D] [ D] E ν ν ν ( ν ).5.75 6.5 M.. Tamn, CSMLab, UTM

Element Area of element, [ ] A The stran-dsplacement matr, det 6 n [ J ] ( ) B det [ J ] 6 Mltplng matrces [D][B] we get, [ ][ ] () 7 D B.67.4.4.67.67.6.6.67.6.4.6.4 M.. Tamn, CSMLab, UTM

The stffness matr s gen b, () T [ k] t A [ B] [ D][ B] Sbsttte all parameters and mltplng the matrces, elds Q Q Q Q 4 Q 7 Q 8 [ ] () 7 k.98.5.45..5..4.....45... smmetrc.5. ote: Connectt wth global DOFs are shown. M.. Tamn, CSMLab, UTM

Element Area of element, A The stran-dsplacement matr s [ ] det 6 n [ J ] ( ) B det [ J ] 6 Mltplng matrces [D][B] we get, [ ][ ] () 7 D B.67.4.4.67.67.6.6.67.6.4.6.4 M.. Tamn, CSMLab, UTM

The stffness matr s gen b, () T [ k] t A [ B] [ D][ B] Sbstttng all parameters and mltplng the matrces eld [ ] () 7 k Q 5 Q 6 Q 7 Q 8 Q Q 4.98.5.45..5..4.....45... smmetrc.5. ote: Connectt wth global DOFs are shown. M.. Tamn, CSMLab, UTM

Wrte the global sstem of lnear eatons, [K]{Q} {F}, and then appl the bondar condtons: Q, Q 5, Q 6, Q 7, and Q 8. The redced sstem of lnear eatons are,.98.45. Q..4 Q 7.45.98 Q 4 Solng the redced SLEs smltaneosl elds, Q.9 Q Q 4 7.46 5.875 n. M.. Tamn, CSMLab, UTM

Stresses n element For element, the element nodal dsplacement ector s () 5 { } [ ].9,,.875, 7.46, T The element stresses, {σ} () are calclated from [D][B] () {} as () { σ } [ ] Stresses n element T 9., 8.7, 6. ps For element, the element nodal dsplacement ector s () 5 { } [ ],,,.875, 7.46 T The element stresses, {σ} () are calclated from [D][B] () {} as () { σ } [ ] T 9.4,.4, 97.4 ps M.. Tamn, CSMLab, UTM