Combining quasiparticle energy calculations with exact-exchange density-functional theory

Similar documents
Impact of widely used approximations to the G 0 W 0 method: An all-electron perspective

Combining GW calculations with exact-exchange density-functional theory: an analysis of valenceband photoemission for compound semiconductors

7 SCIENTIFIC HIGHLIGHT OF THE MONTH: Exciting prospects for solids: Exact-exchange based functionals meet quasiparticle energy calculations

Novel Functionals and the GW Approach

Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p.1/26

pss Exciting prospects for solids: Exact-exchange based functionals meet quasiparticle energy calculations Editor s Choice solidi physica status

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics

This is a repository copy of Self-interaction in Green's-function theory of the hydrogen atom.

Photoelectronic properties of chalcopyrites for photovoltaic conversion:

All electron optimized effective potential method for solids

Consistent set of band parameters for the group-iii nitrides AlN, GaN, and InN

Towards a unified description of ground and excited state properties: RPA vs GW

arxiv: v1 [cond-mat.mtrl-sci] 2 Jan 2008

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren

Multi-Scale Modeling from First Principles

Non-collinear OEP for solids: SDFT vs CSDFT

Exact-exchange density-functional calculations for noble-gas solids

GW Many-Body Theory for Electronic Structure. Rex Godby

Electronic excitations in materials for solar cells

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36

Pseudopotentials: design, testing, typical errors

Comparison of first-principles methods / codes

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 28 Dec 2006

Nonlocal exchange correlation in screened-exchange density functional methods

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory

Energy-Level Alignment at the Interface of Graphene Fluoride and Boron Nitride Monolayers: An Investigation by Many-Body Perturbation Theory

The LDA-1/2 method in exciting

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics

Chris G. Van de Walle Materials Department, UCSB

Progress & challenges with Luttinger-Ward approaches for going beyond DFT

Search for materials to harvest light

S ince their discovery1, carbon nanotubes and their unique electronic properties have been an area of great

The GW approximation

arxiv: v1 [cond-mat.mtrl-sci] 21 Feb 2009

Electronic Electr onic and and La t La t t ice ice Polar a i r zat za ion n Effe f c e t c s on the the Band Band Structur

Electronic properties of lanthanide oxides from the GW perspective

GW quasiparticle energies

Towards ab initio device Design via Quasiparticle self-consistent GW theory

GW-like approaches to quantum transport. Rex Godby

Ab initio Electronic Structure

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 4 Aug 2006

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany

Band calculations: Theory and Applications

Beyond time-dependent exact exchange: The need for long-range correlation

arxiv:cond-mat/ v2 [cond-mat.other] 14 Apr 2006

Practical calculations with the GW approximation and Bethe-Salpeter equation in BerkeleyGW

Theoretical spectroscopy

Theoretical Framework for Electronic & Optical Excitations, the GW & BSE Approximations and Considerations for Practical Calculations

GW and Bethe-Salpeter Equation Approach to Spectroscopic Properties. Steven G. Louie

First Principle Band Structure Calculations of Zinc-Blende BN and GaN Compounds

Dmitrii Nabok Humboldt-Universität zu Berlin. August 8th, 2016

Theoretical spectroscopy beyond quasiparticles

Many-Body Perturbation Theory: (1) The GW Approximation

All-Electron GW Calculations of Silicon, Diamond, and Silicon Carbide

Solid-State Optical Absorption from Optimally-Tuned Time- Dependent Screened Range- Separated Hybrids

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany

André Schleife Department of Materials Science and Engineering

Strained Silicon, Electronic Band Structure and Related Issues.

MBPT and the GW approximation

Cumulant Green s function approach for excited state and thermodynamic properties of cool to warm dense matter

Basics of density-functional theory and fast guide to actual calculations Matthias Scheffler

DFT in practice : Part II. Ersen Mete

Spring College on Computational Nanoscience

Introduction to DFT and its Application to Defects in Semiconductors

Supporting Information for Interfacial Effects on. the Band Edges of Functionalized Si Surfaces in. Liquid Water

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

Ab Initio Calculations for Large Dielectric Matrices of Confined Systems Serdar Ö güt Department of Physics, University of Illinois at Chicago, 845 We

Ab Initio theories to predict ARPES Hedin's GW and beyond

Self-consistent GW calculations for semiconductors and insulators

Practical Guide to Density Functional Theory (DFT)

Electronic excitations in materials for photovoltaics

Orbital functionals derived from variational functionals of the Green function

Atomic structure and stability of AlN 0001 and 0001 surfaces

Introduction to spin and spin-dependent phenomenon

Energy dependence of the exchange-correlation kernel of time-dependent density functional theory: A simple model for solids

The Theoretical Toolbox to Describe the Electronic Structure of Surfaces

Defects in materials. Manish Jain. July 8, Department of Physics Indian Institute of Science Bangalore 1/46

High pressure core structures of Si nanoparticles for solar energy conversion

Free energy sampling for electrochemical systems

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Density Functional Theory. Martin Lüders Daresbury Laboratory

Quantum Transport: electron-electron and electron-phonon effects. Rex Godby

Electronic level alignment at metal-organic contacts with a GW approach

arxiv: v1 [cond-mat.mtrl-sci] 6 Jun 2007

First-principles modeling: The evolution of the field from Walter Kohn s seminal work to today s computer-aided materials design

Quasiparticle band structure of carbon nanotubes

Ψ k Newsletter AB INITIO (FROM ELECTRONIC STRUCTURE) CALCULATION OF COMPLEX PROCESSES IN MATERIALS. Number 68 April 2005

Electronic Properties of Gold Nanoclusters from GW Calculations

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states

MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science

Defects in Semiconductors

The Plane-wave Pseudopotential Method

arxiv: v2 [cond-mat.mtrl-sci] 20 Nov 2007

Density Functional Theory for Superconductors

CCSD(T) benchmarks of non-equilibrium water clusters: the importance of monomer deformation

Introduction to Green functions, GW, and BSE

Ab initio calculation of the exchange-correlation kernel in extended systems

Supplementary Information

Transcription:

Combining quasiparticle energy calculations with exact-exchange density-functional theory Patrick Rinke 1, Abdallah Qteish 1,2, Jörg Neugebauer 1,3,4, Christoph Freysoldt 1 and Matthias Scheffler 1 1 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin - Germany 2 Yarmouk University, Irbid - Jordan 3 University of Paderborn, Germany 4 Max-Planck-Institut für Eisenforschung, Düsseldorf - Germany OEP Workshop, 2005 ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk1 Univers / 21

Medium Band Gap Materials II-VI: ZnO, ZnS, CdS III-V: GaN are medium band gap semiconductors: E gap = 2.5-4.0 ev interesting for applications in optical industry have semicore d-states with low binding energies: E d = 9.0-18.0 ev ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk2 Univers / 21

Medium Band Gap Materials II-VI: ZnO, ZnS, CdS III-V: GaN are medium band gap semiconductors: E gap = 2.5-4.0 ev interesting for applications in optical industry have semicore d-states with low binding energies: E d = 9.0-18.0 ev Schematic band diagram: ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk2 Univers / 21

Ab initio Bandstructures (Inverse) photoemission probes: excited hole and electron states quasiparticles GW approximation: method of choice for quasiparticle excitations in solids typically applied as perturbation to DFT in LDA ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk3 Univers / 21

Ab initio Bandstructures (Inverse) photoemission probes: excited hole and electron states quasiparticles GW approximation: method of choice for quasiparticle excitations in solids typically applied as perturbation to DFT in LDA E gap [ev] approach ZnO ZnS CdS GaN DFT-LDA pseudopotential 0.51 1.76 0.81 1.52 LDA+GW pseudopotential 1.36 2.59 1.60 2.39 LDA+GW 1,2 pseudopotential 3.50 3.45 2.88 LDA+GW 3 all-electron 3.24 3.03 Experiment 3.44 3.80 2.48 3.30 1 Rohlfing, Krüger, Pollmann PRB 57 (1998) 2 Luo, Ismail-Beigi, Cohen, Louie PRB 66 (2002) 3 Kotani, van Schilfgaarde SSC 121 (2002) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk3 Univers / 21

Ab initio Bandstructures (Inverse) photoemission probes: excited hole and electron states quasiparticles GW approximation: method of choice for quasiparticle excitations in solids typically applied as perturbation to DFT in LDA alternative: apply as perturbation to DFT in exact-exchange E gap [ev] approach ZnO ZnS CdS GaN DFT-LDA pseudopotential 0.51 1.76 0.81 1.52 LDA+GW pseudopotential 1.36 2.59 1.60 2.39 LDA+GW 1,2 pseudopotential 3.50 3.45 2.88 LDA+GW 3 all-electron 3.24 3.03 Experiment 3.44 3.80 2.48 3.30 1 Rohlfing, Krüger, Pollmann PRB 57 (1998) 2 Luo, Ismail-Beigi, Cohen, Louie PRB 66 (2002) 3 Kotani, van Schilfgaarde SSC 121 (2002) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk3 Univers / 21

Many-Body Perturbation Theory Many-Body Green s Function Theory non-interacting electrons: Density-Functional Theory (DFT) ] G 1 DFT (r, r ; ɛ) = [ɛ + 2 2 v ext(r) v H (r) v xc (r) δ(r r ) interacting electrons: self-energy (Σ xc ) G 1 (r, r ; ɛ) = ] [ɛ + 2 2 v ext(r) v H (r) δ(r r ) Σ xc (r, r ; ɛ) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk4 Univers / 21

Many-Body Perturbation Theory Many-Body Green s Function Theory non-interacting electrons: Density-Functional Theory (DFT) ] G 1 DFT (r, r ; ɛ) = [ɛ + 2 2 v ext(r) v H (r) v xc (r) δ(r r ) interacting electrons: self-energy (Σ xc ) G 1 (r, r ; ɛ) = ] [ɛ + 2 2 v ext(r) v H (r) δ(r r ) Σ xc (r, r ; ɛ) Perturbation Theory adiabatic connection between non-interacting and interacting system Dyson equation: G = G DFT + G DFT [Σ xc v xc ] G ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk4 Univers / 21

GW Approximation Density-Functional Theory exact exchange-correlation potential v xc unknown approximate v xc approximate G DFT ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk5 Univers / 21

GW Approximation Density-Functional Theory exact exchange-correlation potential v xc unknown approximate v xc approximate G DFT GW approximation exact self-energy Σ xc given by Hedin s equations (not tractable) GW approximation: Σ xc = igw approximate G ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk5 Univers / 21

GW Approximation Density-Functional Theory exact exchange-correlation potential v xc unknown approximate v xc approximate G DFT GW approximation exact self-energy Σ xc given by Hedin s equations (not tractable) GW approximation: Σ xc = igw approximate G non self-consistent GW : G 0 = G DFT χ 0 (1, 2) = ig 0 (1, 2)G 0 (2, 1 + ) W 0 (1, 2) = v(1, 2) + v(1, 3)χ 0 (3, 4)W 0 (4, 2)d(3, 4) Σ GW 0 (1, 2) = ig 0 (1, 2)W 0 (1, 2) self-energy depends on ground state (G 0, v xc ) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk5 Univers / 21

Computational Approach DFT: Kohn-Sham equation: [ ] 2 2 + v ext(r) + v H (r) + v xc (r) φ nk (r) = ɛ nk φ nk (r) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk6 Univers / 21

Computational Approach DFT: Kohn-Sham equation: Local-density approximation (LDA) local potential v xc (r) with parametrised density dependence fast to compute not self-interaction free eigenvalues poor excitations [ ] 2 2 + v ext(r) + v H (r) + v xc (r) φ nk (r) = ɛ nk φ nk (r) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk6 Univers / 21

Computational Approach DFT: Kohn-Sham equation: [ ] 2 2 + v ext(r) + v H (r) + v xc (r) φ nk (r) = ɛ nk φ nk (r) Local-density approximation (LDA) local potential v xc (r) with parametrised density dependence fast to compute not self-interaction free eigenvalues poor excitations Exact-exchange (OEPx) best local groundstate potential v x (r) to non-local Σ x (r, r ) OEP formalism computationally demanding self-interaction free eigenvalues reasonable excitations ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk6 Univers / 21

Computational Approach DFT: Kohn-Sham equation: [ ] 2 2 + v ext(r) + v H (r) + v xc (r) φ nk (r) = ɛ nk φ nk (r) Local-density approximation (LDA) local potential v xc (r) with parametrised density dependence fast to compute not self-interaction free eigenvalues poor excitations Exact-exchange (OEPx) best local groundstate potential v x (r) to non-local Σ x (r, r ) OEP formalism computationally demanding self-interaction free eigenvalues reasonable excitations GW : Quasiparticle equation: φ qp nk (r) φdft nk (r) ɛ qp nk = ɛdft nk What is the better starting point for GW calculation? + φ nk Σ GW xc (ɛ qp nk ) v xc µ φ nk ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk6 Univers / 21

Details of the Calculation plane-wave DFT program: SFHIngX (http://www.sfhingx.de) all OEPx calculations include LDA correlation LDA and OEPx pseudopotentials with 3d in valence (OEPx PSP: Moukara, Städele, Görling et al. J. Phys. Cond. Mat. 12 (2000)) only zinc-blende structures ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk7 Univers / 21

Details of the Calculation plane-wave DFT program: SFHIngX (http://www.sfhingx.de) all OEPx calculations include LDA correlation LDA and OEPx pseudopotentials with 3d in valence (OEPx PSP: Moukara, Städele, Görling et al. J. Phys. Cond. Mat. 12 (2000)) only zinc-blende structures GW space-time code: GWST(Steinbeck, Godby et al. CPC 117 (1999), CPC 125 (2000)) time/frequency cutoff 12 Ry with 18 points per axis ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk7 Univers / 21

Details of the Calculation plane-wave DFT program: SFHIngX (http://www.sfhingx.de) all OEPx calculations include LDA correlation LDA and OEPx pseudopotentials with 3d in valence (OEPx PSP: Moukara, Städele, Görling et al. J. Phys. Cond. Mat. 12 (2000)) only zinc-blende structures GW space-time code: GWST(Steinbeck, Godby et al. CPC 117 (1999), CPC 125 (2000)) time/frequency cutoff 12 Ry with 18 points per axis a ZB E cut χ cut b cut Å GW,OEPx OEPx GW GaN 4.50 70 Ry 45 Ry 40 Ry ZnO 4.62 60 Ry 35 Ry 56 Ry ZnS 5.40 60 Ry 35 Ry 40 Ry CdS 5.82 50 Ry 30 Ry 24 Ry ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk7 Univers / 21

OEPx versus LDA: Zn and Ga Atoms Energy [ev] 0.0-5.0-10.0-15.0-20.0-25.0 4p 4s 4s 3d 3d 4p -I(exp)=-9.39 ev LDA OEPx(cLDA) -e 2 /r Zn Energy [ev] 0.0-5.0-10.0-15.0-20.0-25.0 3d 3d 4s 4p 4p 4s -I(exp)=-6.00 ev LDA OEPx(cLDA) -e 2 /r Ga 0 2 4 6 8 10 12 r [a.u.] 0 2 4 6 8 10 12 r [a.u.] OEPx PSP according to: Moukara, Städele, Majewski, Vogl and Görling, J. Phys. Cond. Mat. 12 (2000) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk8 Univers / 21

OEPx versus LDA: ZnS valence bands (band 7-9) [100] [011] Zn S 1.0e-02-1.0e-02-3.0e-02-5.0e-02-7.0e-02 ZnS [111] [111] [100] 10.4e-02 d-bands (band 2-6) [011] Zn S 7.6e-02 4.8e-02 2.0e-02-0.8e-02 ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005 Yarmouk9 Univers / 21

OEPx versus LDA: ZnS compared to GaN electrons/bohr 3 0.12 0.08 0.04 0.00-0.04 Zn n i (r) band 1 band 2-6 band 7-9 2.0 1.5 1.0 0.5 0.0 n(r) S Zn S OEPx(cLDA) LDA Difference x10 x10 electrons/bohr 3 0.12 0.08 0.04 0.00-0.04 Ga n i (r) band 1-6 band 7-9 2.00 1.50 1.00 0.50 0.00 n(r) N Ga N OEPx(cLDA) LDA Difference x5 x5 ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 10 Univers / 21

Band Gaps and d-electrons: ZnS ev ZnS - Band Gap ev ZnS - d-electron binding energy 3.70 3.80 8.97 3.08 7.05 7.08 2.59 2.65 6.32 2.19 5.33 5.02 1.76 4.30 LDA Pseudopotentials OEPx Pseudopotentials LDA Pseudopotentials OEPx Pseudopotentials LDA OEPx LDA + GW OEPx + GW OEPx OEPx + Exp GW LDA OEPx LDA + GW OEPx + GW OEPx OEPx + Exp GW ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 11 Univers / 21

Band Gaps and d-electrons ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 12 Univers / 21

Band Gaps and d-electrons GW ZnO ZnS CdS GaN E gap [ev] OEPx+GW 3.1 3.7 2.4 3.1 Experiment 3.4 3.8 2.5 3.3 ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 12 Univers / 21

Band Gaps and d-electrons GW ZnO ZnS CdS GaN E gap [ev] LMTO 1 3.2 3.0 3 rd shell 2,3 3.5 2.5 2.9 OEPx+GW 3.1 3.7 2.4 3.1 Experiment 3.4 3.8 2.5 3.3 1 Kotani, van Schilfgaarde SSC 121 (2002) 2 Rohlfing, Krüger, Pollmann PRB 57 (1998) 3 Luo, Ismail-Beigi, Cohen, Louie PRB 66 (2002) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 12 Univers / 21

Band Gaps and d-electrons GW ZnO ZnS CdS GaN E gap [ev] LMTO 1 3.2 3.0 3 rd shell 2,3 3.5 2.5 2.9 OEPx+GW 3.1 3.7 2.4 3.1 Experiment 3.4 3.8 2.5 3.3 d-electron binding energy [ev] OEPx+GW 6.9 7.1 7.8 16.2 Experiment 9.0 9.0 9.5 17.7 1 Kotani, van Schilfgaarde SSC 121 (2002) 2 Rohlfing, Krüger, Pollmann PRB 57 (1998) 3 Luo, Ismail-Beigi, Cohen, Louie PRB 66 (2002) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 12 Univers / 21

Band Gaps and d-electrons GW ZnO ZnS CdS GaN E gap [ev] LMTO 1 3.2 3.0 3 rd shell 2,3 3.5 2.5 2.9 OEPx+GW 3.1 3.7 2.4 3.1 Experiment 3.4 3.8 2.5 3.3 d-electron binding energy [ev] LMTO 1 7.1 8.2 16.4 3 rd shell 2,3 6.4 8.1 15.7 OEPx+GW 6.9 7.1 7.8 16.2 Experiment 9.0 9.0 9.5 17.7 1 Kotani, van Schilfgaarde SSC 121 (2002) 2 Rohlfing, Krüger, Pollmann PRB 57 (1998) 3 Luo, Ismail-Beigi, Cohen, Louie PRB 66 (2002) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 12 Univers / 21

Band Gaps and d-electrons GW ZnO ZnS CdS GaN E gap [ev] LMTO 1 3.2 3.0 3 rd shell 2,3 3.5 2.5 2.9 OEPx+GW 3.1 3.7 2.4 3.1 Experiment 3.4 3.8 2.5 3.3 d-electron binding energy [ev] LMTO 1 7.1 8.2 16.4 3 rd shell 2,3 6.4 8.1 15.7 SAT 2 7.9 9.1 17.3 OEPx+GW 6.9 7.1 7.8 16.2 Experiment 9.0 9.0 9.5 17.7 1 Kotani, van Schilfgaarde SSC 121 (2002) 2 Rohlfing, Krüger, Pollmann PRB 57 (1998) 3 Luo, Ismail-Beigi, Cohen, Louie PRB 66 (2002) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 12 Univers / 21

How to make pseudopotential GW work Systems with semicore states strong overlap of atomic wavefunctions in semicore shell strong core-valence exchange exchange has to be treated consistently recap: v x (r) is best local Σ x (r, r ) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 13 Univers / 21

How to make pseudopotential GW work Systems with semicore states strong overlap of atomic wavefunctions in semicore shell strong core-valence exchange exchange has to be treated consistently recap: v x (r) is best local Σ x (r, r ) DFT-LDA v LDA xc LDA+GW Σ xc exchange inconsistent v LDA xc v LDA xc ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 13 Univers / 21

How to make pseudopotential GW work Systems with semicore states strong overlap of atomic wavefunctions in semicore shell strong core-valence exchange exchange has to be treated consistently recap: v x (r) is best local Σ x (r, r ) DFT-LDA v LDA xc LDA+GW Σ xc exchange consistent v LDA xc v LDA xc ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 13 Univers / 21

How to make pseudopotential GW work Systems with semicore states strong overlap of atomic wavefunctions in semicore shell strong core-valence exchange exchange has to be treated consistently recap: v x (r) is best local Σ x (r, r ) DFT-OEPx OEPx+GW v OEPx x Σ xc v OEPx x v OEPx x ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 13 Univers / 21

Perturbation Operator and Self-Energy Quasiparticle Equation ɛ qp nk = ɛdft nk + φ nk Σ GW xc (ɛ qp nk ) v xc µ φ nk ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 14 Univers / 21

Perturbation Operator and Self-Energy Quasiparticle Equation ɛ qp nk = ɛdft nk + φ nk Σ GW xc (ɛ qp nk ) v xc µ φ nk DFT influence: energies : ɛ DFT i band structure : { ɛ DFT nk, φ nk } wavefunctions : {φ i } ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 14 Univers / 21

Perturbation Operator and Self-Energy Quasiparticle Equation ɛ qp nk = ɛdft nk + φ nk Σ GW xc (ɛ qp nk ) v xc µ φ nk DFT influence: energies : ɛ DFT i band structure : { ɛ DFT nk, φ nk } wavefunctions : {φ i } ZnS State GS ɛ DFT Σ c Σ x v xc LDA 1.75-4.33 4.68 CBM OEPx(cLDA) 3.08-4.39 4.69 GaN CBM LDA 1.65-4.27 4.72 OEPx(cLDA) 2.88-4.28 4.38 ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 14 Univers / 21

Perturbation Operator and Self-Energy Quasiparticle Equation ɛ qp nk = ɛdft nk + φ nk Σ GW xc (ɛ qp nk ) v xc µ φ nk DFT influence: energies : ɛ DFT i band structure : { ɛ DFT nk, φ nk } wavefunctions : {φ i } ZnS State GS ɛ DFT Σ c Σ x v xc CBM LDA 1.75-4.33 4.68 OEPx(cLDA) 3.08-4.39 4.69 VBM LDA 0.00 1.62-2.04 OEPx(cLDA) 0.00 1.57-1.87 GaN CBM VBM LDA 1.65-4.27 4.72 OEPx(cLDA) 2.88-4.28 4.38 LDA 0.00 2.32-2.76 OEPx(cLDA) 0.00 2.32-2.43 ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 14 Univers / 21

Perturbation Operator and Self-Energy Quasiparticle Equation ɛ qp nk = ɛdft nk + φ nk Σ GW xc (ɛ qp nk ) v xc µ φ nk DFT influence: energies : ɛ DFT i band structure : { ɛ DFT nk, φ nk } wavefunctions : {φ i } ZnS GaN State GS ɛ DFT Σ c Σ x v xc CBM LDA 1.75-4.33 4.68 OEPx(cLDA) 3.08-4.39 4.69 VBM LDA 0.00 1.62-2.04 OEPx(cLDA) 0.00 1.57-1.87 d-state LDA -6.62 4.95-3.46 OEPx(cLDA) -7.29 5.27-5.71 CBM LDA 1.65-4.27 4.72 OEPx(cLDA) 2.88-4.28 4.38 VBM LDA 0.00 2.32-2.76 OEPx(cLDA) 0.00 2.32-2.43 d-state LDA -13.97 5.19-4.37 OEPx(cLDA) -14.89 5.50-6.85 ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 14 Univers / 21

Conclusions when the semicore d-electrons are considered as valence electrons: OEPx shows a considerable improvement over LDA and LDA+GW OEPx+GW band gaps are in very good agreement with experiment OEPx+GW d-electron binding energies are in agreement with previous GW calculations but still at variance with experiment OEPx constitutes the better starting point for GW consistency is paramount: OEPx pseudopotentials provide a much better description of core-valence exchange Preprint available at: http://arxiv.org/abs/cond-mat/0502404 ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 15 Univers / 21

Outlook and Acknowledgements Outlook work in progress: more efficient implementation along the lines of Kümmel et al. PRL 90 (2003), PRB 68 (2003), PRL 93 (2004) all-electron OEPx calculations in progress in Graz (talk by Sangeeta Sharma) all-electron GW calculations in progress at the FHI in Berlin Acknowledgements Matthias Wahn, Philipp Eggert and Martin Fuchs A. Majewski and P. Vogl for their pseudopotential generator financial support by: Volkswagen Stiftung/Germany NANOQUANTA NoE (NMP4-CT-2004-500198) Preprint available at: http://arxiv.org/abs/cond-mat/0502404 ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 16 Univers / 21

DFT in Exact-Exchange Formalism Optimised Effective Potential v x (r) best local potential to non-local exchange-self energy Σ x (r, r ) dr χ 0 (r, r )v x (r ) = dɛ dr dr G DFT (r, r ; ɛ)σ x (r, r )G DFT (r, r; ɛ). ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 17 Univers / 21

DFT in Exact-Exchange Formalism Optimised Effective Potential v x (r) best local potential to non-local exchange-self energy Σ x (r, r ) dr χ 0 (r, r )v x (r ) = dɛ dr dr G DFT (r, r ; ɛ)σ x (r, r )G DFT (r, r; ɛ). more familiar expression: occ v x (r) = dr i unocc s [ φ i Σ x φ s φ s(r )φ i (r ] ) + c.c. χ 1 0 ɛ i ɛ (r, r) s implemented in reciprocal space following: Görling PRB 53 (1996), Städele et al. PRL 79 (1997), PRB 59 (1999) work in progress: more efficient implementation along the lines of Kümmel et al. PRL 90 (2003), PRB 68 (2003), PRL 93 (2004) ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 17 Univers / 21

Bandstructure of ZnO ZnO, zincblend ZnO, zincblend 6 6 4 4 2 LDA+GW LDA 2 EXX+GW EXX Energy [ev] 0-2 Energy [ev] 0-2 -4-4 -6-6 -8 L Γ X W K Γ -8 L Γ X W K Γ ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 18 Univers / 21

Bandstructure of ZnS Energy [ev] 8 6 4 2 0-2 -4-6 -8-10 -12 ZnS LDA+GW LDA Energy [ev] 8 6 4 2 0-2 -4-6 -8-10 -12 ZnS OEPx(cLDA)+GW OEPx(cLDA) L Γ X W K Γ L Γ X W K Γ ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 19 Univers / 21

Bandstructure of GaN Energy [ev] 10 8 6 4 2 0-2 -4-6 -8-10 -12-14 -16 GaN LDA+GW LDA -18 L Γ X W K Γ Energy [ev] 10 8 6 4 2 0-2 -4-6 -8-10 -12-14 -16 GaN OEPx(cLDA)+GW OEPx(cLDA) -18 L Γ X W K Γ ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk Univers / 21

Quasiparticle Shifts Quasiparticle Shift [ev] 1.0 0.5 0.0-0.5 ZnS OEPx(cLDA)+GW LDA+GW GaN OEPx(cLDA)+GW LDA+GW 1.0 0.5 0.0-0.5 Quasiparticle Shift [ev] -1.0-6 -5-4 -3-2 -1 0 ε DFT -ε VBM [ev] -1.0 0 1 2 3-6 -5-4 -3-2 -1 0 0 1 2 3 ε DFT -ε CBM ε DFT -ε VBM [ev] ε DFT -ε CBM ( Fritz-Haber-Institut Combining GW with der Max-Planck-Gesellschaft, OEPx Berlin - Germany OEP 2005Yarmouk 21 Univers / 21