Supporting Information for. Spatiotemporal Trends of Elemental Carbon and Char/Soot Ratios in

Similar documents
Persistent effects of the Yellow River on the Chinese marginal seas began at least. ~880 ka ago

(São Paulo, Brazil) Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP, Caixa Postal 11049, Pinheiros, São Paulo, Brasil 2

Characteristics of sediment distribution and influencing factors at the Lingshanwan bathing beach of Qingdao

MARINE ENVIRONMENTAL RADIOACTIVITY NEAR NUCLEAR POWER PLANTS IN NORTHERN TAIWAN

Geological/Geophysical Studies in East Asian Marginal Seas, FY2002

Character and History of the Yangtze Mud Wedge, Fujian Province

Environmental Applications

Geochemical compositions of river and shelf sediments in the Yellow Sea: Grain-size normalization and sediment provenance

Modeling Study of A Typical Summer Ozone Pollution Event over Yangtze River Delta

Supporting Information

Trends of Tropospheric Ozone over China Based on Satellite Data ( )

SEDIMENT AND CHLOROPHYLL CONCENTRATIONS IN MAJOR CHINESE RIVERS USING MERIS IMAGERY

Using 7Be to Trace Temporal Variation of Interrill and Rill Erosion on Slopes

Reexamining the Relationship of Beryllium-7 Adsorption to Grain Size in the York River, Virginia

Identification of Naturally Occurring Radioactive Material in Sand

Supporting Information

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article. Evolution of the radial sand ridges off Subei Coast


Natural U-Th series radio-nuclides reveal important estuarine biogeochemical processes in the Delaware and Chesapeake Bays, USA

The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS

Supporting Information


Study on form distribution of soil iron in western Jilin and its correlation with soil properties

Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Program. Coastal Oceans: Interdisciplinary Scientific Prediction and Management October 20-24, 2014 Qingdao, China

Received 2 September 1998; accepted 4 March 1999

An Investigation of Antarctic Circumpolar Current Strength in Response to Changes in Climate. Presented by Matt Laffin

Seasonal Changes in the Mekong River Delta's Distributary Channels and Nearshore Sedimentary Environments

Meridional circulation in the western coastal zone: Qinyan Liu +$ & Rui Xin Huang +* Guangzhou, China. February 2, 2010

Reading Material. See class website. Sediments, from Oceanography M.G. Gross, Prentice-Hall

Consolidation properties of dredger fill under surcharge preloading in coast region of Tianjin

Black Carbon And Polycyclic Aromatic Hydrocarbon Emissions From Vehicles In The United States-Mexico Border Region: Pilot Study.

Loess and dust. Jonathan A. Holmes Environmental Change Research Centre

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Carbon Exchanges between the Continental Margins and the Open Ocean

Gamma spectrometry for chronology of recent sediments Tracing human induced climate change in NW Africa

IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS

Analysis on Climate Change of Guangzhou in Nearly 65 Years

Optimal Design of Sediment Diversions for Delta Restoration: lessons learned from examples

The low water-leaving radiances phenomena around the Yangtze River Estuary

SCIENCE CHINA Earth Sciences

Sedimentation Dynamics and Stratigraphy of the Middle Breton Sound Estuary, Southeastern Louisiana: Spatiotemporal Evidence for Subdeltaic Evolution

Tidal front around the Hainan Island, northwest of the South China Sea

East Asia & Southeast Asia region

Forecast of Nearshore Wave Parameters Using MIKE-21 Spectral Wave Model

Study on the feature of surface rupture zone of the west of Kunlunshan pass earthquake ( M S 811) with high spatial resolution satellite images

Supplementary Information

Chemical Procedures for the analysis of dissolved Po-210 and Pb-210: Mark Baskaran, Wayne State University

Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar

Pre-Lab Reading Questions ES202

Multi-scale evaluations of submarine groundwater discharge

Module 3. Basic Ecological Principles

Characteristic analysis of typhoon disaster chains in the Yangtze River Delta region of China

Analysis of natural radioactivity and artificial radionuclides in soil samples in the Najran region of Saudi Arabia

Wet deposition and estimates of aerosol wet scavenging coefficient for the location in north suburb of Nanjing

Zou Zou Kuzyk Assistant Professor Centre for Earth Observation Science (CEOS) & Geological Sciences, Clayton H. Riddell Faculty of Environment, Earth

multibeam bathymetric data is often based on the local depth datum, which is the local lowest normal low sea level, see the Figure 1. Multibeam Bathym

Seabed Dynamics in the Adriatic Sea and Western Gulf of Lions

The altitudinal dependence of recent rapid warming over the Tibetan Plateau

Possible use of airborne radionuclide content in soil and biomonitors

QUATERNARY SCIENCES Vol. 24, No. 4

Subsurface temperature anomalies in the North Pacific Ocean associated with the ENSO cycle*

Mammoth Cave National Park, Kentucky

Supplementary Figure 1. New downcore data from this study. Triangles represent the depth of radiocarbon dates. Error bars represent 2 standard error

Supporting Information

17. Radiometric dating and applications to sediment transport

PETROLEUM AND GAS RESEACH BY REMOTE SENSING IN SOUTH CHINA SEA

Last Time. Submarine Canyons and Fans. Turbidites. MAS 603: Geological Oceanography. Lecture 16: Greenhouse vs. Icehouse Earths

August 8-10, 2016 Lhasa, China

Radionuclides in hot mineral spring waters in Jordan

Measurement of the organic saturation and organic porosity in. shale

South, Southeast, and East Asia. Physical Geography

Chapter 6: Chronology

Sec$on 1: Geography and Early China. How does China s geography affect the culture?

Seasonal Simulaions of a coupled ice-ocean model in the Bohai Sea and North Yellow Sea

Characteristics of Mudstone in Complex Fluvial Sedimentary System in Bohai L Oilfield

Efficient removal of typical dye and Cr(VI) reduction using N-doped

Spatial variations of CH 4 in surface air over Lake Taihu. Zhang Mi, Wang Shumin, Xu Jingzheng, Hu Cheng, Xiao Qitao

Numerical Simulation of Seasonal Variation of Temperature in the Bohai Sea

Methane in the Changjiang (Yangtze River) Estuary and its Adjacent Marine Area: Riverine Input, Sediment Release and Atmospheric Fluxes

16. Radiometric dating and applications to sediment transport

Analysis of China s Haze Days in the Winter Half-Year and the Climatic Background during

Specific gravity field and deep crustal structure of the Himalayas east structural knot

Analysis of gross alpha, gross beta activities and beryllium-7 concentrations in surface air: their variation and statistical prediction model

The Research of source system on Chang 6 3 sand formation in Ansai oilfield

Application of seismic hydrocarbon detection technique to natural gas exploration-take Yingshan rift volcanic in the Yingcheng Groups as an instance

Baseline biogeochemical data from Australia s continental margin links seabed sediments to water column characteristics

Results from the Atmosphere & Climate projects in Dragon-3

The Nansen-Zhu International Research Centre: Beijing, China

Monsoon Activities in China Tianjun ZHOU

Study on Prediction Method of Fluvial Facies Sandbody in Fluvial Shallow Water Delta

Supporting information. One-step facile synthesis of novel β-amino alcohol functionalized

APPROVED FOR PUBLIC RELEASE

GUAMA RIVER AND GUAJARA BAY, BELEM - AMAZON REGION

Controls on fluvial evacuation of sediment from earthquake-triggered landslides

Efficient and High-Color-Purity Light-Emitting Diodes Based on In-Situ Grown Films of CsPbX 3 (X = Br, I) Nanoplates with Controlled Thicknesses

Semi-enclosed seas. Estuaries are only a particular type of semi-enclosed seas which are influenced by tides and rivers

Transcription:

1 2 3 4 Supporting Information for Spatiotemporal Trends of Elemental Carbon and Char/Soot Ratios in Five Sediment Cores from Eastern China Marginal Seas: Indicators of Anthropogenic Activities and Transport Patterns 5 6 7 Yin Fang,,,# Yingjun Chen, *,, Tian Lin, *,ǁ Limin Hu,, Chongguo Tian, Yongming Luo, Xin Yang,,ψ Jun Li, # and Gan Zhang # 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Key Laboratory of Cities Mitigation and Adaptation to Climate Change in Shanghai, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China. Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China. ǁ State Key Laboratory of Environmental Geochemistry, Guiyang Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China. Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science S1

22 23 24 25 26 27 and Technology, Qingdao, 266061, China. # State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China. ψ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China 28 29 30 31 32 33 34 35 *Corresponding authors: College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China. Phone/fax: +86-21-65983869; E-mail: yjchentj@tongji.edu.cn (Yingjun Chen). State Key Laboratory of Environmental Geochemistry, Guiyang Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China. Phone/fax: +86-851-85895239; E-mail: lintian@vip.gyig.ac.cn (Tian Lin). 36 37 38 39 40 Number of pages: 22 Number of tables: 4 Number of texts: 2 Number of figures: 6 S2

41 Table S1. Detailed Descriptions of Five Sediment Cores from the Eastern China Marginal Seas core sampling location latitude, longitude sampling date water depth (m) core length (cm) interval (cm) sedimentation rate (cm yr -1 ) BHS central Bohai Sea 38.5978 N, 119.2687 E August, 2006 27 238 2 0.47 NYS central northern Yellow Sea 38.1577 N, 122.4834 E June, 2011 50 95 1 0.20 SYS central southern Yellow Sea 34.9900 N, 123.4989 E June, 2011 76 138 1 0.20 a ECS1 coastal East China Sea 29.0042 N, 122.5002 E June, 2003 50 130 2 0.98 ECS2 coastal East China Sea 27.6363 N, 121.6557 E April, 2009 50 189 1 or 2 b 1.05 42 43 44 a The sedimentation rate for core SYS was estimated from previous studies conducted in the southern Yellow Sea region, 1,2 and an approximate value of 0.20 cm yr -1 was used as a reference. b Core ECS2 in the East China Sea was sectioned in 1 cm interval above 100 cm and in 2 cm interval below 100 cm. S3

45 46 Table S2. Data of 210 Pb Dating for Sediment Cores BHS, NYS, ECS1, and ECS2 from the Eastern China Marginal Seas 47 depth (cm) core BHS core NYS core ECS1 core ECS2 Pb excess (dpm g -1 ) depth (cm) Pb excess (dpm g -1 ) depth (cm) Pb excess (dpm g -1 ) depth (cm) Pb excess (dpm g -1 ) 0 2 1.18 0 1 110.60 1 3 2.39 0 1 180.17 4 6 0.76 1 2 80.97 4 6 2.59 3 4 251.40 8 10 0.68 2 3 47.72 10 12 2.93 6 7 193.19 14 16 0.98 3 4 55.34 16 18 3.33 9 10 213.01 18 20 0.46 4 5 26.83 20 22 2.19 12 13 136.64 28 30 0.20 6 7 48.72 26 28 2.60 15 16 220.32 34 36 0.18 8 9 13.01 30 32 1.76 17 18 132.31 38 40 0.08 9 10 6.44 38 40 1.00 19 20 125.73 44 46 0.13 11 12 8.26 46 48 1.44 21 22 127.69 14 15 6.90 54 56 1.19 23 24 135.30 16 17 3.06 64 66 0.34 27 28 98.45 17 18 17.57 70 72 0.41 31 32 110.09 19 20 15.47 80 82 0.33 35 36 102.44 21 22 4.95 90 92 0.16 38 39 110.48 23 24 10.85 100 102 0.46 40 41 157.50 24 25 2.33 110 112 0.19 42 43 74.28 25 26 2.71 44 45 108.71 27 28 4.41 47 48 68.13 51 52 124.79 55 56 83.43 60 61 57.73 65 66 63.64 70 71 54.57 75 76 37.95 80 81 20.96 87 88 2.14 94 95 11.50 104 106 25.02 114 116 7.22 S4

48 49 Table S3. Summary of EC Concentrations in Marine Sediment of NIST SRM-1941b Measured Following IMPROVE TOR Method concentrations (mg g -1 ) number of samples references 10.84 ± 1.92 21 this study 12.80 ± 1.40 3 3 9.76 ± 0.22 8 4 10.65 ± 1.92 19 5 10.56 ± 1.28 10 6 50 S5

51 52 Table S4. The Geochemical Parameters Measured in Five Sediment Cores from the Eastern China Marginal Seas 53 (1) Core BHS in central mud area from the Bohai Sea grain size (%) concentrations (mg g -1 ) fluxes (g m -2 yr -1 ) ratios (%) year Char/ Soot/ Char/ clay silt sand EC Char Soot EC Char Soot EC EC Soot 2006 25.71 57.89 16.39 1.36 1.22 0.15 11.16 9.97 1.19 89.32 10.68 8.36 2002 25.65 66.79 7.56 1.00 0.89 0.11 8.21 7.29 0.91 88.87 11.13 7.98 1997 26.67 68.42 4.91 0.93 0.83 0.10 7.60 6.77 0.83 89.04 10.96 8.12 1993 20.86 75.11 4.03 0.88 0.77 0.11 7.17 6.30 0.87 87.85 12.15 7.23 1989 16.19 73.85 9.96 0.80 0.71 0.09 5.40 4.79 0.61 88.63 11.37 7.80 1985 21.50 71.37 7.13 0.72 0.65 0.08 4.88 4.37 0.51 89.58 10.42 8.59 1980 19.80 72.79 7.41 0.59 0.54 0.05 4.00 3.65 0.35 91.23 8.77 10.40 1976 23.07 74.74 2.19 0.93 0.82 0.11 6.75 5.96 0.79 88.32 11.68 7.56 1972 24.87 74.05 1.08 1.03 0.93 0.10 7.51 6.76 0.75 90.06 9.94 9.06 1968 22.95 75.44 1.61 1.14 1.04 0.10 5.76 5.27 0.49 91.47 8.53 10.72 1963 27.83 72.17 0.00 1.03 0.93 0.10 5.21 4.72 0.49 90.61 9.39 9.65 1959 24.01 74.80 1.19 0.92 0.82 0.10 5.13 4.59 0.54 89.54 10.46 8.56 1955 28.42 71.58 0.00 1.15 1.04 0.11 6.42 5.81 0.62 90.38 9.62 9.40 1951 27.52 72.48 0.00 0.88 0.78 0.10 4.90 4.37 0.53 89.13 10.87 8.20 1946 23.62 75.21 1.17 0.94 0.84 0.10 5.28 4.72 0.55 89.51 10.49 8.53 1942 25.34 73.69 0.97 0.95 0.85 0.10 5.31 4.74 0.56 89.37 10.63 8.41 1938 26.59 71.97 1.44 0.84 0.76 0.07 4.69 4.28 0.42 91.12 8.88 10.27 1934 25.47 73.12 1.41 0.76 0.67 0.09 4.27 3.75 0.52 87.88 12.12 7.25 1929 25.99 72.93 1.08 0.88 0.78 0.10 4.91 4.34 0.57 88.41 11.59 7.63 1925 27.23 72.24 0.54 0.90 0.81 0.09 4.42 4.00 0.42 90.48 9.52 9.50 1921 28.46 71.54 0.00 0.77 0.69 0.08 3.79 3.40 0.39 89.72 10.28 8.73 1917 28.80 69.37 1.83 1.02 0.91 0.11 5.15 4.59 0.56 89.12 10.88 8.19 1912 32.72 67.28 0.00 0.86 0.77 0.09 4.34 3.89 0.45 89.73 10.27 8.74 1908 35.08 64.92 0.00 1.23 1.11 0.12 6.22 5.63 0.59 90.56 9.44 9.59 1904 18.13 81.87 0.00 0.90 0.80 0.10 4.55 4.04 0.51 88.81 11.19 7.93 1900 28.46 71.54 0.00 0.91 0.82 0.09 4.62 4.16 0.46 90.09 9.91 9.09 1895 28.80 69.37 1.83 1.02 0.92 0.10 5.17 4.67 0.50 90.30 9.70 9.30 1891 32.72 67.28 0.00 0.90 0.82 0.08 4.55 4.14 0.41 90.89 9.11 9.98 1887 35.08 64.92 0.00 0.79 0.72 0.07 4.02 3.66 0.35 91.24 8.76 10.42 1883 18.13 81.87 0.00 0.77 0.69 0.08 3.89 3.49 0.40 89.72 10.28 8.73 Min 16.19 57.89 0.00 0.59 0.54 0.05 3.79 3.40 0.35 87.85 8.53 7.23 Max 35.08 81.87 16.39 1.36 1.22 0.15 11.16 9.97 1.19 91.47 12.15 10.72 Mean 25.86 71.69 2.46 0.93 0.83 0.10 5.51 4.94 0.57 89.70 10.30 8.80 SD 4.59 4.66 3.72 0.15 0.14 0.02 1.55 1.38 0.19 0.98 0.98 0.95 S6

54 (2) Core NYS in central mud area from the northern Yellow Sea 55 grain size (%) concentrations (mg g -1 ) fluxes (g m -2 yr -1 ) ratios (%) year Char/ Soot/ Char/ clay silt sand EC Char Soot EC Char Soot EC EC Soot 2011 30.05 68.35 1.60 1.15 0.88 0.26 2.24 1.73 0.51 77.22 22.78 3.39 2006 20.78 75.30 3.93 1.19 0.94 0.26 2.33 1.83 0.50 78.49 21.51 3.65 2001 23.41 73.73 2.85 1.29 1.00 0.29 2.53 1.95 0.57 77.27 22.73 3.40 1996 23.47 72.39 4.14 1.32 1.05 0.27 2.58 2.05 0.53 79.53 20.47 3.89 1991 26.34 70.29 3.37 0.89 0.68 0.21 1.29 0.99 0.30 76.73 23.27 3.30 1986 28.34 69.79 1.87 0.78 0.58 0.20 1.06 0.79 0.27 74.55 25.45 2.93 1981 28.35 69.83 1.82 0.60 0.44 0.16 0.97 0.72 0.25 73.82 26.18 2.82 1976 26.62 70.58 2.80 0.73 0.55 0.18 1.18 0.89 0.29 75.00 24.54 3.06 1971 26.72 71.17 2.11 0.65 0.50 0.15 1.00 0.77 0.23 76.85 23.15 3.32 1966 27.08 70.78 2.14 0.69 0.54 0.15 1.05 0.82 0.23 78.24 21.76 3.60 1961 23.78 74.21 2.02 0.70 0.55 0.16 1.08 0.83 0.24 77.44 22.56 3.43 1956 24.95 73.33 1.73 0.77 0.59 0.18 1.37 1.05 0.32 76.55 23.45 3.27 1951 25.31 72.96 1.73 0.68 0.52 0.15 1.21 0.94 0.27 77.68 22.32 3.48 1946 31.72 66.74 1.55 0.73 0.57 0.15 1.29 1.02 0.27 78.88 21.12 3.73 1941 26.81 71.75 1.44 0.78 0.60 0.18 1.39 1.08 0.32 77.35 22.65 3.42 1936 23.88 74.67 1.45 0.66 0.51 0.16 1.18 0.90 0.28 76.56 23.44 3.27 1931 23.98 74.34 1.67 0.75 0.58 0.17 1.34 1.04 0.31 77.04 22.96 3.36 1926 23.86 74.72 1.42 0.84 0.65 0.19 1.51 1.17 0.34 77.42 22.58 3.43 1921 28.89 69.72 1.39 0.57 0.44 0.13 1.31 1.00 0.31 76.35 23.65 3.23 1916 31.40 67.35 1.25 0.66 0.51 0.15 1.40 1.08 0.32 77.12 22.88 3.37 1911 31.29 66.91 1.80 0.56 0.43 0.14 1.20 0.91 0.29 75.89 24.11 3.15 1906 27.31 71.06 1.64 0.90 0.70 0.21 1.77 1.36 0.40 77.11 22.89 3.37 1901 27.64 70.75 1.62 0.70 0.55 0.16 1.37 1.07 0.31 77.73 22.27 3.49 1896 28.48 69.82 1.70 0.70 0.55 0.16 1.43 1.11 0.32 77.73 22.27 3.49 1891 29.26 69.05 1.69 0.77 0.60 0.17 1.57 1.23 0.34 78.20 21.80 3.59 1886 27.27 70.91 1.83 0.57 0.43 0.14 0.97 0.74 0.23 76.07 23.93 3.18 1881 30.12 68.23 1.65 0.72 0.57 0.16 1.17 0.91 0.25 78.47 21.53 3.64 1876 28.03 69.75 2.23 0.71 0.56 0.16 1.15 0.90 0.25 77.98 22.02 3.54 1871 29.30 68.87 1.84 0.69 0.54 0.15 1.12 0.88 0.24 78.54 21.46 3.66 1866 27.12 71.15 1.73 0.70 0.55 0.15 1.13 0.89 0.24 78.48 21.52 3.65 1861 25.89 72.05 2.05 0.69 0.54 0.15 1.12 0.88 0.24 78.54 21.46 3.66 Min 20.78 66.74 1.25 0.56 0.43 0.13 0.97 0.72 0.23 73.82 20.47 2.82 Max 31.72 75.30 4.14 1.32 1.05 0.29 2.58 2.05 0.57 79.53 26.18 3.89 Mean 27.01 70.99 2.00 0.78 0.60 0.18 1.40 1.08 0.32 77.25 22.73 3.41 SD 2.62 2.32 0.69 0.19 0.16 0.04 0.43 0.34 0.09 1.25 1.23 0.23 S7

56 (3) Core SYS in central mud area from the southern Yellow Sea 57 grain size (%) concentrations (mg g -1 ) fluxes (g m -2 yr -1 ) ratios (%) year Char/ Soot/ Char/ clay silt sand EC Char Soot EC Char Soot EC EC Soot 2011 24.99 68.46 6.55 0.92 0.62 0.29 1.74 1.19 0.55 68.16 31.84 2.14 2006 25.91 73.20 0.88 0.84 0.63 0.21 1.60 1.19 0.41 74.65 25.35 2.94 2001 32.66 65.64 1.69 0.77 0.53 0.25 1.47 1.00 0.47 67.90 32.10 2.12 1996 31.74 60.06 8.21 1.18 0.89 0.29 2.25 1.69 0.55 75.44 24.56 3.07 1991 30.93 61.83 7.24 0.93 0.69 0.24 1.77 1.31 0.46 73.91 26.09 2.83 1986 32.87 60.52 6.61 0.68 0.44 0.24 1.29 0.84 0.45 64.91 35.09 1.85 1981 32.53 59.40 8.08 0.51 0.34 0.18 0.97 0.64 0.33 65.79 34.21 1.92 1976 28.74 57.36 13.89 0.68 0.48 0.20 1.29 0.91 0.38 70.43 29.57 2.38 1971 31.23 55.78 12.99 0.68 0.49 0.19 1.29 0.93 0.36 72.05 27.95 2.58 1966 32.17 59.42 8.40 0.68 0.50 0.18 1.30 0.95 0.34 73.66 26.34 2.80 1961 29.89 55.60 14.51 0.89 0.69 0.20 1.70 1.31 0.39 77.27 22.73 3.40 1956 32.59 57.20 10.21 0.76 0.59 0.17 1.45 1.12 0.33 77.29 22.71 3.40 1951 33.49 57.40 9.11 0.58 0.42 0.16 1.10 0.79 0.31 71.67 28.33 2.53 1946 33.75 59.27 6.98 0.73 0.55 0.18 1.38 1.05 0.34 75.79 24.21 3.13 1941 38.41 57.41 4.18 0.88 0.69 0.19 1.66 1.31 0.36 78.53 21.47 3.66 1936 38.79 58.01 3.20 0.75 0.48 0.27 1.42 0.91 0.51 64.37 35.63 1.81 1931 40.28 57.72 2.00 0.62 0.41 0.21 1.18 0.78 0.40 65.86 34.14 1.93 1926 38.81 55.05 6.15 0.85 0.60 0.24 1.61 1.15 0.46 71.34 28.66 2.49 1921 43.57 55.52 0.90 0.56 0.33 0.23 1.07 0.64 0.43 59.43 40.57 1.46 1916 42.18 55.31 2.52 0.69 0.50 0.19 1.31 0.95 0.37 72.14 27.86 2.59 1911 41.21 55.93 2.86 0.75 0.56 0.19 1.43 1.07 0.36 74.61 25.39 2.94 1906 41.75 55.77 2.48 0.65 0.45 0.19 1.23 0.86 0.37 69.94 30.06 2.33 1901 41.97 55.63 2.40 0.71 0.50 0.21 1.34 0.95 0.39 70.63 29.38 2.40 1896 44.37 54.91 0.72 0.94 0.64 0.30 1.78 1.22 0.56 68.37 31.63 2.16 1891 39.17 51.40 9.44 1.09 0.80 0.29 2.07 1.52 0.55 73.46 26.54 2.77 1886 41.97 55.63 2.40 1.14 0.89 0.24 2.16 1.70 0.46 78.52 21.48 3.66 1881 38.70 54.04 7.25 0.85 0.61 0.23 1.61 1.17 0.45 72.33 27.67 2.61 1876 40.71 57.79 1.50 0.69 0.45 0.23 1.30 0.86 0.44 65.95 34.05 1.94 1871 41.27 55.21 3.53 0.84 0.58 0.27 1.60 1.09 0.50 68.45 31.55 2.17 1866 41.37 56.07 2.56 0.54 0.35 0.19 1.03 0.66 0.37 63.95 36.05 1.77 1861 41.13 57.45 1.42 0.56 0.34 0.22 1.06 0.64 0.42 60.57 39.43 1.54 Min 24.99 51.40 0.72 0.51 0.33 0.16 0.97 0.64 0.31 59.43 21.47 1.46 Max 44.37 73.20 14.51 1.18 0.89 0.30 2.25 1.70 0.56 78.53 40.57 3.66 Mean 36.42 58.06 5.51 0.77 0.55 0.22 1.47 1.04 0.42 70.56 29.44 2.49 SD 5.40 4.27 3.94 0.17 0.15 0.04 0.32 0.28 0.07 4.97 4.97 0.59 S8

58 (4) Core ECS1 in northern Min-Zhe coastal mud area from the East China Sea grain size (%) concentrations (mg g -1 ) fluxes (g m -2 yr -1 ) ratios (%) year Char/ Soot/ Char/ clay silt sand EC Char Soot EC Char Soot EC EC Soot 2003 31.07 68.36 0.57 1.95 1.63 0.33 24.59 20.48 4.11 83.29 16.71 4.98 2001 33.71 65.88 0.42 1.85 1.58 0.27 21.45 18.30 3.16 85.29 14.71 5.80 1999 33.23 66.30 0.47 2.37 1.99 0.38 25.10 21.05 4.05 83.87 16.13 5.20 1997 34.45 65.20 0.36 1.87 1.57 0.30 20.04 16.86 3.18 84.14 15.86 5.30 1995 33.22 66.40 0.39 1.96 1.69 0.27 20.84 18.00 2.84 86.39 13.61 6.35 1993 34.33 65.38 0.30 1.83 1.55 0.28 19.46 16.46 3.00 84.57 15.43 5.48 1991 32.84 66.73 0.43 1.73 1.44 0.29 18.44 15.32 3.12 83.07 16.93 4.91 1989 30.45 68.60 0.96 1.64 1.33 0.30 19.32 15.73 3.59 81.40 18.60 4.38 1987 32.23 66.95 0.82 1.75 1.46 0.29 20.00 16.67 3.33 83.34 16.66 5.00 1985 32.43 66.79 0.78 1.60 1.37 0.23 18.13 15.49 2.64 85.43 14.57 5.86 1983 29.27 69.63 1.09 1.67 1.38 0.29 14.38 11.85 2.52 82.44 17.56 4.69 1981 27.24 71.38 1.39 1.58 1.30 0.28 14.42 11.84 2.58 82.11 17.89 4.59 1979 32.42 66.98 0.60 1.39 1.12 0.27 11.28 9.11 2.16 80.81 19.19 4.21 1976 33.02 66.20 0.78 1.42 1.11 0.31 11.33 8.88 2.45 78.39 21.61 3.63 1974 32.71 66.89 0.40 1.50 1.23 0.26 11.79 9.72 2.07 82.45 17.55 4.70 1972 31.38 68.22 0.40 1.39 1.13 0.26 10.87 8.84 2.03 81.31 18.69 4.35 1970 34.00 65.62 0.39 1.36 1.12 0.24 10.48 8.64 1.84 82.47 17.53 4.70 1968 33.13 66.39 0.48 1.44 1.14 0.30 11.63 9.23 2.40 79.33 20.67 3.84 1966 33.66 65.84 0.50 1.36 1.10 0.27 11.34 9.12 2.22 80.42 19.58 4.11 1964 31.67 67.83 0.50 1.47 1.22 0.25 11.63 9.62 2.01 82.69 17.31 4.78 1962 32.85 66.58 0.58 1.42 1.20 0.21 10.59 8.99 1.59 84.95 15.05 5.64 1960 33.17 66.27 0.56 1.55 1.30 0.26 12.44 10.39 2.05 83.55 16.45 5.08 1958 34.86 64.90 0.24 1.83 1.53 0.30 14.62 12.23 2.39 83.66 16.34 5.12 1956 30.91 68.56 0.53 1.65 1.34 0.31 13.79 11.23 2.56 81.45 18.55 4.39 1954 30.56 68.92 0.52 1.22 1.01 0.21 10.62 8.82 1.81 82.98 17.02 4.87 1952 29.52 69.98 0.50 1.03 0.82 0.22 9.12 7.20 1.92 78.91 21.09 3.74 1950 31.00 68.08 0.93 1.13 0.88 0.24 10.71 8.40 2.31 78.46 21.54 3.64 1948 34.12 65.59 0.30 1.46 1.20 0.26 12.28 10.09 2.18 82.21 17.79 4.62 1946 32.54 67.02 0.44 1.41 1.16 0.25 10.31 8.46 1.85 82.03 17.97 4.56 1944 31.67 67.64 0.69 1.43 1.18 0.25 9.59 7.93 1.67 82.63 17.37 4.76 1942 33.38 66.27 0.36 1.44 1.20 0.24 9.36 7.79 1.57 83.22 16.78 4.96 1940 31.55 67.88 0.56 1.20 0.99 0.21 8.14 6.72 1.42 82.54 17.46 4.73 1938 32.51 67.12 0.38 1.33 1.08 0.24 9.56 7.81 1.75 81.68 18.32 4.46 1936 32.60 66.96 0.44 1.47 1.21 0.26 11.08 9.12 1.95 82.35 17.65 4.67 1934 29.46 69.80 0.73 1.50 1.24 0.27 11.94 9.82 2.12 82.22 17.78 4.63 1932 28.52 70.88 0.59 1.37 1.12 0.25 10.84 8.89 1.95 82.02 17.98 4.56 1930 28.73 70.79 0.48 1.36 1.14 0.22 10.80 9.03 1.76 83.67 16.33 5.12 1927 28.59 71.03 0.38 1.42 1.17 0.25 11.90 9.80 2.09 82.40 17.60 4.68 1925 30.86 68.28 0.86 1.34 1.13 0.21 11.36 9.63 1.74 84.69 15.31 5.53 S9

59 1923 34.03 65.41 0.56 1.33 1.12 0.21 11.08 9.31 1.77 83.99 16.01 5.25 1921 33.61 65.91 0.48 1.32 1.12 0.20 10.62 9.01 1.61 84.80 15.20 5.58 1919 32.44 67.05 0.52 1.20 0.98 0.22 9.46 7.75 1.70 81.99 18.01 4.55 1917 31.41 68.11 0.47 1.24 1.02 0.22 9.69 7.97 1.73 82.17 17.83 4.61 1915 30.14 69.36 0.50 1.36 1.13 0.23 11.12 9.23 1.89 83.03 16.97 4.89 1913 29.55 69.86 0.60 1.22 1.01 0.22 10.36 8.53 1.83 82.34 17.66 4.66 1911 32.01 66.99 1.01 1.32 1.07 0.25 11.28 9.14 2.14 81.02 18.98 4.27 1909 32.41 67.21 0.38 1.35 1.14 0.21 11.58 9.76 1.83 84.23 15.77 5.34 1907 29.34 68.10 2.56 1.38 1.14 0.25 13.02 10.70 2.32 82.17 17.83 4.61 1905 33.53 66.11 0.36 1.23 1.05 0.18 12.03 10.24 1.79 85.09 14.91 5.71 1903 32.22 67.04 0.74 1.33 1.11 0.23 12.45 10.33 2.12 82.94 17.06 4.86 1901 33.86 65.68 0.46 1.31 1.08 0.23 11.49 9.49 2.00 82.60 17.40 4.75 1899 33.76 65.46 0.79 1.37 1.14 0.23 12.50 10.40 2.10 83.20 16.80 4.95 1897 34.43 65.04 0.53 1.43 1.19 0.23 11.10 9.29 1.80 83.75 16.25 5.15 1895 34.50 65.00 0.50 1.60 1.37 0.23 12.59 10.76 1.83 85.47 14.53 5.88 1893 33.66 66.00 0.35 1.62 1.29 0.33 12.71 10.09 2.62 79.40 20.60 3.85 1891 33.55 65.27 1.19 1.46 1.19 0.27 11.12 9.07 2.05 81.53 18.47 4.41 1889 34.42 65.08 0.50 1.30 1.09 0.20 9.61 8.09 1.52 84.20 15.80 5.33 1887 34.32 65.33 0.35 1.47 1.26 0.21 11.10 9.55 1.55 86.03 13.97 6.16 1885 35.54 64.03 0.43 1.44 1.20 0.24 11.17 9.33 1.84 83.49 16.51 5.06 1883 35.77 64.00 0.24 1.43 1.20 0.23 10.90 9.16 1.74 84.07 15.93 5.28 1881 33.38 65.42 1.20 1.38 1.14 0.23 10.31 8.57 1.75 83.06 16.94 4.90 1879 34.70 65.14 0.16 1.33 1.10 0.23 9.79 8.09 1.70 82.60 17.40 4.75 1876 36.94 62.67 0.39 1.42 1.19 0.22 10.30 8.68 1.62 84.27 15.73 5.36 1874 33.50 66.14 0.37 1.32 1.14 0.18 9.76 8.43 1.33 86.33 13.67 6.32 1872 34.69 65.01 0.31 1.22 1.03 0.19 9.23 7.76 1.46 84.12 15.88 5.30 1870 33.83 65.80 0.38 1.12 0.92 0.21 8.50 6.93 1.57 81.54 18.46 4.42 Min 27.24 62.67 0.16 1.03 0.82 0.18 8.14 6.72 1.33 78.39 13.61 3.63 Max 36.94 71.38 2.56 2.37 1.99 0.38 25.10 21.05 4.11 86.39 21.61 6.35 Mean 32.50 66.91 0.58 1.46 1.21 0.25 12.58 10.44 2.14 82.85 17.15 4.89 SD 1.95 1.81 0.35 0.23 0.20 0.04 3.78 3.23 0.59 1.74 1.74 0.59 S10

60 (5) Core ECS2 in southern Min-Zhe coastal mud area from the East China Sea grain size (%) concentrations (mg g -1 ) fluxes (g m -2 yr -1 ) ratios (%) year Char/ Soot/ Char/ clay silt sand EC Char Soot EC Char Soot EC EC Soot 2009 32.45 67.23 0.33 1.26 0.95 0.30 24.99 18.93 6.05 75.78 24.22 3.13 2008 28.88 70.96 0.16 1.34 1.04 0.30 26.74 20.71 6.03 77.45 22.55 3.43 2007 28.30 71.68 0.03 1.21 0.87 0.34 24.17 17.37 6.79 71.89 28.11 2.56 2006 29.29 70.49 0.22 1.38 1.08 0.30 27.37 21.50 5.88 78.53 21.47 3.66 2005 30.01 69.73 0.26 1.06 0.83 0.23 21.14 16.55 4.59 78.28 21.72 3.60 2004 30.61 69.17 0.22 1.14 0.88 0.26 15.74 12.13 3.61 77.05 22.95 3.36 2003 33.09 66.75 0.16 1.07 0.84 0.24 14.85 11.57 3.27 77.96 22.04 3.54 2002 29.18 70.53 0.29 1.04 0.80 0.23 14.33 11.09 3.24 77.40 22.60 3.42 2001 31.67 68.06 0.27 1.15 0.88 0.27 15.04 11.56 3.48 76.86 23.14 3.32 2000 30.47 69.51 0.03 1.48 1.10 0.37 19.38 14.48 4.90 74.71 25.29 2.95 1999 30.16 69.61 0.23 1.45 1.09 0.36 19.06 14.31 4.75 75.08 24.92 3.01 1998 29.04 70.76 0.20 1.43 1.08 0.35 17.48 13.19 4.29 75.46 24.54 3.07 1997 29.29 70.27 0.44 1.34 1.02 0.32 16.47 12.54 3.93 76.14 23.86 3.19 1996 30.59 69.22 0.19 1.06 0.84 0.21 12.93 10.33 2.61 79.85 20.15 3.96 1995 30.59 68.76 0.66 1.04 0.80 0.24 13.00 10.01 2.99 76.98 23.02 3.34 1994 30.51 69.30 0.20 1.09 0.85 0.24 13.70 10.70 3.00 78.10 21.90 3.57 1993 30.01 69.74 0.26 1.24 0.97 0.27 15.49 12.15 3.35 78.41 21.59 3.63 1992 28.50 71.45 0.05 0.75 0.53 0.22 8.25 5.82 2.43 70.60 29.40 2.40 1991 30.54 69.21 0.25 0.94 0.66 0.28 10.27 7.24 3.03 70.47 29.53 2.39 1990 29.97 68.58 1.46 0.88 0.65 0.23 9.27 6.88 2.39 74.18 25.82 2.87 1989 31.01 68.58 0.41 0.89 0.67 0.22 9.42 7.13 2.29 75.73 24.27 3.12 1988 30.70 68.29 1.02 0.74 0.53 0.21 7.64 5.49 2.14 71.91 28.09 2.56 1987 30.58 68.57 0.86 0.77 0.55 0.22 7.91 5.68 2.23 71.79 28.21 2.55 1986 28.96 70.48 0.56 0.73 0.51 0.22 7.27 5.09 2.19 69.95 30.05 2.33 1985 28.70 71.02 0.28 0.79 0.56 0.23 7.77 5.52 2.26 70.98 29.02 2.45 1984 30.12 68.84 1.04 0.85 0.63 0.22 8.64 6.37 2.27 73.73 26.27 2.81 1983 30.23 69.36 0.41 0.67 0.50 0.17 6.79 5.05 1.75 74.27 25.73 2.89 1982 31.33 68.16 0.51 0.81 0.60 0.22 8.27 6.07 2.20 73.35 26.65 2.75 1981 30.90 68.61 0.49 0.82 0.60 0.22 8.37 6.13 2.24 73.28 26.72 2.74 1980 30.29 69.45 0.26 0.88 0.66 0.22 9.39 7.10 2.30 75.55 24.45 3.09 1979 31.78 68.04 0.18 0.76 0.58 0.18 8.13 6.18 1.96 75.96 24.04 3.16 1978 32.34 67.11 0.56 0.87 0.65 0.22 9.26 6.89 2.36 74.47 25.53 2.92 1977 30.76 68.88 0.37 0.68 0.47 0.20 7.23 5.05 2.19 69.77 30.23 2.31 1976 31.28 68.31 0.41 0.66 0.47 0.19 7.14 5.10 2.03 71.50 28.50 2.51 1975 30.76 68.95 0.29 0.79 0.59 0.21 8.65 6.38 2.27 73.79 26.21 2.81 1974 30.69 68.13 1.18 0.61 0.44 0.17 6.65 4.82 1.84 72.42 27.58 2.63 1973 32.82 66.87 0.31 0.72 0.51 0.21 7.89 5.57 2.32 70.64 29.36 2.41 1972 33.02 66.57 0.41 0.84 0.61 0.23 9.10 6.59 2.51 72.37 27.63 2.62 1971 32.62 66.79 0.59 0.76 0.54 0.22 8.24 5.85 2.38 71.06 28.94 2.46 S11

1970 30.48 68.59 0.94 1.04 0.81 0.23 11.21 8.76 2.45 78.14 21.86 3.58 1968 31.28 68.29 0.44 0.82 0.62 0.21 8.39 6.27 2.12 74.72 25.28 2.96 1966 32.67 66.89 0.44 0.78 0.57 0.21 7.21 5.29 1.92 73.37 26.63 2.75 1964 32.89 66.76 0.35 0.82 0.59 0.23 7.42 5.30 2.12 71.48 28.52 2.51 1962 30.63 68.21 1.16 0.93 0.71 0.21 8.01 6.16 1.85 76.89 23.11 3.33 1960 32.81 66.62 0.57 0.72 0.53 0.19 6.23 4.61 1.63 73.92 26.08 2.83 1958 33.56 66.29 0.16 1.02 0.80 0.22 10.52 8.28 2.24 78.70 21.30 3.70 1956 33.80 65.91 0.30 0.72 0.55 0.17 6.23 4.74 1.50 75.99 24.01 3.17 1954 33.79 66.19 0.02 0.79 0.60 0.19 6.31 4.82 1.49 76.34 23.66 3.23 1952 30.74 68.93 0.33 0.87 0.66 0.21 6.99 5.34 1.65 76.38 23.62 3.23 1950 28.14 71.55 0.31 0.59 0.41 0.17 4.54 3.19 1.35 70.28 29.72 2.36 1946 34.79 64.94 0.28 0.82 0.63 0.18 6.31 4.88 1.43 77.32 22.68 3.41 1942 33.51 65.99 0.50 0.86 0.67 0.19 6.60 5.15 1.45 77.99 22.01 3.54 1938 33.57 66.02 0.41 0.81 0.61 0.20 5.95 4.49 1.46 75.48 24.52 3.08 1934 36.21 62.95 0.84 0.99 0.78 0.21 6.80 5.34 1.45 78.62 21.38 3.68 1930 17.70 80.27 2.03 0.87 0.64 0.23 5.62 4.16 1.46 74.06 25.94 2.86 1926 30.67 67.95 1.39 0.81 0.62 0.19 5.26 4.02 1.25 76.29 23.71 3.22 1922 31.88 67.96 0.16 0.88 0.68 0.20 5.59 4.30 1.29 76.88 23.12 3.32 1918 30.10 67.48 2.42 0.73 0.52 0.22 4.67 3.29 1.38 70.37 29.63 2.38 1914 29.92 67.75 2.33 0.77 0.59 0.18 5.22 4.01 1.21 76.78 23.22 3.31 1910 31.38 68.33 0.29 0.64 0.47 0.17 4.33 3.18 1.15 73.51 26.49 2.78 1905 31.12 67.59 1.29 0.66 0.50 0.17 4.68 3.50 1.19 74.62 25.38 2.94 1899 35.85 63.96 0.19 1.06 0.79 0.27 7.49 5.56 1.93 74.24 25.76 2.88 1893 31.42 66.70 1.87 0.69 0.54 0.15 4.00 3.12 0.88 78.03 21.97 3.55 1887 30.41 68.55 1.04 0.89 0.69 0.19 5.12 4.00 1.12 78.06 21.94 3.56 1881 30.83 67.93 1.24 0.74 0.52 0.21 4.26 3.03 1.23 71.11 28.89 2.46 1875 32.49 67.15 0.36 0.78 0.59 0.19 4.49 3.39 1.11 75.37 24.63 3.06 1869 33.02 66.82 0.16 0.69 0.54 0.15 4.00 3.12 0.88 78.03 21.97 3.55 Min 17.70 62.95 0.02 0.59 0.41 0.15 4.00 3.03 0.88 69.77 20.15 2.31 Max 36.21 80.27 2.42 1.48 1.10 0.37 27.37 21.50 6.79 79.85 30.23 3.96 Mean 31.01 68.43 0.56 0.91 0.68 0.23 9.95 7.50 2.46 74.88 25.12 3.03 SD 2.36 2.25 0.53 0.22 0.18 0.05 5.65 4.38 1.31 2.70 2.70 0.43 61 S12

62 63 64 65 66 67 68 Text S1. Analytical Procedure for Sediment Grain Size. About 1 g of the sediment sample was pretreated with 10 ml of 30% (v/v) hydrogen peroxide solution to decompose the organic matter. The sample was then dispersed and homogenized using ultra-sonic vibration for 30 s prior to instrumental analysis. Grain size was determined using a laser Particle Size Analyzer (Mastersizer 2000, Malvern Instruments Ltd., UK). The particle sizes were <4 μm for clay, 4 63 μm for silt and >63 μm for sand. The relative error of the duplicate samples was less than 3% (n = 6). 69 70 71 72 73 74 75 76 77 78 79 80 81 82 Text S2. Analytical Procedure for Sediment Dating. Cores BHS and ECS1 were dated at the Qingdao Institute of Marine Geology and Guangzhou Institute of Geochemistry following the method described by Zhang et al., 7 respectively. The 210 Pb activities were determined by analyzing the radioactivity of the decay product 210 Po by assuming that the two were at equilibrium. The Po was extracted, purified and self-plated onto silver disks. 209 Po was used as the yield monitor and tracer in quantification. Counting was conducted by computerized multi-channel α spectrometry with gold-silicon surface barrier detectors. The relative error for this method was less than 6%. Cores NYS and ECS2 were dated at the East China Normal University and Nanjing Institute of Geography and Limnology following the method described by Wu et al., 8 respectively. Briefly, the 210 Pb and 226 Ra activities were measured using an Ortec HPGe GWL series well-type coaxial low background intrinsic germanium detector. 210 Pb was determined by gamma emissions at 46.5 kev, and 226 Ra by 295 kev and 352 kev gamma rays emitted by the daughter isotope 214 Pb following 3 weeks of storage in sealed containers to allow radioactive S13

83 84 85 86 87 88 89 equilibration. 210 Pb ex was calculated by subtracting 226 Ra activities from the total 210 Pb activities. The relative error for this method was less than 10%. According to the high correlation between the core depths vs. unsupported 210 Pb activity (Figure S2), the average constant sedimentation rates of 0.47, 0.20, 0.98 and 1.05 cm yr -1 for cores BHS, NYS, ECS1 and ECS2, respectively, could be calculated using the constant activity (CA) model, which are in agreement with those previously reported in the same area. 9,10 The data for these cores beyond 100 years are used only as a reference. S14

90 91 92 Figure S1. Spatiotemporal trends of sediment grain size distributions in five sediment cores from the eastern China marginal seas. S15

93 94 95 Figure S2. 210 Pb dating of sediment cores BHS, NYS, ECS1, and ECS2 from the eastern China marginal seas. S16

96 97 Figure S3. Statistical data on the socioeconomic development indexes in China (National bureau of statistics of China, 2014). S17

98 99 Figure S4. EC emission in China from 1976 to 2014 (Data is from Wang et al. 11 ) S18

100 101 Figure S5. Temporal trends of EC, char, and soot depositional fluxes in five sediment cores from the eastern China marginal seas. S19

102 103 Figure S6. Correlations between char, soot, and EC depositional fluxes in five sediment cores from the eastern China marginal seas. S20

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 REFERENCES 1. Alexander, C. R.; DeMaster, D.; Nittrouer, C. Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea. Mar. Geol. 1991, 98 (1), 51-72. 2. Wu, Y.; Zhang, J.; Mi, T.; Li, B. Occurrence of n-alkanes and polycyclic aromatic hydrocarbons in the core sediments of the Yellow Sea. Mar. Chem. 2001, 76 (1), 1-15. 3. Han, Y. M.; Cao, J. J.; An, Z. S.; Chow, J. C.; Watson, J. G.; Jin, Z. D.; Fung, K.; Liu, S. X. Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Chemosphere 2007, 69 (4), 526-533. 4. Cong, Z.; Kang, S.; Gao, S.; Zhang, Y.; Li, Q.; Kawamura, K. Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record. Environ. Sci. Technol. 2013, 47 (6), 2579-2586. 5. Fang, Y.; Chen, Y.; Tian, C.; Lin, T.; Hu, L.; Huang, G.; Tang, J.; Li, J.; Zhang, G. Flux and budget of BC in the continental shelf seas adjacent to Chinese high BC emission source regions. Global Biogeochem. Cycles 2015, 29 (7), 957-972. 6. Hu, L.; Shi, X.; Bai, Y.; Fang, Y.; Chen, Y.; Qiao, S.; Liu, S.; Yang, G.; Kornkanitnan, N.; Khokiattiwong, S. Distribution, input pathway and mass inventory of black carbon in sediments of the Gulf of Thailand, SE Asia. Estuar. Coast. Shelf. Sci. 2016, 170, 10-19. 7. Zhang, G.; Parker, A.; House, A.; Mai, B.; Li, X.; Kang, Y.; Wang, Z. Sedimentary records of DDT and HCH in the Pearl River Delta, south China. Environ. Sci. Technol. 2002, 36 (17), 3671-3677. 8. Wu, Y.; Wang, S.; Xinhua, H. Chronology of Holocene lacustrine sediments in Co S21

126 127 128 129 130 131 132 133 134 Ngoin, central Tibetan Plateau. Sci. China, Ser. D Earth Sci. 2006, 49 (9), 991-1001. 9. Li, F. Y.; Li, X. G.; Song, J. M.; Wang, G. Z.; Cheng, P.; Gao, S. Sediment flux and source in northern Yellow Sea by 210 Pb technique. Chin. J. Oceanol. Limnol. 2006, 24 (3), 255-263. 10. Huh, C. A.; Su, C. C. Sedimentation dynamics in the East China Sea elucidated from 210 Pb, 137 Cs and 239,240 Pu. Mar. Geol. 1999, 160 (1), 183-196. 11. Wang, R.; Tao, S.; Wang, W.; Liu, J.; Shen, H.; Shen, G.; Wang, B.; Liu, X.; Li, W.; Huang, Y. Black Carbon Emissions in China from 1949 to 2050. Environ. Sci. Technol. 2012, 46 (14), 7595-7603. S22