Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Similar documents
Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Tsuyoshi Nakaya (Kyoto Univ.)

Recent Nucleon Decay Results from Super-Kamiokande

UNO: Underground Nucleon Decay and Neutrino Observatory

Search for Neutron Antineutron Oscillations at Super Kamiokande I. Brandon Hartfiel Cal State Dominguez Hills May

The Hyper-Kamiodande Project A New Adventure in n Physics

Search for Proton Decay in Super-Kamiokande

Recent results from Super-Kamiokande

Multi-Megaton Water Cherenkov Detector for a Proton Decay Search TITAND (former name: TITANIC)

1 Introduction. 2 Nucleon Decay Searches

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

Super-Kamiokande ~The Status of n Oscillation ~

Gadolinium Doped Water Cherenkov Detectors

( Some of the ) Lateset results from Super-Kamiokande

Super-Kamiokande (on the activities from 2000 to 2006 and future prospects)

Review of Nucleon Decay Searches at Super-Kamiokande

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Review of Nucleon Decay Searches at Super-Kamiokande

Single π production in MiniBooNE and K2K

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

Hyper-Kamiokande. Kenzo NAKAMURA KEK. August 1-2, 2005 Neutrino Meeting IIT-Bombay, Mumbai, India

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

Super-KamiokaNDE: Beyond Neutrino Oscillations. A. George University of Pittsburgh

Radio-chemical method

GADZOOKS! project at Super-Kamiokande

Detectors for astroparticle physics

Neutrino Oscillation and CP violation

Neutrino Oscillations and the Matter Effect

Grand Unified Theories & Proton Decay. Ed Kearns Boston University NEPPSR 2009

Analyzing Data. PHY310: Lecture 16. Road Map

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

SciBar and future K2K physics. F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies

Units and dimensions

arxiv: v1 [physics.ins-det] 14 Jan 2016

Next-Generation Water Cherenkov Detectors (1) Hyper-Kamiokande

Introduction to Super-K and Hyper-K. Roger Wendell Kyoto U. High-Energy Group Meeting

Showering Muons in Super Kamiokande. Scott Locke University of California, Irvine August 7 th, 2017

Super-K Gd. M.Ikeda(ICRR) for Super-K collaboration Workshop for Neutrino Programs with facilities in Japan

The first one second of the early universe and physics beyond the Standard Model

Neutrino interaction at K2K

Solar and atmospheric ν s

Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector

New Limits on Heavy Neutrino from NA62

1. Neutrino Oscillations

Interactions/Weak Force/Leptons

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Indication of ν µ ν e appearance in the T2K EXPERIMENT

KamLAND. Studying Neutrinos from Reactor

Neutrinos From The Sky and Through the Earth

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

K2K and T2K. 2006/10/19 For the 2006 External Review Panel. Masato Shiozawa Kamioka Observatory

Recent T2K results on CP violation in the lepton sector

Neutrino oscillation physics potential of Hyper-Kamiokande

Atmospheric muons & neutrinos in neutrino telescopes

Interactions/Weak Force/Leptons

The Hyper-Kamiokande project

Proton Decay and GUTs. Hitoshi Murayama (Berkeley) Durham July 20, 2005

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 11 : Neutrino Oscillations. Neutrino Experiments

SK Atmospheric neutrino. Choji Saji ICRR,Univ. of Tokyo for the Super-Kamiokande collaboration

Recent Results from T2K and Future Prospects

N u P J-PARC Seminar August 20, 2015

Chapter 46 Solutions

R. D. McKeown. Jefferson Lab College of William and Mary

Impression of NNN05. Kenzo NAKAMURA KEK. April 7-9, 2005 NNN05 Aussois, Savoie, France. K. Nakamura NNN05, Aussois, April 7-9,

What should be considered and improved for CP study.

The First Results of K2K long-baseline Neutrino Oscillation Experiment

Atmospheric neutrinos with Super-Kamiokande S.Mine (University of California, Irvine) for Super-Kamiokande collaboration

Neutrino Oscillations

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge

1. Introduction on Astroparticle Physics Research options

Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I

Other Physics with Geo-Neutrino Detectors

Searching for at Jefferson Lab. Holly Szumila-Vance On behalf of the HPS, APEX, DarkLight, and BDX 2017 JLab User s Group Meeting 20 June 2017

Neutrinos and the Universe

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

Hyper-K physics potentials and R&D

Question 1 (a) is the volume term. It reflects the nearest neighbor interactions. The binding energy is constant within it s value, so.

Lecture 2: The First Second origin of neutrons and protons

Super- Kamiokande. Super- Kamiokande (1996- ) h=41.4m. Hyper- K (201X? - ) Kamiokande ( ) M. Yokoyama Friday 14:30

Computational Applications in Nuclear Astrophysics using JAVA

Recent results on neutrino oscillations and CP violation measurement in Neutrinos

Available online at ScienceDirect. Physics Procedia 61 (2015 ) K. Okumura

Long Baseline Neutrinos

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

The T2K Neutrino Experiment

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

Neutrino Physics: Lecture 1

Lepton Universality in ϒ(nS) Decays at CLEO

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

XI. Beyond the Standard Model

R-hadrons and Highly Ionising Particles: Searches and Prospects

The future of neutrino physics (at accelerators)

Electrons for Neutrinos

Neutrino Oscillations

Camillo Mariani Center for Neutrino Physics, Virginia Tech

Neutrino Mass How can something so small be so important? Greg Sullivan University of Maryland April 1999

Special Contribution Observation of Neutrinos at Super-Kamiokande Observatory

Transcription:

Proton Decays -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Look for Baryon number violation B number conservation is experimental subject B number conservation is probably accidental Different from electric charge conservation assured by local gauge symmetry (EM force) indirect evidence for B by B asymmetry in the universe

GUTs or Plank scale physics Grand Unification G SU(2) U (1) SU(3) Quark+lepton Proton decays

Motivation for nucleon decay searches directly confirm or exclude GUTs or Plank scale physics Successful unification of 15(+1?) fermions in one or two representation(s). 3 coupling constants seem to meet at ~10 16 GeV small neutrino mass indicates heavy n R

Lifetime prediction p p Dimension=6 (2 fermion 2 fermion) + e 4 5 u u d g m Γ = p M 4 X : τ( p e+ π 0 ) = 10 ~35? years Dimension=5 (2 fermion - 2 sfermion) q~ ν h 4 m 5 u u d w ~ X q~ H ~ C d d s d p 0 K + Γ = p M 2 M 2 Hc X : τ( p νk+ ) = 10 29~39? years minimal SU(5) minimal SUSY SU(5) Super-K SUSY SO(10) 10 30 10 31 10 32 10 33 10 34 10 35 partial nucleon life time (year)

The Super- Kamiokande detector C Scientific American Ring Imaging Water Cherenkov detector Charged particle 42m 39m 1000 m underground 50,000 ton (22,500 ton fid.) 11,146 20 inch PMTs 1,885 anti-counter PMTs

Super- K as a proton decay detector Source H 2 O 2/10 free proton no nuclear effect, accurate high efficiency no Fermi motion, good momentum valance 22.5 kton 8 10 33 protons Good detector performance Vertex resolution: 30 cm (1-ring) :15 cm(p e + π 0 ) Trigger threshold: 5 MeV e trigger ε=100% for most of nucleon decay modes Energy resolution: 3~4% for e, µ Particle ID : 99% 1-ring 1 µ,, e : >97% p e + π 0,p µ + π 0

Proton decay kinematics Nucleon decay kinematics are calculated taking into account; Fermi motion of parent nucleons in 16 O Nuclear potential Nucleon-nucleon correlation in 16 O 10% decays in 16 O are correlated decay (p+n e + +p 0 +N) (Yamazaki and Akaishi, PLB453(1999)1-6) Uncorrelated (normal) decay

Meson interactions Meson interactions in 16 O p 0, p +, p - h r w scattering, absorption, charge exchange in 16 O Nh Np, Nh, Npp short lifetime, 100% decay without interactions. conversion to p, r, s, w 16 O e + p 0 p + ~50% p 0 escape w/o any interactions

energy reconstruction Full SK-I period cosmic ray mu p0 invariant mass +-1% decay electrons +-1% Corrected for light attenuation length in water Time variation of E scale ~ 0.9% E scale difference < 1.8% (decaye, pi0, cosmic mu) energy scale uncertainty of neutrino detection < 2.0%

p e + p 0 @Super-K p e + p 0 MC e + g g

p e + p 0 @Super-K p e + p 0 MC Criteria for p e + p 0 2 or 3 Cherenkov rings All rings are showering 85 < Mπ0 M < 185MeV/c 2 (3-ring) No decay electron 800 < M proton < 1050 MeV/c 2 P total < 250 MeV/c ε = 40 %

p e + p 0 @Super-K AtmnBG MC data 0.3 exp d BG 0 candidate t p/b(p e + p 0 ) > 5.4 10 33 years (90% CL)

Comparison of data and MC in p e + p 0 search

p e + h 0, h gg p e + h 0 MC AtmnBG MC data ε = 17% 0.2 exp d BG 0 candidate t p/b(p e + h 0 ) > 2.3 10 33 years (90% CL)

p e + r 0, r p + p - p e + r 0 MC ε = 4.6% AtmnBG MC 0.4 exp d BG data 0 candidate t p/b(p e + r 0 ) > 6.1 10 32 years (90% CL)

p e + w 0, w p 0 g p e + w 0 MC ε = 3.0% AtmnBG MC 0.5 exp d BG data 0 candidate t p/b(p e + w 0 ) > 4.0 10 32 years (90% CL)

p nk +, K + m + n @Super-K Method I (spectrum fit) 1 µ and 1 decay electron 215 < Pµ P < 260 MeV/c no proton ν p K + m + e + Br(K + + )=63% Number of Events 200 225 250 275 300 m momentum (MeV/c) tp/b(p nk + ) > 3.8 x10 32 years (90% CL)

p nk +, K + m + n @Super-K Method II (prompt g tag) ν 16 O 15 N * K + m + g e + 1 µ and 1 decay electron 215 < Pµ P < 260 MeV/c no proton (non oscillated) µ + e + γ TOF subtracted time (nsec) 0 20 40 60 g s number of hits ε x B= 8.6 %, 0.7 exp d BG, 0 candidate t p /B(p nk + ) > 11.4 x10 32 years (90% CL)

Method III ν p nk +, K + p + p 0 @Super-K Br(K + p + p 0 )=21% p K + µ + p + π 0 e + g g 2 showering Cherenkov rings 1 decay electron 85 < Mπ0 M < 185 MeV/c 2 175 < Pπ0 P < 250 MeV/c tag π + (40 < Qback < 100 p.e.).) e x B= 6.0 %, 0.6 exp d BG, 0 candidate tp/b(p nk + ) > 7.9 x 10 32 years (90% CL) combined limit tp/b(p nk + ) > 2.2 x 10 33 years (90% CL)

SK nucleon decay search summary

Soudan 2 detector Fine-grained tracking calorimeter x224 (0.96kton) Active component 2.7m Track resolution : 0.18 cm (X,Y) : 1.0 cm (Z) Trigger threshold (50 %) : 75MeV : 100MeV e Energy resolution : E/E = 7.0/E 1/2 +13.5 % e, = 8 % Partile ID : 95% : 95% >400MeV e drift tube 11mm 1m 1m 14.7mm

p K +, K + + @Soudan2 X TOP VIEW K + + 2 charged tracks (no proton) K range < 50 cm 28 < range < 58 cm decay electron ( 60 %) e + B(K + + ) = 9.0% Y SIDE VIEW Z Y FRONT VIEW 3.56 kt yr exposure observed candidate = 1 exp d BG = 0.21 (atm )+0.19(rock) Z X

X + TOP VIEW 0 2 p K +, K + + 0 @Soudan2 K + 2 tracks and 2 showers K range < 50 cm 100 < M K < 660 MeV/c 2 80 < P + < 400 MeV/c 40 < P < 390 MeV/c 10 < M < 290 MeV/c 2 B(K + + 0 ) = 5.5% SIDE VIEW Z FRONT VIEW 3.56 kt yr exposure observed candidate = 0 exp d BG = 1.05 (atm )+0.09(rock) Y Z Y X combined limit p /B(p K + ) > 4.3 10 31 years (90% CL)

pfink + for Soudan2 and Super-K Exposure (Kton?year ) Efficiency for K + µ + ν (K + π + π 0 ) #Observed Events for K + µ + ν (K + π + π 0 ) Expected Background 90%CL limit (years) Soudan2 3.56 9.0 (5.5) 1 (0) 0.4 (1.14) 0.43 10 32 Super-K 91.6 8.6 (6.0) 0 (0) 0.7 (0.6) 22 10 32

Summary of nucleon decay searches in Soudan2

Searches for decays into invisible particles n nnn (Kamiokande) tagging nuclear g (19MeV) from the residual nucleus /B(n nnn) > 1.8 10 31 years (90% CL) p invisible(sno, PLB 553 (2003) 135-140) tagging residual neutron /B(p invisible) > 3.5 10 28 years (90% CL)

Future prospects

Next generation Mton size Water Cherenkov detector M.Koshiba Phys. Rep. 220 (1992) 229-381 1 Megaton underground neutrino detector Supernova neutrino burst from the Local Group, within 1 Mpc - modern SN as well as ancient SN (relic neutrinos) long baseline neutrino oscillation experiment - nm ne oscillation, CP violation in neutrino oscillations proton decays atomospheric neutrinos - sign of Dm 2 by measuring earth s matter effect high energy neutrino point sources WINPs annihilating in the sun and/or in the earth mass composition of the primary cosmic rays at energies >10 15 GeV/nucleon

Hyper-Kamiokande Detector D design 48m x 50m x 500m, Total mass = 1 Mton (0.54Mton fid. mass)

Candidate site Shallower than SK (1000m ~700m) OK for >100MeV particles maybe more BG for relic neutrino observation (need study)

e + p 0 sensitivity SK cut Tight momentum cut HK 20 yr HK 20 yr /B > 2 10 35 yr (Hyper-K 20yrs, 90%CL)

nk+ sensitivity SK cut (old ones) HK 20 yr /B > 3 10 34 yr (Hyper-K 20yrs, 90%CL)

Photo sensor R&D

Conclusion Proton decay is the direct test of unification of quarks and leptons. some GUT models have been excluded. we may be close to proton decay signals. No proton decay evidence so far. 5.4 x 10 33 years @ 90%CL (ep 0 ) 2.2 x 10 33 years @ 90%CL (nk( + ) Low BG level (O(10-1 )) in many modes enable us to further improve lifetime limits (or to find proton decays) Megaton size water Cherenkov detector is a multi- purpose detector and has rich physics topics.