Superconducting glue: are there limits on T c?

Similar documents
Can superconductivity emerge out of a non Fermi liquid.

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

Neutron scattering from quantum materials

A brief Introduction of Fe-based SC

High temperature superconductivity

More a progress report than a talk

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

Foundations of Condensed Matter Physics

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Electronic Structure of Iron Based Superconductors: Pnictides vs. Chalcogenides

Superconductivity Induced Transparency

What's so unusual about high temperature superconductors? UBC 2005

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

Conference on Superconductor-Insulator Transitions May 2009

Anisotropic Magnetic Structures in Iron-Based Superconductors

Photoemission Studies of Strongly Correlated Systems

Predicting New BCS Superconductors. Marvin L. Cohen Department of Physics, University of. Lawrence Berkeley Laboratory Berkeley, CA

Intermediate valence in Yb Intermetallic compounds

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Pairing Mechanism for FeSe systems: HEDIS (highly electron doped FeSe )

Magnetism in correlated-electron materials

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

The Hubbard model in cold atoms and in the high-tc cuprates

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Discussion of General Properties of s ± Superconductors

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Superconductivity in Fe-based ladder compound BaFe 2 S 3

Development of density functional theory for plasmon assisted superconductors. Ryotaro Arita Univ. Tokyo/PRESTO

Strongly Correlated Systems:

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Nodal and nodeless superconductivity in Iron-based superconductors

New insights into high-temperature superconductivity

Quantum dynamics in many body systems

Examples of Lifshitz topological transition in interacting fermionic systems

Superconductivity and Superfluidity

Superconductivity from repulsion

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

Physics of iron-based high temperature superconductors. Abstract

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

Dao-Xin Yao and Chun Loong

High-Temperature Superconductors: Playgrounds for Broken Symmetries

Supplementary Figures

Physics 416 Solid State Course Nov. 18, 2016

Ultrafast Dynamics in Complex Materials

Quasiparticle dynamics and interactions in non uniformly polarizable solids

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

WHAT IS SUPERCONDUCTIVITY??

High-T c superconductivity in FeSe monolayers: Why T c is so High?

Theory of Lifetime Effects in Point-Contacts: Application to Cd 2 Re 2 O 7

Visualization of atomic-scale phenomena in superconductors

Understanding the Tc trends in high Tc superconductors. Kazuhiko Kuroki

Unusual magnetic excitations in a cuprate high-t c superconductor

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

Intrinsic tunnelling data for Bi-2212 mesa structures and implications for other properties.

Mott metal-insulator transition on compressible lattices

Tuning order in cuprate superconductors

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0,

Density Functional Theory for Superconductors

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BaFe 2 As 2 : A Model Platform for Unconventional Superconductivity. David Mandrus, Oak Ridge National Lab.

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

arxiv:cond-mat/ v1 8 May 1997

arxiv:cond-mat/ v1 9 Nov 2001

Density-functional theory of superconductivity


Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Demonstration Some simple theoretical models Materials How to make superconductors Some applications

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Electron-phonon calculations for metals, insulators, and superconductors

Phonons, electron-phonon coupling and superconductivity in Mo 3

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s.

Superconductivity due to massless boson exchange.

Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы

Quantum Choreography: Exotica inside Crystals

Chapter Microscopic Theory

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Resonant Inelastic X-ray Scattering on elementary excitations

Vortices in superconductors& low temperature STM

Phys 769: Selected Topics in Condensed Matter Physics Summer Lecture 12: Cuprate superconductivity

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

Superconducting properties of FeSe 0.5 Te 0.5

High Temperature Superconductivity In Pd-[H(D)] X System

Quantum Oscillations in underdoped cuprate superconductors

Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth

APS March Meeting Years of BCS Theory. A Family Tree. Ancestors BCS Descendants

A New look at the Pseudogap Phase in the Cuprates.

Back to the Iron age the physics of Fe-pnictides

Effect of the magnetic resonance on the electronic spectra of high-t c superconductors

Zhiping Yin. Department of Physics, Rutgers University Collaborators: G. Kotliar, K. Haule

I.4. MULTI-GAP SUPERCONDUCTIVITY IN MgB 2 1. INTRODUCTION

Quantum phase transitions

5 Problems Chapter 5: Electrons Subject to a Periodic Potential Band Theory of Solids

arxiv: v2 [cond-mat.supr-con] 2 May 2009

Pairing symmetry in iron based superconductors

Transcription:

Superconducting glue: are there limits on T c? Oleg V. Dolgov Max Planck Institute for Solid State Research Stuttgart Germany In collaboration with E.G. Maksimov P.N. Lebedev Physical Institute RAS Moscow Russia

V.L. Ginzburg Nauka Publishing Moscow 977 we have to point out however that the above estimate is based on a standard metal and can not be applied to all hypothetical situations

Outline. Introduction.. Electron-phonon interaction. 3. Causality and stability. 4. Restrictions from Eliashberg euations. 5. Phonon instability. 6. Nonphonon mechanisms. 7. Conclusions. Briefly:. Pnictides. Quasiparticle renormalization effects in the optical properties of iron pnictides with A.V. Boris

Kelvin 50 00 50 00 50 0 Hg 90 940 960 980 000. BaKBiO 3. Cs 3 C 60 3. YNi B C 4. Li x HfNCl 5. p-doped p C60 6. MgB 7. C-60/CHBrC 3 Pb Nb Hg-3 P3 KBar NbCN La-4 Hg-3 Tl-3 Y-3 Nb 3 Ge 90 940 960 980 000 3 7 5 4 0-50 -00-50 -00 6-50 Celcius

BCS type behavior M.Matsui et al. PRL90700003 δ δ i E v i E u G + + k k k k k k k k E u ε + k k k E v ε

Electrons join to form Cooper Pairs usually A Magnetic Attraction? Spin attraction? The lattice after all? Something else?

Electrons join to form Cooper Pairs usually A Magnetic Attraction? Spin attraction? The lattice after all?

Electrons join to form Cooper Pairs usually A Magnetic Attraction? Spin attraction? The lattice after all? Excitons LittleGinzburg

Phonon mediated superconductivity attraction: N0V v F μ * Coulomb repulsion: μ + μ log ε * > 0 then pairing / F Ω D BCS model: << and constant for < D Eliashberg formalism: l general and strong coupling effects

How can two electron attract?. Repulsive Coulomb interaction:. Screening by other electrons and ions Overscreening by phonons ] 4 [ 4 4 χ π π ε π tot tot e e e V + 4 ~ TF ph C e V V V χ π + + + 4 ~ TF C e V χ π + 4 TF C e V χ π +

T c.4 V av exp[ T c problem N0 V 4 ' 0 3 πe < V k k > FS d ε ~ V V C + V ] ph tot ; 0 T c.4 D exp λ μ

λ N0 d μ N0 d 3 3 V ph ~ V C 0 0 μ μ ε + μln F D εtot 0 λ μ

+ λ T c.4 ϖ exp[ λ μ + μ log ε / ϖ F ];

+ λ T c.4 ϖ exp[ λ μ + μ log ε / ϖ F ]; λ>μ ε0<0 T c /ε F λ<μ ε0> 0.0 0.5.0 ϖ/ε F

Superconductivity in d- and f-band Metals AIP Conf. Proc. p.7 97!!!

+ λ T c.4 ϖ exp[ λ μ + μ log ε / ϖ F ]; λ>μ ε0<0 T c /ε F λ<μ ε0> 0.0 0.5.0 ϖ/ε F

max T c ε F exp 3 ; λ λ opt μ ; Stoner instability ε F 7 ev

max T c ε F exp 3 ; λ λ opt μ ; ε F 7 ev Stoner instability T max c 0K We need 0 0 ε!

Response functions A R х I

Kramers-Kronig relations Response functions A R х I causality reuirements R R + π 0 E de iδ Im R E

A R х I Response functions Kramers-Kronig relations Im 0 Im 0 0 E R R R E R R R E de i E de + + π δ π static case causality reuirements

Electromagnetic response functions δ ε δ δ ε δ D E E D or 4 ext div πδρ δ D 4 tot div πδρ δ E

0 Im 00 Im/ 0 / 0 0 E E E de E de + + ε ε ε ε π π arbitrary 0

/ ε 0 + ε 00 + π 0 de E π 0 de E reuirements of stability Im ε 0 or Im/ ε E arbitrary Imε 0 E 0 Im / ε 0 for all

/ ε 0 + ε 00 + π 0 de E π 0 de E reuirements of stability Im ε 0 or Im/ ε E arbitrary Imε 0 E 0 Im / ε 0 for all / ε 0 ε 0 ε 0 0 ε 0 0 Rev. Mod. Phys. 53 898

Local field effects Lorentz-Lorenz formula ε + 4πn α / 4π /3nα General expression ε 4π / + 4π / Π eff G Π eff > 0 α local field corrections Π eff < 0

Wigner crystal Dielectric function ε ε 0 pl λ Negative for all λ e λ λ λ pl ne 0 λ ε 0 < 0 λ ne λ λ λ sum rule pl

Dielectric functions for real systems ε 0 normal metals : K Al Pb hypothetical metallic H classical charge fluid

The argument of Cohen and Anderson postulates that stability reuires the static dielectric function of a material to be positive which leads to an upper bound on Tcof approximately 0 K. This bound and stability reuirement are subseuently dismissed in the paper because of the neglect of local fields and umklapp processes and further work 4 has clarified that stability only reuires a positive static dielectric function at long wavelengths.

Parameters which determine Тс T c + λ exp[ ] ln λ μ large energies of intermediate bosons phonons excitons spinfluctuations etc. large coupling constants ln ~ M λ dωα Ω F Ω Ω

α F from tunneling conductance - planar junctions Bi Sr CaCu O GaAs and Au - break-junctions from Bi 8 Sr CaCu O 8

BCS McMillan Eliashberg Z0 + λ - mass renormalization freuency dependence of Mass renormalization increases DOS; why does it reduce the coupling? T c exp λ μ.4 ph * λ λ + λ.4 /.

Strong coupling [ ] ; / exp 3. 4 / ln / ln ; π θ π θ γ θ θ ξ π λ λ θ π λ θ π θ λ θ π ξ λ D c D D D c c T D c D c c D D c n T n c T T T e T T d T >> << + + BCS or λ>> or λ<<

Strong coupling [ ] ; / exp 3. 4 / ln / ln ; π θ π θ γ θ θ ξ π λ λ θ π λ θ π θ λ θ π ξ λ D c D D D c c T D c D c c D D c n T n c T T T e T T d T >> << + + BCS or λ>> or λ<< λ Z

Superstrong coupling λ>> 0.5 T c / ph 0.4 0.3 0. 0.83 λ ph / Upper Bound Lower Bound McMillan Euation 0. 0 0 3 4 5 λ

Metallic Hydrogen E.G.MaksimovD.Savrasov SSC.9569 00 λ7.33 Tc 600 K!

Superconductivity at 39K in MgB Akimitsu et al. Nature London 40 63 00

Something unusual is going on The uasi-d bands couple to the optical B-B bond-stretching modes which are softened by the e-ph coupling and are strongly anharmonic. Kong OVD Jepsen Andersen PRB 64 0050R 00

Coupling of the E g phonon mode to the electronic structure

Journal of Superconductivity and Novel Magnetism Vol. 9 Nos. 3 5 July 006 C 006

Journal of Superconductivity and Novel Magnetism Vol. 9 Nos. 3 5 July 006

W.E. Pickett: Тс430K!!! λ.5 Problems: - lattice stability? - pair-breaking effect by low-energy phonons Dolgov&Golubov PRB 77 456008

λ Q g δ ε δ ε MN0 k k+ Q k k+ Q Q k W.E. Pickett

0 Q k k k Q k k Q Q + + ε δ ε δ λ g MN 0 Q Q Q k k k Q k k Q Γ + + + ε δ ε δ λ g MN O.V.D. O.K. Andersen I.I. Mazin PRB 008 W.E. Pickett

Phys. Rev. B 7409450 006 Hypothetical BC boron-doped diamond λ3.6 T c 40 60 K

Anisotropy vanishes for strong coupling OVD A.A. Golubov PRB 77 456 008

Phonon instability ] [ δ ξ ξ θ δ ξ ξ θ ε ε ξ ε δ i i M g n n M g bare d + + + + Σ + + k k k k k k k A A bare A M g N M g N λ λ λ λ λ 0 ; 0

Excitonic mechanisms Negative Electronic Dielectric Function ε el 0 < 0 Problems with the stability of phonons ph ε el Ω pl 0 0; i Ω 4πZ e pl M i N i

Interaction via spin-waves

Spin fluctuations How exactly are spin fluctuations different from phonons? Phonon induced superconductivity is much better understood than spin-fluctuation induced despite comparable history Berk-Schrieffer 66 Fay-Appel 77-80 Opposite effect of on Z and SF on in singlet pairing: SF Spin fluctuations increase the mass but decrease the net pairing strength

Spin resonance B.Keimer00 Fig.

Magnetic neutron scattering and NMR against SFI I Q limim χ Q / 0 Tc Tc 9 K 9.5 K pair Im χ Q λ ~ sf gsfi d - big change of χ Q but small change of T! c

Spin fluctuations ~ 3.% n s λ sp ZU t 0.

n n n n n c n n i V T i i Z Ω Δ Δ π n.ph n.ph k k. / n ep n i Z Γ + Non-phonon ep ep T d-wave

n n n n n c n n i V T i i Z Ω Δ Δ π n.ph n.ph k k. / ep i Z Γ + Damping due to phonons Non-phonon ep ep T T c T c0 e ep. d-wave

n n n n n c n n i V T i i Z Ω Δ Δ π n.ph n.ph k k. / ep i Z Γ + Damping due to phonons Non-phonon ep ep T T c T c0 e ep. T c0 400 00 K!!! For λ ph ~- and T c ~60 K bare d-wave

n n n n n c n n i V T i i Z Ω Δ Δ π n.ph n.ph k k. / ep i Z Γ + Damping due to phonons Non-phonon ep ep T T c T c0 e ep. T c0 400 00 K!!! For λ ph ~- and T c ~60 K bare d-wave

Conclusions There are NO formal restrictions on T c. There are some problems with phonon instabilities for all mechanisms. The ROOM-TEMPERATURE superconductivity is not the myth but the object for investigations.

LaOFeAs a not-so-simple superconductor 008: LaO -x F x FeAsTc max 6 K at x0. Tetragonal layers of La-O + Fe-As F replaces O and dopes electrons into the system. Replacing La with other Rare-Earths increases Tc up to 55 K Sm. EXP: small coherence length T-dependent Hall coefficient no jump in specific heat at Tc specific heat + point contact: nodes in the gap?

LaOFeAs Electron-phonon coupling λ 0. 06K T log ME c 0.5K N0.st / ev L. Boeri OVD A.A. Golubov PRL 0 06403 008 E-ph interaction: λ~0. is too small to account for T c Doping can only decrease λ. N0 is large λ is small because of small e-ph matrix elements. The coupling is uniform over phonon modes: the only directed bands sit far from E F. Possible two-gap scenario with large repulsive interband interaction

0. λ 0.4 0.093 0.083 T c 0.8 K α F 0.5 0.0 0.05 N e 0/N h 04/3 e-e h-h e-h h-e total 0.00 0 0 40 60 80 mev

0.3 LaNiAsO 0.9 F 0. λ0.7 LaFeAsO 0.9 F 0. λ0. 0. α F 0. 0.0 0 0 0 30 40 50 60 70 mev

LaNiAsO 0.9 F 0. Z. Li et al. Phys. Rev. B78 060504 R 008 0.3 LaNiAsO 0.9 F 0. 0 T c 3.8 K μ*0. ΔCT c /γ N 0T c.67>.43bcs α F 0. 0. λ0.7 ΔC/T mj/molk 5 0-5 γ 0 3.86 mj/molk exp 0.0 0 0 0 30 40 50 60 70 mev -0 0.0 0.5.0 T/T c L.Boeri OVD A.A. Golubov the special issue of Physica C 009

The specific heat of the single crystal Ba -x K x Fe As P. Popovich R. Kremer A. Boris OVD

ln ~5-40 mev; ph ln~5 mev /T c

Probing SC gap from IR spectroscopy Photon energy mev 0 0 0 30 40 50 60 70 3000 500 Ba -x K x Fe As σ Ω cm 000 500 000 ~6 kt c T c 38.5 K 500 ~3.5 kt c 0-000 -000 Τ c 38.5Κ ε -3000-4000 40 K 34 K 5 K -5000 0 80 60 40 30 400 480 560 Wavenumber cm-

Probing SC gap from IR spectroscopy Photon energy mev 0 0 0 30 40 50 60 70 3000 single SC 8-9 mev strong coupling SC 5.5-6.5T c σ Ω cm 500 000 500 000 500 Δ SC Ba -x K x Fe As Δ SC +Ω clean limit ~0 cm - s± model with intermediateboson function: 0 0.4 ε -000-000 -3000-4000 Τ c 38.5Κ 40 K 34 K 5 K -5000 0 80 60 40 30 400 480 560 B Wavenumber cm- 0 00 400 600 cm - 0.3 0. 0. 0.0 5 mev cm -

Probing SC gap from IR spectroscopy O.V. Dolgov: σ Ω cm 0 0 0 30 40 50 60 70 3000 500 000 500 000 500 0 Δ SC Photon energy mev Ba -x K x Fe As Δ SC +Ω 4πRe σ/ pl 0.4 0.004 0.003 0.00 0.00 0.000 clean γ intra 0 cm - 0 00 00 300 400 500 cm - T40 K T5 K intermediate-boson function ε -000-000 -3000-4000 Τ c 38.5Κ 40 K 34 K 5 K B 0.3 0. 0. cm - -5000 0 80 60 40 30 400 480 560 Wavenumber cm- 0.0 0 00 400 600 cm -

Charge carrier optical self-energy or Why I am worry about /tw representation in Fe pnictides. 4 σ π ε ε ε ε i i + + 4 σ π ε ε Drude i + 4 Re ] Im[ ε ε ε ε πσ τ + Σ pl Drude pl Σ

Charge carrier optical self-energy Sw Im[ Σ ] τ Re 4πσ pl Drude pl ε ε + ε ε /τ ev 0.5 0.4 0.3 Y3 a-axis T c 9.5 K T 00 K ε inf ε inf 5 cuprates: ε 5-6 lowest inter-band transitions at.8 -.0 ev 0. ε inf 8 0. 000 000 3000 4000 Wave number cm -

Charge carrier optical self-energy Sw Im[ Σ ] τ Re 4πσ pl Drude pl ε ε + ε ε /τ ev 0.5 0.4 0.3 0. 0. Y3 a-axis T c 9.5 K T 00 K ε inf ε inf 5 ε inf 8 000 000 3000 4000 Wave number cm - cuprates: ε 5-6 lowest inter-band transitions at.8 -.0 ev pnictides: ε - 5!! lowest inter-band transitions at 0. - 0.5 ev!! An incorrect account of the interband transitions!

Conclusions II Pnictides except LaNiAsO 0.9 F 0. cannot be described by electron-phonon interaction. Optical properties in the N- and SC- states can be described by spin fluctuations. The linear freuency dependence of the optical scattering rate /τ is an artifact of the incorrect account of interband transitions.

Possible connection with other exotic superconductors S.-L. Drechsler MgB uasi-d Multibands gaps borocarbides FeAs based SC Heavy uasiparticles Unconventional pairing Heavy Fermions Cuprates Vicinity of AFM phases B-As-similarities