Study of bound and scattering states of few-body systems with the HH method

Similar documents
Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

Four-nucleon scattering

Local chiral NN potentials and the structure of light nuclei

Variatonal description of continuum states

Theoretical studies of muon capture on light nuclei

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010

Modern Theory of Nuclear Forces

Few Body Methods in Nuclear Physics - Lecture I

Application of few-nucleon physics in astrophysics

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Muon capture on A = 2 and 3 nuclei

(March 12, 1999) Abstract. The Kohn variational principle and the (correlated) Hyperspherical Harmonics

The nucleon-nucleon system in chiral effective theory

Proton deuteron elastic scattering above the deuteron breakup

Nuclear Forces - Lecture 6 -

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration

Quantum Monte Carlo calculations of medium mass nuclei

Study of nucleonic matter with a consistent twoand three-body perturbative chiral interaction

Modern Theory of Nuclear Forces

Nuclear matter calculations with chiral interactions

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Coupled-cluster computations of weak decays in nuclei

Three- and four-particle scattering

Three-nucleon forces and neutron-rich nuclei

arxiv: v1 [nucl-th] 3 Feb 2014

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

Light Nuclei from chiral EFT interactions

Quantum Monte Carlo calculations of neutron and nuclear matter

INTERACTIONS, CURRENTS, AND THE STRUCTURE OF FEW-NUCLEON SYSTEMS

BRIDGING OVER p-wave π-production AND WEAK PROCESSES IN FEW-NUCLEON SYSTEMS WITH CHIRAL PERTURBATION THEORY

A path to lepton-nucleus reactions from first principles

Towards first-principle description of electromagnetic reactions in medium-mass nuclei

Nuclear and Nucleon Matter Constraints on Three-Nucleon Forces

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

arxiv: v1 [nucl-th] 20 Jun 2016

Nuclear Physics from Lattice Effective Field Theory

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Neutrino processes in supernovae from chiral EFT

Electromagnetic Response of Light Nuclei with Integral Transforms

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions

Nuclear few- and many-body systems in a discrete variable representation basis

The NN system: why and how we iterate

(Todays) Progress in coupled cluster compuations of atomic nuclei

Ab initio alpha-alpha scattering using adiabatic projection method

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

Nuclear structure I: Introduction and nuclear interactions

RG & EFT for nuclear forces

Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He-3

POWER COUNTING WHAT? WHERE?

Parity-Violating Effects in Few-Nucleon Systems

Quantum Monte Carlo calculations of two neutrons in finite volume

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei

Nuclear physics around the unitarity limit

Lattice Simulations with Chiral Nuclear Forces

Nucleon Nucleon Forces and Mesons

Weak reactions with light nuclei

Universality in Four-Boson Systems

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

Weak and rare nuclear processes. Doron Gazit

Three-cluster dynamics within an ab initio framework

Modern Theory of Nuclear Forces

Applications of Renormalization Group Methods in Nuclear Physics 2

g A Quenching Information from Neutrino Scattering

arxiv:nucl-th/ v1 22 Sep 2000

Coupled-cluster theory for nuclei

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini

Quantum Monte Carlo calculations of the equation of state of neutron matter with chiral EFT interactions

SciDAC project NUCLE lead PI: Joe Carlson (LA PetaApps award lead PI: Jerry Draayer (L. lead PI: James P Vary (I NERSC

The oxygen anomaly F O

RG & EFT for nuclear forces

Coupled-cluster theory for medium-mass nuclei

Nucleon-nucleon interaction in covariant chiral effective field theory

Novel NN interaction and the spectroscopy of light nuclei

Theoretical Optical Potential Derived From Chiral Potentials

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

Light hypernuclei based on chiral and phenomenological interactions

Nuclear Structure and Reactions using Lattice Effective Field Theory

hg: Chiral Structure of Few-Nucleon Systems

Recent results in lattice EFT for nuclei

Renormalization group methods in nuclear few- and many-body problems

Bayesian Fitting in Effective Field Theory

Nuclei as Bound States

Overview of low energy NN interaction and few nucleon systems

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Ab Initio Nuclear Structure Theory

Pionless EFT for Few-Body Systems

Effective Field Theories in Nuclear and Hadron Physics

arxiv: v1 [nucl-th] 5 Jan 2019

Constraints on neutron stars from nuclear forces

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona,

Nuclear electromagnetic charge and current operators in ChEFT

Scattering and reactions in Quantum Monte Carlo. Ken Nollett Argonne 23 July 2004 p-shell workshop

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt

Status of deuteron stripping reaction theories

Fate of the neutron-deuteron virtual state as an Efimov level

arxiv:nucl-th/ v1 16 Jul 2002

Nuclear electric dipole moment in the Gaussian expansion method

Effective Field Theory for light nuclear systems

Transcription:

Study of bound and scattering states of few-body systems with the HH method M. Viviani INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy) Electron-Nucleus Scattering XIII, June 23-27, 214 Mini-symposium to honor Professor Sergio Rosati on his 8th Birthday M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 1 / 32

Outline 1 The rise (and fall...) of the Few-Body Pisa Group 2 3NF effects in few-nucleon systems p d scattering p 3 He scattering p 3 H scattering Collaborators S. Rosati, A. Kievsky & L.E. Marcucci - INFN & Pisa University, Pisa (Italy) L. Girlanda - INFN & Universitá del Salento, Lecce (Italy) R. Schiavilla, M. Piarulli, A. Baroni, F. Spadoni - Jefferson Lab. & ODU, Norfolk (VA, USA) S. Pastore - USC, Columbia (SC, USA) M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 2 / 32

The rise (and fall...) of the Few-Body Pisa Group The Jastrow period (1961 1972) B. Barsella and S. Rosati, On the Effect of n-p Tensor Forces in 3 H Λ, Nuovo Cimento 2, 914 (1961). J. Murphy and S. Rosati, A two-body method for the bound states of a three-body system, Nucl. Phys. 63, 625 (1965). M. Barbi and S. Rosati, Direct numerical solution of the three-body problem, Phys. Rev. 147, 73 (1966). S. Fantoni, L. Panattoni, and S. Rosati, Calculation on nuclear 3-body and 4-body systems with jastrow-type correlated wave functions, Nuovo Cimento 69, 8 (197). L. Lovitch and S. Rosati, Bound State Solution of the Two-Nucleon Schroedinger Equation with Tensor Forces, Comp. Phys. Com. 2, 353 (1971). Ψ = g(r 12 )g(r 13 )g(r 23 ) δ Ψ H E Ψ = Euler equation: for an S-state and for a central spin-independent potential v(r): 1 ( ) M 2 g(r)+ v(r)+w[g, r] g(r) = Eg(r) Non-linear iterative solution M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 3 / 32

Interlude 1 The Many-body period (1972 1988) [S. Fantoni and S. Rosati, Expansion Procedure for Jastrow-Type Correlated Wave Functions, Nuovo Cimento A 1, 145 (1972)] My first conference: Third International Conference on Recent Progress in Many-Body Theories Odenthal-Altemberg, Germany, August 29 September 3, 1983 A wonderful 2-days trip from Pisa to Altenberg (and back) with Sergio, Stefano, and Adelchi, crammed in Stefano s FIAT 127 M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 4 / 32

A new start... Improvements of the wave functions and extension to realistic potentials (1989 25) From the CHO to the CHH expansion (selected papers) A. Kievsky, S. Rosati and M. Viviani, Euler and Correlated Harmonic Oscillator Wave Functions for Three-Nucleon Systems, Nucl. Phys. A 51, 53 (1989). Few-Body Systems 9, 1 (199). M. Viviani, A. Kievsky and S. Rosati, Correlated Hyperspherical Harmonic Calculations for Three- and Four-Body Systems, Nuovo Cimento A 15, 1473 (1992). A. Kievsky, M. Viviani and S. Rosati, The Three-Nucleon Bound-State with Realistic Soft and Hard Core Potentials, Nucl. Phys. A 551, 241 (1993). A. Kievsky, M. Viviani and S. Rosati, Variational Calculations for Scattering States in Three-Nucleon Systems, Few-Body Sys. Suppl. 7, 278 (1994). M. Viviani, A. Kievsky and S. Rosati, Calculation of the Alpha-Particle Ground-State, Few-Body Systems 18, 25 (1995). A. Kievsky, L. E. Marcucci, S. Rosati and M. Viviani, High-Precision Calculation of the Triton Ground State within the Hyperspherical Harmonics Method, Few-Body Systems 22, 1 (1997). M. Viviani, S. Rosati and A. Kievsky, Neutron- 3 H and Proton- 3 He Zero Energy Scattering, Phys. Rev. Lett. 81, 158 (1998). M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 5 / 32

The goal: reach the accuracy achieved by other groups (Friar and Coll., Glöckle and Coll., Kamimura and Coll.,...) + be able to treat realistic interactions, also hard-core potentials full inclusion of the Coulomb interaction A y puzzle in p d elastic scattering Ψ = N c i=1,3α=1 { [ ] } ] f α(r jk )g(r ij )g(r ik ) Y (ˆx lα i)y (ŷ Lα i) [(s j s k ) Sα s i [(t j t k ) Tα t i F α(x i, y i ) ]Λα Σ α JJ T z α F α(x i, y i ) expanded first in either HO or HH basis CHH=correlated Hyperspherical harmonics expansion ( PHH if g = 1) Method B (MeV) T (MeV) P s (%) P D (%) P P (%) AV18 potential PHH 7.624 46.727 1.293 8.51.66 Witala et al. (23) 7.621 45.73 1.291 8.51.66 Hamada-Johnston (hard-core) potential CHH 7.6 72.95 1.46 1.18.9 Delves & Hennel (1971) 6.5 9. M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 6 / 32

Interlude 2 The first Few-Body conference: 12th International Conference on Few-Body Problems in Physics (FBXII) Vancouver, B.C., Canada, July 2-8, 1989 M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 7 / 32

Many ideas... Some of the ideas produced by Sergio during the many discussions we had in those years... M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 8 / 32

One-point integration... Idea: to integrate one needs to compute the integrand in just one point... 1.8.6.4.2 b I = dx f(x) = (b a) f(x ) a It would be very useful in case of multidimensional integration... 1 2 3 4 5 x x I = dx 1... dx n f(x 1,...,x n) = Volume f( x 1,..., x n) Unfortunately we could not succeed... M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 9 / 32

The last period Extension of the method to non-local momentum space potentials (25 present) no correlation factor the interactions are softer & easy to trasform the wave function from coordinate to momentum space (and viceversa) (selected papers) M. Viviani, A. Kievsky and S. Rosati, Calculation of the Alpha Particle Ground State within the Hyperspherical Harmonic Basis, Phys. Rev. C 71, 246 (25) M. Viviani, L. E. Marcucci, S. Rosati, A. Kievsky and L. Girlanda, Variational Calculation on A=3 and 4 Nuclei with Non-Local Potentials, Few-Body Systems 39, 159 (26) A. Kievsky, S. Rosati, M. Viviani, L. E. Marcucci, L. Girlanda, A High-Precision Variational Approach to Three- and Four-Nucleon Bound and Zero-Energy Scattering States, J. Phys. G: Nucl. Part. Phys. 35, 6311 (28) M. Viviani, A. Deltuva, R. Lazauskas, J. Carbonell, A. C. Fonseca, A. Kievsky, L.E. Marcucci, and S. Rosati, Benchmark calculation of n- 3 H and p- 3 He scattering, PRC 84, 541 (211) M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 1 / 32

Interlude 3 18th International Conference on Few-Body Problems in Physics (FBXII) Santos, SP, Brazil, August 21-26, 26 M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 11 / 32

Applications EM and Weak transitions in light nuclei p, p d, and hep astrophysical factor Form factors of 3 H, 3 He, and 4 He Parity-violation Longitudinal polarization in n + 3 He p + 3 H Study of chiral effective field theory potentials and currents.5 S(E c.m. ) (ev b).4.3.2.1 LUNA Griffiths et al. Schmid et al. 1 2 3 4 5 E c.m. (kev) M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 12 / 32

3NF effects in few-nucleon systems Nuclear Dynamics: the EFT approach Chiral effective field theory (χeft): N π interaction dictated by chiral symmetry [Weinberg (199), Bernard, Kaiser, & Meissner (1995), Ordonéz, Ray, & van Kolck (1996), Epelbaum, Meissner, & Epelbaum (1998),...] Pionless effective field theory (π/eft): low energy processes [Kaplan, Savage, & Wise (1998), van Kolck (1999),...] Study of A = 3, 4 reactions using χeft Test of the derived NN & 3N interactions Different accurate theoretical techniques FY/AGS equations in momentum space [Witala et al., 199-214], [Deltuva & Fonseca, 27, 212] FY equations in coordinate space [Lazauskas & Carbonell, 29, 212] HH expansion + Kohn variational principle NCSM/RG method [Navratil, Quaglioni & Coll., 21 214] A y puzzle, energy production (NIF), reactions of astrophysical interest, study of fundamental symmetries, etc. muon capture on d MUSUN [Marcucci, 211 ],... M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 13 / 32

A y puzzle NN interaction Old models : Argonne V18, CD-Bonn, Nijmengen (χ 2 1) Derived from χeft J-N3LO [Epelbaum and Coll, 1998-26] N3LO5 & N3LO6 [Entem & Machleidt, 23 & 211].2.8.2.6 E cm =266 kev E cm = 431 kev E cm = 666 kev E p =2.25 MeV E p =4 MeV E p =5.54 MeV A y.15.1.6.4.15.1.5.4 George Fisher N3LO5 AV18 Fisher Alley Alley-2.5.2.5.3 A y.4.3.2.1.5.6 E cm = 1.33 MeV E cm = 1.66 MeV E cm = 2. MeV 3 6 9 12 15 18 θ cm.4.3.2.1 3 6 9 12 15 18 θ cm.5.4.3.2.1 3 6 9 12 15 18 θ cm A = 3 Delicate balance between 4 P j waves.2.1 3 6 9 12 15 θ [c.m.] 3 6 9 12 15 θ [c.m.] 3 6 9 12 15 18 θ [c.m.] A = 4 Confirmed also for other NN potentials (Deltuva & Fonseca 27) dashed lines: N3LO5, dotted-dashed lines: N3LO5/UIX, solid lines N3LO5/N2LO5* M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 14 / 32

Inclusion of the 3NF Models from EFT Illinois models Fujita Miyazawa S wave scattering pion rings [Pieper et al., 21] 3π exchanges and π rings Illinois-7: coefficients chosen to reproduce the A = 4 12 spectrum 3n force at N 2 LO: 2 unknonw LEC s c d & c E + cutoff Λ [Epelbaum et al., 22] N2LO5 & N2LO6: LECs fixed by L. Marcucci (see next slide) N 3 LO & N 4 LO pion exchanges: [Krebs, Epelbaum, et al., (212-213)] 1 Contact terms at N 4 LO: [Girlanda, Kievsky, MV, (211)] (a) (b) (c) (d) (e) (f) M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 15 / 32

New fit of c D and c E Sensitivity to c D and c E c D enters also in β-decay processes [Gardestig & Phillips, 26], [Gazit et al., 29] d R = M c 4πf πg D + M A 3 (c 3 + 2c 4 )+ 1 6 d R (and thus c D ) can be fixed from the tritium Gamow-Teller m.e. GT EXPT =.955±.4 d R X cd Models under study: Model Λ [MeV] c D c E B( 4 He) [MeV] a 2 (n d) [fm] N3LO5 5 25.38 1.1 N3LO5/N2LO5 5.12.196 28.49.666 N3LO6/N2LO6 6.26.846 28.64.698 AV18 24.22 1.275 AV18/IL7 28.44.552 Expt. 28.3.645±.3±.7 Expt a 2 (n d): K. Schoen et al., 23 M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 16 / 32

HH expansion Example: p 3 He elastic scattering Ω ± LS (A, B) = 1 N N perm.=1 [Y L (ŷ p ) [φ A φ B ] S ] JJ z ( f L (y G L(η, q AB y p) p) ± i F ) L(η, q AB y p) q AB y p q AB y p Ψ LS = n,[k] a LS,[K] n,[k] + Ω LS (p, 3 He) L S S LS,L S Ω+ L S (p, 3 He) n,[k] HH states S LS,L S = S-matrix a LS,[K] and S LS,L S computed using the Kohn variational principle For a review, see [J. Phys. G: Nucl. Part. Phys. 35, 6311 (28) ] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 17 / 32

HH expansion Example: p 3 He elastic scattering Ω ± LS (A, B) = 1 N N perm.=1 [Y L (ŷ p) [φ A φ B ] S ] JJ z ( f L (y G L(η, q AB y p) p) ± i F ) L(η, q AB y p) q AB y p q AB y p Ψ LS = n,[k] a LS,[K] n,[k] + Ω LS (p, 3 He) L S S LS,L S Ω+ L S (p, 3 He) n,[k] HH states S LS,L S = S-matrix a LS,[K] and S LS,L S computed using the Kohn variational principle For a review, see [J. Phys. G: Nucl. Part. Phys. 35, 6311 (28) ] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 17 / 32

HH expansion Example: p 3 He elastic scattering Ω ± LS (A, B) = 1 N N perm.=1 [Y L (ŷ p) [φ A φ B ] S ] JJ z ( f L (y G L(η, q AB y p) p) ± i F ) L(η, q AB y p) q AB y p q AB y p Ψ LS = n,[k] a LS,[K] n,[k] + Ω LS (p, 3 He) L S S LS,L S Ω+ L S (p, 3 He) n,[k] HH states S LS,L S = S-matrix a LS,[K] and S LS,L S computed using the Kohn variational principle For a review, see [J. Phys. G: Nucl. Part. Phys. 35, 6311 (28) ] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 17 / 32

Convergence n 3 H at E cm = 3 MeV, 3 P 2 wave 1 δ(k)-δ(k-2).1.1 AV18 N3LO-Idaho.1 1 2 3 4 5 K Convergence with the grand-angular quantum number M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 18 / 32

Benchmark test of 4N scattering calculations [PRC 84, 541 (211)] p 3 He elastic scattering dσ/dω [mb/sr] A y A y 5 4 3 2 1 2.25 MeV Famularo 1954 Fisher 26 AGS 6 12,4,2 Fisher 26 George 21 6 12,2,1 Daniels 21 6 12 Mcdonald 1964 Fisher 26 6 12 Fisher 26 4.5 MeV 6 12 Daniels 21 6 12 6 12 18 Alley 1993 5.54 MeV Mcdonald 1964 6 12 18 Alley 1993 Daniels 21 6 12 18 N3LO5 potential AGS= Deltuva & Fonseca FY= Lazauskas & Carbonell M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 19 / 32

Benchmark test of 4N scattering calculations [PRC 84, 541 (211)] p 3 He elastic scattering dσ/dω [mb/sr] A y A y 5 4 3 2 1 2.25 MeV Famularo 1954 Fisher 26 AGS HH 6 12,4,2 Fisher 26 George 21 6 12,2,1 Daniels 21 6 12 Mcdonald 1964 Fisher 26 6 12 Fisher 26 4.5 MeV 6 12 Daniels 21 6 12 6 12 18 Alley 1993 5.54 MeV Mcdonald 1964 6 12 18 Alley 1993 Daniels 21 6 12 18 N3LO5 potential AGS= Deltuva & Fonseca FY= Lazauskas & Carbonell M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 19 / 32

Benchmark test of 4N scattering calculations [PRC 84, 541 (211)] p 3 He elastic scattering dσ/dω [mb/sr] A y A y 5 4 3 2 1 2.25 MeV Famularo 1954 Fisher 26 AGS HH FY 6 12,4,2 Fisher 26 George 21 6 12,2,1 Daniels 21 6 12 Mcdonald 1964 Fisher 26 6 12 Fisher 26 4.5 MeV 6 12 Daniels 21 6 12 6 12 18 Alley 1993 5.54 MeV Mcdonald 1964 6 12 18 Alley 1993 Daniels 21 6 12 18 N3LO5 potential AGS= Deltuva & Fonseca FY= Lazauskas & Carbonell M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 19 / 32

Effect of the N 2 LO & Illinois 3NF in p d scattering p-d scattering at E p =3 MeV.6.3.5.25.4 A y.2 it 11.3.15.2.1 NN only NN+3N AV18/IL7 3 6 9 12 15 18 θ.1.5 3 6 9 12 15 18 θ Bands: results obtained for Λ = 5 & Λ = 6 MeV NN: N3LO5 & N3LO6 NN+3N: N3LO5/N2LO5 & N3LO6/N2LO6 M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 2 / 32

Study of the N 3 LO & N 4 LO 3NF in p d scattering [Krebs, Epelbaum, et al., 212,213] First study in n d scattering [Witala et al., 213].2 (a) (b) (c) (d) (e) (f) A y.1 E n =14.1 MeV d(n,n)d (1) (2) (3) (4) (5) (6) (7) (8) (9) (1). 6 12 18 Θ cm (1) (2) (3) + many others diagrams... (4) green band: J-N3LO NN interaction only magenta band: + N 3 LO 3NF (no 2π contact terms) Very complicate implementation! M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 21 / 32

3N contact terms at N 4 LO (1) [Girlanda, Kievsky, MV, PRC 84, 141 (211)] Two of the operators O = spatial derivatives (N O 1 N)(N O 2 N)(N O 3 N) 146 possible combinations, which can be reduced to 1 using Fierz transformation and other constraints O 1 O 2 O 3 1 3 1 2 [1,τ 1 τ 2,τ 1 τ 3 ] 4 6 1 σ 1 2 σ 2 [1,τ 1 τ 2,τ 1 τ 3 ] 7 9 1 σ 2 2 σ 1 [1,τ 1 τ 2,τ 1 τ 3 ] 1 12 1 2 σ 1 σ 2 [1,τ 1 τ 2,τ 1 τ 3 ] 13 16 1 σ 1 2 σ 3 [1,τ 1 τ 2,τ 1 τ 3,τ 2 τ 3 ] 17 2 1 σ 3 2 σ 1 [1,τ 1 τ 2,τ 1 τ 3,τ 2 τ 3 ] 21 24 1 2 σ 1 σ 3 [1,τ 1 τ 2,τ 1 τ 3,τ 2 τ 3 ] 25 1 2 σ 1 [τ 1 τ 2 τ 3 ] 26 1 2 σ 3 [τ 1 τ 2 τ 3 ] 27 1 2 σ 1 σ 2 σ 3 [τ 1 τ 2 τ 3 ]...... 146 1 σ 2 1 σ 1 σ 3 [τ 1 τ 2 τ 3 ] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 22 / 32

3N contact terms at N 4 LO (2) Final form of the new 3NF terms V = i j k [ ] (E 1 + E 2 τ i τ j + E 3 σ i σ j + E 4 τ i τ j σ i σ j ) Z ij)+2 Z (r ij) r ij Z (r ik ) [ +(E 5 + E 6 τ i τ j )S ij Z ij) Z (r ] ij) Z (r ik ) r ij +(E 7 + E 8 τ i τ k )(L S) ij Z (r ij) r ij Z (r ik ) +(E 9 + E 1 τ j τ k )σ j ˆr ij σ k ˆr ik Z (r ij)z (r ik) Local (using a cutoff of the type F(k 2 j ;Λ)F(k 2 k ;Λ)) At N 4 LO there are new 1 LEC s Z (r;λ) = dp (2π) 3 eip r F(p 2 ;Λ) M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 23 / 32

Fit of the LEC s Preliminary study Minimal model: AV18 + 3NF only from 3N contact terms Terms E 3, E 5, E 7 Terms E 5, E 7, E 1 4 Λ=2 MeV 2 χ /d.o.f = 4 c E =.654 a 2 =.652 fm E 3 =-.78 E 5 =-.143 E 7 =1.523 B( 3 H) = 8.483 MeV.2 4 Λ=3 MeV 2 χ /d.o.f = 3.5 c E =.542 a 2 =.615 fm E 5 =-.262 E 7 =1.756 E 1 =-.649 B( 3 H) = 8.483 MeV.2 dσ/dω 3 2 T 2 -.2 dσ/dω 3 2 T 2 -.2 1 -.4 1 -.4 5 1 15 θ (degrees) 5 1 15 θ (degrees) 5 1 15 θ (degrees) 5 1 15 θ (degrees).3.3.2 -.1.2 -.1 T 2.1 T 22 -.2 T 2.1 T 22 -.2 -.3 -.3 -.1 5 1 15 θ (degrees) -.4 5 1 15 θ (degrees) -.1 5 1 15 θ (degrees) -.4 5 1 15 θ (degrees).3.6.3.6.2.4.2.4 i T 11 A y i T 11 A y.1.2.1.2 5 1 15 θ (degrees) 5 1 15 θ (degrees) 5 1 15 θ (degrees) 5 1 15 θ (degrees) M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 24 / 32

3NF effect in p 3 He scattering (1) p 3 He phase-shift - Comparison PSA/Theory (PSA: [Daniels et al., 21]) N2LO 3NF only -2 3 phase-shift -3-4 -5 1 S NN only NN+3N TUNL 21 phase-shift 2 1 3 P -6 phase-shift -3-4 -5-6 3 3 S1 ε(1 + ) phase-shift 2 1-7 2 3 4 5 6 E p [MeV] 2 3 4 5 6 E p [MeV] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 25 / 32

3NF effect in p 3 He scattering (1) p 3 He phase-shift - Comparison PSA/Theory (PSA: [Daniels et al., 21]) N2LO 3NF only -2 3 phase-shift -3-4 -5 1 S NN only NN+3N TUNL 21 AV18/IL7 phase-shift 2 1 3 P -6 phase-shift -3-4 -5-6 3 3 S1 ε(1 + ) phase-shift 2 1-7 2 3 4 5 6 E p [MeV] 2 3 4 5 6 E p [MeV] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 25 / 32

3NF effect in p 3 He scattering (1) p 3 He phase-shift - Comparison PSA/Theory (PSA: [Daniels et al., 21]) N2LO 3NF only -2 3 phase-shift -3-4 -5 1 S NN only NN+3N TUNL 21 N3LO5/N2LO5 N3LO6/N2LO6 phase-shift 2 1 3 P -6 phase-shift -3-4 -5-6 3 3 S1 ε(1 + ) phase-shift 2 1-7 2 3 4 5 6 E p [MeV] 2 3 4 5 6 E p [MeV] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 25 / 32

3NF effect in p 3 He scattering (2) p 3 He phase-shift - Comparison PSA/Theory PSA: [Daniels et al., 21] 4 2 phase-shift 3 2 1 1 P1 NN only NN+3N TUNL 21 phase-shift 16 12 8 ε(1 - ) 5 6 phase-shift 4 3 2 3 3 P2 P1 5 phase-shift 4 3 2 1 2 3 4 5 6 E p [MeV] 1 2 3 4 5 6 E p [MeV] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 26 / 32

3NF effect in p 3 He scattering (2) p 3 He phase-shift - Comparison PSA/Theory PSA: [Daniels et al., 21] 4 2 phase-shift 3 2 1 1 P1 NN only NN+3N TUNL 21 AV18/IL7 phase-shift 16 12 8 ε(1 - ) 5 6 phase-shift 4 3 2 3 3 P2 P1 5 phase-shift 4 3 2 1 2 3 4 5 6 E p [MeV] 1 2 3 4 5 6 E p [MeV] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 26 / 32

3NF effect in p 3 He scattering (2) p 3 He phase-shift - Comparison PSA/Theory PSA: [Daniels et al., 21] 4 2 phase-shift 3 2 1 1 P1 NN only NN+3N TUNL 21 N3LO5/N2LO5 N3LO6/N2LO6 phase-shift 16 12 8 ε(1 - ) 5 6 phase-shift 4 3 2 3 3 P2 P1 5 phase-shift 4 3 2 1 2 3 4 5 6 E p [MeV] 1 2 3 4 5 6 E p [MeV] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 26 / 32

p 3 He observables at E p = 5.54 MeV (1) 4 NN band NN+3N band 3 dσ/dω [mb/sr].5.4 A y.2 A y 2.3.1 1.2.1 -.1 M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 27 / 32

p 3 He observables at E p = 5.54 MeV (1) 4 NN band NN+3N band AV18/IL7 3 dσ/dω [mb/sr].5.4 A y.2 A y 2.3.1 1.2.1 -.1 M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 27 / 32

p 3 He observables at E p = 5.54 MeV (1) 4 3 NN band NN+3N band N3LO5/N2LO5 N3LO6/N2LO6 dσ/dω [mb/sr].5.4 A y.2 A y 2.3.1 1.2.1 -.1 M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 27 / 32

p 3 He observables at E p = 5.54 MeV (2).2.2 A yy.2 A xx.1 A xz.1.1 -.1 3 6 9 12 15 18 -.2 3 6 9 12 15 18 3 6 9 12 15 18 M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 28 / 32

S = & S = 1 n 3 He scattering lenght [fm] Int. Method a (fm) a 1 (fm) AV18 HH 7.69 i5.7 3.56 i.77 RGM 7.79 i4.98 3.47 i.66 FY 7.71 i5.25 3.43 i.82 N3LO5 HH 7.57 i4.97 3.46 i.48 FY 3.56 i.7 AGS 7.82 i4.51 3.47 i.68 N3LO5/N2LO5* HH 7.61 i4.32 3.37 i.42 N3LO5/N2LO5 HH 7.67 i3.99 3.38 i.5 N3LO6/N2LO6 HH 7.92 i4.95 3.38 i.49 Exp.[ILL-1] 7.37(58) i4.448(5) 3.278(53) i.1(2) Exp.[ILL-2] 7.46(2) 3.36(1) Exp.[NIST] 7.57(3) 3.48(2) RGM: [Hofmann & Hale, PRC 77, 442 (28)] FY: [Lazauskas et al., PRC 83, 346 (211)] AGS: [Deltuva, priv. comm.] ILL-1: [Zimmer et al., EPJA 4, 1 (22)] ILL-2: [Ketter et al., EPJA 27, 243 (26)] NIST: [Huffman et al., PRC 7, 144 (24)] From neutron interferometry at NIST [Huber et al., PRL 13, 17993 (29)] Re(a 1 a ) EXPT = 4.2(3) fm Re(a 1 a ) N3LO5/N2LO5 = 4.24 fm Re(a 1 a ) N3LO5/N2LO5 = 4.29 fm M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 29 / 32

Proton- 3 H scattering at low energies First monopole resonance of 4 He E = 8.2±.5 MeV, W = 27±5 kev [Walcher, 197] FY: [R. Lazauskas, 29] Monopole resonance: [Hiyama et al., 24 ] [Bacca et al., 213 ] Tension with the experimental resonance transition FF F M (q) F M 2 /4π * 1-4 5 4 3 2 1 Koebschall et al. Frosch et al. Walcher Hiyama et al. AV18+UIX NN(N 3 LO) + 3NF(N 2 LO) 1 2 3 4 q 2 [fm -2 ] 1 Balaskho (196) N3LO5/N2LO5 (only S-waves) p- 3 H elastic scattering 8 E p =.4 MeV E p =.6 MeV E p =.99 MeV dσ/dω [mb/sr] 6 4 PRELIMINARY PRELIMINARY 2 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 18 M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 3 / 32

Work in progress fix the contact N 4 LO 3NF in 3N systems and see their effect in A = 4 Extension of the HH technique to treat N d breakup (in collaboration with E. Garrido - CSIC, Madrid (Spain) comparison with the benchmark calc. of [Friar et al., (1995)] PRC (in press): p d breakup: effect of the Coulomb int. Complete the study of p 3 H, n 3 He & d d scattering Extension to A > 4 Extension of the HH technique to A > 4 systems (in collaboration with M. Gattobigio - INLN, Nice (France) ) [PRA 79, 32513 (29)], [PRC 83, 241 (211)] Use of Integral Relations to compute observables (in collaboration with E. Garrido - CSIC, Madrid (Spain) & C. Romero-Redondo - TRIUMF, Vancouver (Canada) ) No need of the asymptotic part [PRA 83, 2275 (211)], [PRC 85, 141 (212)] M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 31 / 32

and... Thank you Sergio!!!! Australia, 1993, Kangaroo Island M. Viviani (INFN-Pisa) Few-body systems with the HH method Marciana Marina, 27/6/14 32 / 32