Research Article Adsorption Properties of Ni(II) by D301R Anion Exchange Resin

Similar documents
Surface Modification of Activated Carbon for Enhancement of Nickel(II) Adsorption

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water

Acid Orange 7 Dye Biosorption by Salvinia natans Biomass

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium

Performance evaluation of industrial by-product phosphogypsum in the sorptive removal of nickel(ii) from aqueous environment

Reuse of Newspaper As An Adsorbent For Cu (II) Removal By Citric Acid Modification

REMOVAL OF HEAVY METALS USING COMBINATION OF ADSORBENTS - A CASE STUDY USING INDUSTRIAL WASTE WATER

Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski

Letter to Editor Removal of Cadmium from Wastewater Using Ion Exchange Resin Amberjet 1200H Columns

Adsorption of Cd(II) ions by synthesize chitosan from fish shells

a variety of living species. Therefore, elimination of heavy metals/dyes from water and

Removal of Copper (II) from Aqueous Solutions using Chalk Powder

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network

Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum

Journal of Chemical and Pharmaceutical Research, 2015, 7(4): Research Article

Removal of Cu 2+, Cd 2+, Hg 2+, and Ag + from Industrial Wastewater by Using Thiol-Loaded Silica Gel

Studies on the Removal of Rhodamine B and Malachite Green from Aqueous Solutions by Activated Carbon

Environment Protection Engineering REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN BEADS

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

Removal Of Copper From Waste Water Using Low Cost Adsorbent

Removal of copper and cadmium using industrial effluents in continuous. column studies by mixed adsorbent

IMPROVED REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING NaOH-PRETREATED COCO PEAT

Kinetics and Thermodynamics of Co(II) Adsorption on Moringa Olifera Bark From Aqueous Solutions

Methylene blue adsorption by pyrolytic tyre char

Current World Environment Vol. 4(2), (2009)

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution

Removal of Cr(VI) from Wastewater using Fly ash as an Adsorbent

Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Ni(II) and Cu(II) by using Nyctanthes arbor-tristis leaf Powder

Removal of Direct Red Dye Using Neem Leaf Litter

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, Copyright by the authors - Licensee IPA- Under Creative Commons license 3.

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT

Malachite Green Dye Removal Using the Seaweed Enteromorpha

REMOVAL OF METAL IONS FROM ACIDIC SOLUTIONS USING PEAT A LOW COST SORBENT

Studies on the Removal of Ni(II) from Aqueous Solution using Fire Clay-TiO 2 Nanocomposite and Fire Clay

Novel polymer-based nanocomposites for application in heavy metal pollution remediation. Emerging Researcher Symposium

Uranium biosorption by Spatoglossum asperum J. Agardh:

Int.J.Curr.Res.Aca.Rev.2016; 4(6): Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution

Physicochemical Processes

Modification of Pineapple Leaf Cellulose with Citric Acid for Fe 2+ Adsorption

Kinetic studies on the effect of Pb(II), Ni(II) and Cd(II) ions on biosorption of Cr(III) ion from aqueous solutions by Luffa cylindrica fibre

Isotherm studies of removal of Cr (III) and Ni (II) by. Spirulina algae

Heavy metal ions removal from water using modified zeolite

Theoretical and Experimental Studies on Alkali Metal Phenoxyacetates

Research Article Studies on a Foam System of Ultralow Interfacial Tension Applied in Daqing Oilfield after Polymer Flooding

Influence of pre-treatment methods on the adsorption of cadmium ions by chestnut shell

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder

Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX

Synthesis and Application of Manganese Dioxide Coated Magnetite for Removal of Trace Contaminants from Water. Carla Calderon, Wolfgang H.

AN ADSORPTION ISOTHERM MODEL FOR ADSORPTION PERFORMANCE OF SILVER-LOADED ACTIVATED CARBON

CHAPTER 3. BATCH STUDIES FOR As(III) REMOVAL FROM WATER BY USING MAGNETITE NANOPARTICLES COATED SAND: ADSORPTION KINETICS AND ISOTHERMS

Comparison studies for copper and cadmium removal from industrial effluents and synthetic solutions using mixed adsorbent in batch mode

Removal of methyl violet dye by adsorption onto N-benzyltriazole derivatized dextran

Sorption of metals on biological waste material

Supporting Information

Removal of Fluoride from Synthetic Water Using Chitosan as an Adsorbent

Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous Solutions by Using Eichhornia Crassipes

Cadmium Removal from Aqueous Solutions by Ground Pine Cone

Treatment of a Selected Refinery Wastewater Compound (Benzene) by Chitin and Chitosan by Dr Maryam Mohamed

Research in Chemistry and Environment

Spectrophotometric Evaluation of Stability Constants of Copper, Cobalt, Nickel and Zinc with 2-Thiobarbituric Acid in Aqueous Solution

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho

Equilibrium, Kinetics and Isothem Studies onthe Adsorption of Eosin Red and Malachite Green Using Activated Carbon from Huracrepitans Seed Shells

Sorption of Cr(III) from aqueous solutions by spent brewery grain

EFFECT OF CONTACT TIME ON ADSORPTION OF NITRATES AND PHOSPHATES

Egyptian Petroleum Research Institute BY Rasha Hosny Abdel Mawla Yousef

Hexavalent Chromium Removal by Quaternized Poly(4-Vinylpyridine) Coated Activated Carbon From Aqueous Solution

Study of Adsorption Isotherm and Kinetics of Reactive Yellow Dye on Modified Wheat Straw

Efficient U(VI) Reduction and Sequestration by Ti 2 CT x MXene

TECHNOLOGIES THAT TRANSFORM POLLUTANTS TO INNOCUOUS COMPONENTS: CHEMICAL AND PHYSICOCHEMICAL METHODS

Performance evaluation of calcium sulfate in adsorption process of metal ions from aqueous solutions

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Kinetic and Isotherm Studies of Removal of Metanil Yellow Dye on Mesoporous Aluminophosphate Molecular Sieves

Journal of Chemical and Pharmaceutical Research, 2012, 4(9): Research Article

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell

Synthesis and Characterization of Superparamagnetic Iron Oxide Nanoparticles for Water Purification Applications

Adsorption of Cu(II) onto natural clay: Equilibrium and thermodynamic studies

Removal of Chromium from Aqueous Solution Using Modified Pomegranate Peel: Mechanistic and Thermodynamic Studies

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras. Adsorption Lecture # 34

Adsorption of Cd(II) from aqueous solution by magnetic graphene

Efficient removal of typical dye and Cr(VI) reduction using N-doped

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal

Kinetics and Thermodynamics of the Adsorption of Copper( Ⅱ) onto a New Fe-Si Adsorbent 1

ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL

Removal of Malachite Green by Stishovite-TiO 2 Nanocomposite and Stishovite Clay- A Comparative Study

Evaluation of Nitrate Removal from Water Using Activated Carbon and Clinoptilolite by Adsorption Method

Adsorption of lead, cadmium and copper on natural and acid activated bentonite clay. Abstract. 1. Introduction

Adsorption Kinetics and Intraparticulate Diffusivity of Aniline Blue Dye onto Activated Plantain Peels Carbon

The Use of Acacia tortilis Leaves as Low Cost Adsorbent to Reduce the Lead Cations from an Aquatic Environment

REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS

Research Article. Adsorption studies on the removal of Pb(II) ions using carboxymethyl chitosan Schiff base derivatives

Study on kinetics of adsorption of humic acid modified by ferric chloride on U(VI)

Adsorption Study of Nickel Ni (II) Ions from Aqueous Solution on Tea Waste

Faculty of Sciences, University of Tlemcen, P.O. Box Tlemcen - ALGERIA Tel./Fax: 00 (213) : yahoo.

CHAPTER-7. Adsorption characteristics of phosphate-treated Ashok bark (Saraca indica): Removal of Ni(II) from Electroplating wastewater

Adsorption kinetics for the removal of copper(ii) from aqueous solution by adsorbent PSTM-3T

Sixteenth International Water Technology Conference, IWTC , Istanbul, Turkey 1

The Adsorption of Arsenic on Magnetic Iron-Manganese Oxide in Aqueous Medium

KENAF FIBRES (Hibiscus Cannabinus) AS A POTENTIAL LOW-COST ADSORBENT FOR WASTEWATER TREATMENT

Adsorption Studies of Astrozon Blue Dye onto Acrylic Resin

Transcription:

Chemistry, Article ID 407146, 5 pages http://dx.doi.org/10.1155/2014/407146 Research Article Adsorption Properties of Ni(II) by D301R Anion Exchange Resin Song Xiuling, Du Huipu, Liu Shijun, and Qian Hui School of Environment Science and Engineering, Chang an University, Xi an, Shanxi 710054, China Correspondence should be addressed to Song Xiuling; songxl28@sina.com Received 21 October 2013; Accepted 22 December 2013; Published 4 February 2014 Academic Editor: Manuela Curcio Copyright 2014 Song Xiuling et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The adsorption of Ni(II) with D301R resin was investigated in this paper. The results showed that the saturated extent of adsorption Ni(II) by the resin was 84.3 mg/g. The equilibrium data of Ni(II) sorption was better described by Langmuir isotherm model (r 2 = 0.994) while that of Ni(II) sorption also fitted in Freundlich isotherm model within the experimental concentration range. The amount of the constant (q 0 ) of Ni(II) under 298 K in Langmuir model was 76.92 mg/g, which was close to the experimental results. The constant n was within 2 10 in Freundlich model; it was shown that adsorption of Ni(II) by the resin was easy to take place. The uptake kinetics followed the Lagergren pseudo-first-order rate equation (r 2 = 0.9813). The particle diffusion controlled the adsorption process of Ni(II). The coefficient of the intraparticle diffusion increased with the increase of the ph values and the concentration of Ni(II) in aqueous solution. There was a drop of 20.1 cm 1 for the bending vibration frequency of N H bond. Results showed that the adsorption of Ni(II) by D301R anion exchange resin was the surface complexation through the infrared spectrum analysis. 1. Introduction Nickel-containing wastewater mainly comes from the smelter and electroplating factories. Excessive intake of nickel is easy tocauseavarietyofpathologiceffectslikeskinallergy,lung fibrosis, and cancer [1, 2]. Though there are very many harmful effects of nickel on human health, production of its compoundsisessentialandoneshouldfindthewaysofreducing its input into the environment from the waste streams. Various physicochemical treatments have been developed andsuccessfullyusedfortheremovalofheavymetalsfrom contaminated wastewater [3 6]. A particular focus has been given to chemical precipitation, adsorption reverse osmosis, coagulation, membrane filtration, electrochemical process, and coprecipitation. Ion exchange adsorption is relatively easy to operate and possess some inherent advantages, including low cost, without secondary pollution. Different from classical theory of ion exchange [7], the professor Wolfgang Holl put forward surface complexation theory to explain the adsorption behavior of the heavy metal ions on the weakly basic anion resin in recent years [8]. D301R anion exchanger resin contains slightly alkaline amino functional groups. Moving boundary models were used to study the adsorption kinetics of Ni 2+ on the resin [9 12]. The infrared spectrum analysis of D301R resin was carried out before and after adsorption Ni(II). Equilibrium, kinetic data, and the infrared spectrum analysis were investigated to determine proper Ni(II) sorption mechanism. It was showed that the adsorption of Ni(II) with D301R anion exchange resin was mainly not ion-exchange adsorption mechanism but the surface complexation through the infrared spectrum analysis. The coordination bond formed between nitrogen atom on the resin and nickel ions. Theoretical and experimental basis would be provided for the application of ion exchange resin in the treatment of heavy metals in wastewater. 2. Experimental 2.1. Reagents and Instruments. D301R resin was purchased from Tianjin Guangfu Fine Chemical Research Institute, and the resin was reserved after swelling, pickling, alkaline washing and, water scrubbing. Nickel sulfate was of excellent grade, and other reagents used were of analytical grade. All the reagents were from China. If not specified, all the solutions used in the experiment were simulated.

2 Chemistry Main instruments were 752 spectrophotometer (China), DELTA-320 ph meter (Switzerland), HY-2-type multispeed oscillator, DTG160 analytical balance (China), and Tensor27 IR spectrophotometer (Bruker Company in Germany). 2.2. Determination of Adsorption Isotherm. The determination of adsorption isotherm can be carried out by the following experiment. The working solution of 200 ml of different concentration of Ni(II) was taken into a series of 250 ml conical flasks; the same suitable amount of D301R resin was added in. The ph of aqueous solution was measured andadjustedtothedesiredph,andeachsetwasagitated in the shaker at the same time for 120 minutes at the same temperature. The concentration of Ni(II) in the filtrate was measured with dimethylglyoxime spectrophotometric method [13]. And the uptake capacity of Ni(II) by the resin canbecalculated(1). Where q istheamountadsorbed(mg/g), C 0 is the initial concentration (mg/l), C e is the equilibrium concentration (mg/l), w is the mass of the resin (g), and V is the volume of aqueous solution (L), q= (C 0 C e ) V. (1) w 2.3. Kinetic Measure. The following were the kinetic experiments. The working solution of 200 ml was taken into a series of 250 ml conical flasks, and D301R resin of 0.5 g was added into. The ph values of the solution were adjusted to the desired value. A certain volume of the supernatant was taken every 10 minutes and the concentration of Ni(II) was measured. Through the concentration changes of Ni(II) with respect to the time under the conditions of different concentrations of Ni(II) and different ph values of the solution,the related kinetic data was got. F was calculated with (2). Where F is exchange degree, q m is the saturated uptake capacity (mg/g), C j is the concentration of adsorption time j (mg/l), and V j is the volume of the solution of adsorption time j (L), F= C 0V 0 (C j V j + j 1 i=1 C jv j ) wq m j 2. (2) IR spectra of D301R resin samples were recorded in a Tensor27 IR spectrophotometer using KBr for pellet making. 3. Results and Discussions 3.1. The Isothermal Adsorption. Freundlich isotherm model and Langmuir isotherm model were used to describe the equilibrium state for Ni(II) adsorption experiments. The linearized forms Langmuir model and Freundlich model are given as (3). Where q 0 (mg/g) and b (L/mg) are the saturated extent of sorption and the adsorption equilibrium constant in the linearized form of Langmuir isotherm model and n and K C e /q 1.1 0.9 0.7 0.5 0.3 0.1 0 10 20 30 40 C e (mg/l) 298 K 308 K Figure 1: Langmuir adsorption isotherm of Ni(II) by the resin. Table 1: Isotherm constants for Ni 2+ adsorbed on D301R resin. T (K) Langmuir equation Freundlich equation q 0 (mg/g) b (L/mg) r 2 n K r 2 298 76.92 0.034 0.994 4.54 13.59 0.975 308 62.5 0.095 0.974 5.15 18.87 0.966 are Freundlich constants incorporating all factors affecting the uptake capacity and intensity of adsorption, respectively, lg q=( 1 n ) lg C e + lg K, C e q =(1 q 0 ) C e + 1 (q 0 b). The Langmuir isotherms (Figure 1) assumed that there were a finite number of binding sites which were homogeneously distributed over the adsorbent surface of the cells, having the same affinity for adsorption of a single molecular layer and there was no interaction between adsorbed molecules. The Freundlich isotherms (Figure 2) assumed that the adsorption energy of a metal binding to a site on an adsorbent depended on whether or not the adjacent sites were already occupied. It was indicated that the adsorption of Ni(II) by the resin can be better described with the Langmuir model from the comparison of these two models (Table 1). The saturation uptake capacity (q 0 ) of Ni(II) under 298 K in Langmuir model was 76.92 mg/g, which was close to the experimental results. With n being between 2 and 10 in the Freundlich model, it was shown that the uptake of Ni(II) by theresinwaseasytotakeplace. 3.2. The Adsorption Kinetics 3.2.1. The Determination of Adsorption Kinetic Model. There aretwokindsofmathematicalmodels:lagergrenpseudofirst-order kinetic model (4) and HO quasi-second-order (3)

Chemistry 3 1.6 1.6 1.5 t/q t 1.2 0.8 lgq 1.4 1.3 1.2 0.4 0.9 1.4 1.9 lgc e 298 K 308 K 0.4 0.0 Figure 4: The relationship between t/q t and t. 1.1 0.9 Figure 2: Freundlich adsorption isotherm of Ni(II) by the resin. y 0.7 2.0 0.5 log(q e q) 1.5 1.0 0.5 0.0 0.3 F 1 3(1 F) 2/3 + 2(1 F) 1 (1 F) 1/3 Figure 5: The fitting curve for the controlling step of kinetics. Figure 3: The relationship between log(q e q t ) and t. kinetic model (5) are often used to describe the adsorption kinetics [14] log (q e q) = log q e t q = k lt 2.303, (4) l k 2 qe 2 + t, (5) q t where q t (mg/g) is the amount of adsorption time, q e is the amount of adsorption equilibrium (mg/g), k 1 is the rate constant of the Lagergren pseudo-first-order equation (min 1 ), and k 2 is the rate constant of the HO secondorder equation (g/mg min). Lagergren pseudo-first-order kineticmodelisbasedonthefactthatthechangeinni(ii) concentration with respect to time is proportional to the power one. In order to clarify the sorption kinetics of Ni(II) ions onto D301R resin, two kinetic models were applied to the experimental data (Figures 3 and 4). From the estimated q values and r 2 values, it can be concluded that the uptake of Ni(II) in aqueous solution by D301R resin did not fit to the HO second-order rate equation but fitted well to the firstorder kinetic model (Table 2). Table2:ThereactionrateconstantsforNi 2+ adsorbed on D301R resin. Pseudo-first-order rate equation HO-second-order rate equation q e (mg/g) k 1 r 2 q e (mg/g) k 2 r 2 69.39 0.03201 0.9813 86.20 9.9 10 4 0.9675 3.2.2. Determination of Adsorption Rate Constants. The adsorption process is affected by the velocity of three steps [15, 16]; they are the film diffusion (4),theparticlediffusion, (5)andthechemicalreaction(6). The step of which the speed is the slowest one controls the speed of the asorption, where F is the exchange degree F=kt, (6) 1 3(1 F) 2/3 +2(1 F) =kt, (7) 1 (1 F) 1/3 =kt. (8) After the experimental data was processed with the equations, the results showed that both 1 3(1 F) 2/3 + 2(1 F) and 1 (1 F) 1/3 with respect to time had good linear (Figure 5). Their correlation coefficients were 0.9442 and 0.9287. As the chemical reaction was quick and generally difficult to become the speed control step, the adsorption

4 Chemistry process of Ni(II) by D301R resin can be initially identified tobecontrolledbytheparticlediffusionprocess.therate constant k was 4.7 10 3 s 1,anditwasshowntheadsorption process was rapid. 3.2.3. The Effect of Ni(II) Concentration in Aqueous Solution on the Adsorption Kinetics. Theeffectoftheinitialconcentration of Ni(II) in aqueous solution on the absorption kinetics was shown as Figure 6. It can be interpreted as: when the concentration of ions in aqueous solution was low and the exchange capacity of the resin was large, the mutual repulsive force between the same charges was greater. The ions in aqueous solution were not easy to enter the inside of particles of the resin and the rate of exchange process was slow. Appropriately increasing the concentration of Ni(II), the mutual exclusion between charges can be reduced. The probability of collision between molecules increased, and the reaction rate speeded up at last. 3.2.4.TheEffectofpHonAdsorptionKinetics.The uptake capacity of the resin was larger with being 8.0 (Figure 7). This maybeduetochangesoftheionicchargeswithrespectto the changes of ph value. The adsorption properties on the ion exchange resin changed with the ph values of aqueous solution. Under mild alkaline medium, the charges on the resin were great, and the particle diffusion coefficient also increased with ph values being 8.0 in comparison with 6.0. 3.3. Infrared Spectra Analysis of the Adsorption Nickel by the Resin. According to principles of infrared spectrum, the infrared absorption frequencies of the group can be expressed as formula (9). Where ] is the adsorption frequency (wave number, cm 1 ), k is a bond force constant, u is the reduced mass of the group, and C is the speed of light [16], ] = 1 2πC k u. (9) The decline of the bond force constants would directly lead to a decline in the infrared absorption frequencies of the groups. The stretching vibration frequency of N H was within 3500 3300 cm 1 (Figure 8). The bending vibration frequency of N H bond of the resin decreased from 1640.7 cm 1 unloading Ni(II) (Figure 8(a)) to 1620.6 cm 1 loading Ni(II) (Figure 9(b)). There was a drop of 20.1 cm 1 for the bending vibration frequency of N H. The change showed that the electron cloud distribution changed significantly on N H bond. Because of the forming of the coordination bond, the electron had more equal distributions on the original chemical bond, and the bond force constant (k) decreased. The results showed that the coordination bond formed between nitrogen atom on the resin and nickel ion. There was the surface complexation in the adsorption of Ni(II) by D301R anion exchange resin through the infrared spectrum analysis. 1 3(1 F) 2/3 + 2(1 F) 1.0 0.8 0.6 0.4 0.2 0.0 50 mg/l 100 mg/l Figure 6: The fitting curves of the adsorption kinetics with different concentrations of solution. q t (mg/l) Transmittance (%) 80 60 40 20 100 0 ph =6 ph =8 Figure 7: The effect of ph on the adsorption kinetics. 90 80 70 60 50 (a) 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm 1 ) Figure 8: IR spectrum of D301R resin of unloading Ni 2+.

Chemistry 5 Transmittance (%) 100 90 80 70 60 50 40 (b) 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm 1 ) Figure 9: IR spectrum of D301R resin of loading Ni 2+. 4. Conclusions In the studied concentration range, the adsorption curve of Ni(II) by the D301R resin was better described by Langmuir isotherm model (r 2 = 0.994) while that of Ni(II) sorption alsofittedinfreundlichisothermmodel.thefreundlich constant (n) values were between 2 and 10; it was shown that the adsorption of Ni(II) on the resin is easy to take place. It was shown that adsorption process of Ni(II) on the resin fitted the first-order kinetic model (r 2 = 0.9813) and the particle diffusion process was the speed control step. The diffusion coefficients increased when the ph values and the concentration of Ni(II) in aqueous solution also becamelarger.irspectrumanalysisshowedthatthebending vibration frequency of N H bond dropped by 20.1 cm 1 after adsorption of Ni(II) on the resin; the electron cloud distribution changed significantly on N H bond. The coordination bond formed between nitrogen atom on the resin and nickel ion. It was shown that the surface complexation did its work for the adsorption of Ni(II) by D301R anion exchange resin. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgment The author Song Xiuling thanks her tutor (Mr. Qian) for giving the opinion in writing process. [4] T. M. Ansari, K. Umbreen, R. Nadeem, and M. A. Hanif, Polypogon monspeliensis waste biomass: a potential biosorbent for Cd II, African Biotechnology, vol.8,no.6,pp.1136 1142, 2009. [5] T.A.Kurniawan,G.Y.S.Chan,W.H.Lo,andS.Babel, Physicochemical treatment techniques for wastewater laden with heavy metals, Chemical Engineering Journal, vol. 118, no. 1-2, pp. 83 98, 2006. [6] M.N.Zafar,R.Nadeem,andM.A.Hanif, Biosorptionofnickel from protonated rice bran, Hazardous Materials,vol. 143, no. 1-2, pp. 478 485, 2007. [7] R. Kiefer and W. H. Höll, Sorption of heavy metals onto selective ion-exchange resins with aminophosphonate functional groups, Industrial and Engineering Chemistry Research,vol.40, no.21,pp.4570 4576,2001. [8]W.H.Höll, J. Horst, and M. Franzreb, Application of the surface complex formation model to exchange equilibria on ion exchange resins Part III: anion exchangers, Reactive Polymers, vol.19,no.1-2,pp.123 136,1993. [9] W.H.Höll, Elimination of heavy metal salts by adsorption onto weakly basic anion exchange resins, Vom Wasser,vol.89,pp. 13 24, 1997. [10] B. Benguella and H. Benaissa, Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies, Water Research,vol.36,no.10,pp.2463 2474,2002. [11] A. Kausar, H. N. Bhatti, and G. Mackinnon, Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste, Colloids and Surfaces B,vol.111,pp. 124 133, 2013. [12] H. N. Bhatti and M. Amin, Removal of zirconium(iv) from aqueous solution by Coriolus versicolor: equilibrium and thermodynamic study, Ecological Engineering, vol. 51, pp. 178 180, 2013. [13] The National Environmental Protection Agency, Monitoring and Analysis of Water and Wastewater, Editorial Committee, Environmental Science Publishing House, Beijing, China, 4th edition, 2002 (Chinese). [14] E. Metwally, Kinetic studies for sorption of some metal ions from aqueous acid solutions onto TDA impregnated resin, Radioanalytical and Nuclear Chemistry, vol.270,no. 3,pp.559 566,2006. [15]G.D.Brykina,T.V.Marchak,L.S.Krysina,andT.A.Belyavskaya, Sorption-photometric determination of copper by using AV-17 anion exchanger modified with 1-(2-thiazolylazo)-2-naphthol 3,6-disulphonic acid, Zhurnal Analiticheskoi Khimii,vol.35,no.12,pp.2294 2299,1980. [16] V. Srihari and D. Ashutosh, The kinetic and thermodynamic studies of phenol-sorption onto three agro-based carbons, Desalination,vol.225,no.1 3,pp.220 234,2008. References [1] K. S. Kasprzak, F. W. Sunderman Jr., and K. Salnikow, Nickel carcinogenesis, Mutation Research, vol.533,no.1-2,pp.67 97, 2003. [2] T. Norseth, Cancer hazards caused by nickel and chromium exposure, JournalofToxicologyandEnvironmentalHealth,vol. 6, no. 5-6, pp. 1219 1227, 1980. [3] S. Babel and T. A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, Hazardous Materials,vol.97,no.1 3,pp.219 243,2003.

International Medicinal Chemistry Photoenergy International Organic Chemistry International International Analytical Chemistry Advances in Physical Chemistry International Carbohydrate Chemistry Quantum Chemistry Submit your manuscripts at The Scientific World Journal International Inorganic Chemistry Theoretical Chemistry Spectroscopy Analytical Methods in Chemistry Chromatography Research International International Electrochemistry Catalysts Applied Chemistry Bioinorganic Chemistry and Applications International Chemistry Spectroscopy