Final Results of the Muon g-2 Experiment at BNL

Similar documents
Muon (g 2) at JPARC. Five to Ten Times Better than E821. B. Lee Roberts. Department of Physics Boston University BOSTON UNIVERSITY

The Tiny Muon versus the Standard Model. Paul Debevec Physics 403 November 14 th, 2017

EXPERIMENTAL RESULTS AND THEORETICAL DEVELOPMENTS OF MUON g-2. H. Deng, on behalf of Muon (g 2) Collaboration University of Pennsylvania

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich

Muon storage for the muon g-2 experiment at Fermilab

A new method of measuring the muon g-2. Francis J.M. Farley Trinity Co!eg" Dubli#

Measurement of e + e hadrons cross sections at BABAR, and implications for the muon g 2

The Muon g 2 Challenging e+e and Tau Spectral Functions

THE MUON ANOMALOUS MAGNETIC MOMENT: A PROBE FOR THE STANDARD MODEL AND BEYOND A REPORT SUBMITTED TO THE GRADUATE FACULTY

(Lifetime and) Dipole Moments

Summary of Muon Working Group

Hadronic Cross Section Measurements at BES-III Sven Schumann Johannes Gutenberg Universität Mainz

Recent Results of Muon g-2 Collaboration

Hadronic Cross Section Measurements with ISR and the Implications on g µ 2

arxiv: v1 [physics.ins-det] 10 Jan 2017

Pion Form Factor Measurement at BESIII

Measurement of Muon Dipole Moments

Nicolas Berger SLAC, Menlo Park, California, U.S.A.

Lee Roberts Department of Physics Boston University

ISR physics at BABAR

Fundamental Symmetries III Muons. R. Tribble Texas A&M University

Lifetime and Dipole Moments

The Hadronic Contribution to (g 2) μ

Open problems in g-2 and related topics.

e + e results from BaBar, status of muon (g-2) prediction and τ mass measurement at BESIII

Muon (g 2) Dennis V. Perepelitsa Columbia University Department of Physics (Dated: December 22, 2008)

PRECISION MEASUREMENT OF THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

The (anomalous) Magnetic Moment of the Muon

Lee Roberts Department of Physics Boston University

PRECISION MEASUREMENT OF THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

The MSSM confronts the precision electroweak data and muon g 2. Daisuke Nomura

Measurement of the Muon (g 2)-Value

The achievements of the CERN proton antiproton collider


e e with ISR and the Rb Scan at BaBar

Hadronic Inputs to the (g-2)µ Puzzle

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

Touschek polarimeter for beam energy measurement of VEPP-4M collider LNFSS-08 1 / 16

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration

R at CLEO Surik Mehrabyan University of Puerto Rico at Mayaguez on behalf of CLEO collaboration Heavy Quarkonium 2006 June BNL

Physics from 1-2 GeV

Hadronic Vacuum Polarization

ISR precision measurements of the 2π cross section below 1 GeV with the KLOE experiment and their impact on (g 2) µ

MEASUREMENT OF THE PROTON ELECTROMAGNETIC FORM FACTORS AT BABAR arxiv: v1 [hep-ex] 29 Nov 2013

Invited Contribution to XXXVII th Recontres de Moriond Electroweak Conference. March 2002, Les Arcs 1800, France.

Hadronic and e e spectra, contribution to (g-2) and QCD studies

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Measurements of the Proton and Kaon Form Factors via ISR at BABAR

BABAR Results on Hadronic Cross Sections with Initial State Radiation (ISR)

arxiv: v2 [hep-ex] 16 Nov 2007

Measurements of e + e hadrons at VEPP-2M

arxiv:hep-ex/ v3 27 Feb 2001

THE BROOKHAVEN MUON ANOMALOUS MAGNETIC MOMENT EXPERIMENT

Review of Standard Tau Decays from B Factories

Discovery of charged bottomonium-like Z b states at Belle

The Mystery of Vus from Tau decays. Swagato Banerjee

Measurement of the e + e - π 0 γ cross section at SND

arxiv:hep-ex/ v2 14 Sep 2004

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Nucleon Electromagnetic Form Factors: Introduction and Overview

Muon reconstruction performance in ATLAS at Run-2

Axion dark matter search using the storage ring EDM method

Review of ISR physics at BABAR

D Hadronic Branching Fractions and DD Cross Section at ψ (3770) from CLEO c

Blind Measurements and Precision Muon Physics. David Hertzog University of Washington

Study of e + e annihilation to hadrons at low energies at BABAR

Production cross sections of strange and charmed baryons at Belle

CLEO Results From Υ Decays

Wolfgang Gradl. on behalf of the BABAR collaboration. Tau 2016, Beijing 23 rd September 2016

Study of the process e + e π + π π + π π 0 with CMD-2 detector

Effective field theory estimates of the hadronic contribution to g 2

Chapter 16. The ω a Measurement Measurement Overview

Recent results from SND detector

BOSTON UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES. Dissertation MEASUREMENT OF THE ANOMALOUS MAGNETIC MOMENT OF

Proposal to measure the muon electric dipole moment with a compact storage ring at PSI

Current status and results of the experiments at VEPP-2000

D0 and D+ Hadronic Decays at CLEO

Measurement of Electric Dipole Moments of Charged Particles in Storage Rings

Measurement of the hadronic cross section at KLOE

Tau Physics: Status and Prospects. George Lafferty The University of Manchester

Gamma-Gamma Physics and Transition Form Factors with KLOE/KLOE-2

Electroweak Physics: Lecture V

Physics with Hadron Beams at COMPASS

Electroweak Physics at the Tevatron

τ Physics at B-factories.

Study of Baryon Form factor and Collins effect at BESIII

Advances in Open Charm Physics at CLEO-c

CharmSpectroscopy from B factories

Search for a Dark Photon: proposal for the experiment at VEPP 3.

Measuring Form Factors and Structure Functions With CLAS

Intense Slow Muon Physics

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory

Light hadrons at e+e- colliders

Electric Dipole Moments of Charged Particles

Measuring Hadronic Cross Sections

arxiv:hep-ex/ v3 14 Sep 2003

arxiv: v1 [hep-ph] 2 Sep 2008

Physics at Hadron Colliders

Hadronic Contributions to

Transcription:

Final Results of the Muon g-2 Experiment at BNL Petr Shagin on behalf of E821 Collaboration SLAC Summer Institute, August 10th, 2004 2004 SLAC Summer Institute Petr Shagin p.1/34

Overview Introduction Muon g-2 experiment at BNL Analysis of the 2001 data set Standard Model Prediction SUSY Conclusions and Outlook 2004 SLAC Summer Institute Petr Shagin p.2/34

Dipole Magnetic Moment Dirac: Hadrons Large deviation for a point-like spin- quark substructure: particle Leptons Small deviation coupling to virtual fields: # Deviation from g=2 is characterized by Anomaly $&% 2004 SLAC Summer Institute Petr Shagin p.3/34

) ( The Anomalous Magnetic Moment µ γ µ µ µ µ µ α a = 2 π Muon anomaly is times more sensitive to the new physics compared to the electron anomaly. #%$ #'& 2004 SLAC Summer Institute Petr Shagin p.4/34

Muon g-2 Experiment at BNL Muon storage ring: Radius 7112 mm Aperture 9 cm Magnetic field 1.45 T Momentum 3.094 GeV/c electric quadrupole settings: n = 0.122 ; 0.142 2004 SLAC Summer Institute Petr Shagin p.5/34

Muon g-2 Collaboration Most recent paper: 70 authors, 11 institutions, 5 countries Boston University Boston, Massachusetts, USA Brookhaven National Laboratory Upton, New York, USA Budker Institute of Nuclear Physics Novosibirsk, Russia Cornell University Ithaca, New York, USA Universität Heidelberg Heidelberg, Germany University of Illinois Urbana, Illinois, USA KEK Tsukaba, Japan Kernfysisch Versneller Instituut Groningen, The Netherlands University of Minnesota Minneapolis, Minnesota, USA Tokyo Institute of Technology Tokyo, Japan Yale University New Haven, Connecticut, USA Funding: Department of Energy, National Science Foundation, National Computational Science Alliance, German Bundesminister für Bildung und Forschung, Russian Ministry of Science, and U.S.-Japan Agreement in High-Energy Physics. 2004 SLAC Summer Institute Petr Shagin p.6/34

) Spin Precession and Magic Momentum p Muon in flight: θ σ B Orbiting particles will escape on the top or bottom. Need vertical focusing We used quadrupole electric field to stabilize muon orbit in vertical direction. for GeV/c; = 64 s 2004 SLAC Summer Institute Petr Shagin p.7/34

Muon Beam and Injection 24 GeV/c AGS protons hit the target 3.1 GeV/c; polarised Target g-2 beam line muon beam superconducting inflector injection point central injection orbit central storage orbit Collimator K3-K4 Q1 D1 D4 Collimator K1-K2 P1 Beam Stop Q15 Q18 D5 P2 IC8 Inflector D6 radius 711.2 cm 92.6o 18o 18 o kicker 1 kicker 2 kicker 3 Target Dipole Magnets D1-D7 g-2 ring 7.7 cm Pitching Magnets P1, P2 Quadrupole Magnets Q1-Q29 Ion Chambers IC1-IC8 Collimators opposite to the ; high energy spin; are preferentially emitted ν e ν µ Muon Rest Frame - µ momentum spin e - 2004 SLAC Summer Institute Petr Shagin p.8/34

Magnetic Field: Uniformity 1.45T magnetic field was measured in terms of the proton NMR frequency ( ) inside the vacuum chamber every couple of days using 17 calibrated NMR probes in a trolley. vertical distance [cm] 4 3 2 1 0-1 -2-3 -4 0.0-0.5-1.0 0.0 1.5 1.0 0.5 0.0 0.5 1.0-1.0-0.5-0.5-4 -3-2 -1 0 1 2 3 4 radial distance [cm] 2.5 2 1.5 1 0.5 0-0.5-1 -1.5-2 -2.5 B-B 0,0 [ppm] 0.5ppm contours are 725 nt over an average field 1.45T 2004 SLAC Summer Institute Petr Shagin p.9/34

Magnetic Field Systematic Uncertainty Two independent 0.05 ppm. analyses completed; both agree within Effect 2000 [ppm] 2001 [ppm] Absolute calibration of standard probe 0.05 0.05 Calibration of trolley probes 0.15 0.09 Trolley measurements of 0.10 0.05 Interpolation with fixed probes 0.10 0.07 Uncertainty from muon distribution 0.03 0.03 Others 0.10 0.10 Total 0.24 0.17 Main improvements: more calibrations, new trolley position encoding system, less magnet ramping, more trolley measurement runs 2004 SLAC Summer Institute Petr Shagin p.10/34

. Measuring e e e Beam Inflector Vacuum Chamber Regular Vacuum Chamber 21 22 23 24 1 Detector Station 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 12 11 10 9 2004 SLAC Summer Institute Petr Shagin p.11/34

Data Pulse height (ADC counts) 120 100 80 60 40 20 0 0 20 40 60 80 100 Time (ns) Complete waveform of the calorimeter signal was digitized by WFD with 2.5 ns sampling. Parameterize pulse shape to reconstruct energy and time of the electron Histogram: number of decay electrons vs fitted pulse time 2004 SLAC Summer Institute Petr Shagin p.12/34

Experimental Precision 1 Relative Amplitude 0.8 0.6 Number N Asymmetry A 0.4 NA² 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 Energy Threshold [GeV] 2004 SLAC Summer Institute Petr Shagin p.13/34

) The 2001 data events with s, GeV Million Events per 149.2ns 10 1 10-1 10-2 10-3 32-100 s 100-200 s 200-300 300-400 400-500 500-600 s s s s 0 20 40 60 80 100 Time modulo 100µs [µs] Five parameters function: - is number of events; - Asymetry (oscillations amplitude); - spin precession frequency - is the phase (angle between the spin and momentum vectors at the moment of injection) 2004 SLAC Summer Institute Petr Shagin p.14/34

Data Analyses Five independent blind data analyses were performed. Goal: Describe the time spectrum of the electron counts adequately using a function with as few parameters as possible. To obtain an acceptable /dof with 4 events in one histogram of 4500 bins. Small effects can contribute due to the huge number of events detected. PMT Gain: changes effective ; can be reconstructed from vs time pileup/overlapping signals: affects, and can be reconstructed from data itself muon loss: affects ; couples weakly to can be reconstructed from scintillator detectors Coherent Betatron Oscillations (CBO) Data were taken for two different quadrupole settings to avoid dangerous spin resonances and to minimize systematic uncertainty related to beam dynamics 2004 SLAC Summer Institute Petr Shagin p.15/34

* Ratio Method 0.4 0.3 0.2 0.1-0 -0.1-0.2-0.3 Ratio 3 2.5 2 1.5 1 0.5 Million Counts per 149.2ns -0.4 0 Time [ns] 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Time [ns] ( )( & &' %$ # Slow effects are largely cancelled for 2004 SLAC Summer Institute Petr Shagin p.16/34

Ratio Method N n(t+ta/2) n(t-ta/2) n(t) 80000 70000 60000 50000 40000 30000 36000 37000 38000 39000 40000 41000 42000 Time [ns] r(t) 0.4 0.3 0.2 0.1-0 -0.1-0.2-0.3-0.4 36000 37000 38000 39000 40000 41000 42000 Time [ns] 2004 SLAC Summer Institute Petr Shagin p.17/34

Consistency of Fit Results R-Ro [ppm] 114 112 +offset R-Ro [ppm] 120 Chi2 / ndf = 16.04 / 22 p0 = 107.8 ± 0.7209 115 110 110 108 105 106 100 400 600 800 1000 1200 1400 Fit Start Time [ns] 2 x10 95 5 10 15 20 25 Detector R-Ro [ppm] 114 112 Chi2 / ndf = 8.718 / 6 p0 = 107.7 ± 0.6714 R [ppm] R [ppm] vs Run 250 Chi2 / ndf = 1019 / 96 p0 = 107.6 ± 0.755 110 200 108 150 106 100 104 50 102 1.8 2 2.2 2.4 2.6 2.8 3 3.2 E [GeV] 9600 9800 10000 10200 10400 10600 10800 11000 11200 Run 2004 SLAC Summer Institute Petr Shagin p.18/34

Comparison of the 5 Analyses R [ppm] 110 Chris Jon Mario Peter Xiaobo 109 n = 0.142 108 n = 0.122 combined 107 Chris - Asymmetry-weighted multiparameter analysis Jon - Ratio method; CBO included in fit function Mario, Xiaobo - Multiparameter analyses Peter - Ratio method analysis 2004 SLAC Summer Institute Petr Shagin p.19/34

Error table for Effect Uncertainty [ppm] 2000 2001 Statistics 0.62 0.66 Overlapping pulses (pileup) 0.13 0.08 Gain changes 0.12 0.12 Lost muons 0.10 0.09 Beam dynamics 0.21 0.07 Other 0.08 0.11 Total systematics 0.31 0.21 Total uncertainty 0.69 0.72 Unfortunately still limited by statistics... 2004 SLAC Summer Institute Petr Shagin p.20/34

) $ Determining Analyses for and were finalized separately and done independently. Secret offsets were removed. with from muonium spectroscopy [W. Liu et al., PRL 82, 711] ppm 2004 SLAC Summer Institute Petr Shagin p.21/34

Standard Model Prediction µ µ γ γ γ e, µ µ µ γ γ γ h µ µ γ Ζ 2004 SLAC Summer Institute Petr Shagin p.22/34

Hadronic Vacuum Polarization Low-energy QCD is non-perturbative, so HVP contribution can not be calculated reliably from first principles fortunately data can help...contribution can be determined to hadrons through dispersion from integral. electron-positron annihilation q q hadrons # ppm M. Davier, S. Eidelman, A. Höcker and Z. Zhang, Eur. Phys. J. C31, 503 (2003) 2004 SLAC Summer Institute Petr Shagin p.23/34

Hadronic decay Assume exact isospin symmetry; from CVC: Indirectly e + e γ ν τ hadrons CVC W hadrons exp rad exp rad SU(2) M. Davier, S. Eidelman, A. Höcker and Z. Zhang, Eur. Phys. J. C31, 503 S. Ghozzi and F. Jegerlehner, hep-ph/0310181 2004 SLAC Summer Institute Petr Shagin p.24/34

The e e / Discrepancy 0.3 ( F π 2 [ee] F π 2 [τ]) / F π 2 [τ] 0.2 0.1 0-0.1 τ data (ALEPH) CMD-2 CMD OLYA DM1 CLEO 25.42 ± 0.12 ± 0.42 OPAL 25.44 ± 0.17 ± 0.29 L3 25.44 ± 0.16 ± 0.10 ALEPH preliminary 25.47 ± 0.10 ± 0.09-0.2 e + e CVC 24.52 ± 0.32 τ Average 25.46 ± 0.10-0.3 0.2 0.4 0.6 0.8 1 1.2 23 24 25 26 27 s (GeV 2 ) B(τ ν τ π π o ) (in %) 2004 SLAC Summer Institute Petr Shagin p.25/34

Comparison to theory - µ Avg. [e + µ 230 220 210 200 190-11659000 [τ] ] 10 10 aµ - e + 180 170 Experiment Theory 160 150 2004 SLAC Summer Institute Petr Shagin p.26/34

# New Physics Beyond Standart Model? there is a discrepancy, it is a good region for SUSY SUSY: µ χ ν χ µ + µ χ 0 µ µ µ γ γ (A.Czarnecki and W.J. Marciano hep-ph/0102122) (for 4 < < 40 ) % $ 2004 SLAC Summer Institute Petr Shagin p.27/34

# Conclusions and Outlook anomaly ppm New measurement of are statistically compatible (CPT test) and Results for Average anomaly ppm is % $ # Constrains for 2004 SLAC Summer Institute Petr Shagin p.28/34

Hadron Production Cross-Section 6 5 ω Φ e + e J/ψ 1S ψ 2S hadrons ψ 3770 QCD 4 R 3 2 1 exclusive data BES γγ2 Crystal B. PLUTO 0 6 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 s (GeV) ϒ 1S ϒ 2S 3S 4S 5 4 ϒ 10860 ϒ 11020 R 3 2 1 e + e hadrons QCD PLUTO LENA Crystal B. MD1 JADE MARK J 0 5 6 7 8 9 10 11 12 13 14 s (GeV) [M. Davier et al., hep-ph/0208177] 2004 SLAC Summer Institute Petr Shagin p.29/34

The Radiative Return Method DA NE, PEP-II: operate at fixed CM energies (1.02 GeV, 10.58 GeV) Hadronic energy scan via Initial State Radiation γ + e γ h e Published KLOE results [hep-ex/0407048] confirm Novosibirsk e e data. BaBaR results upcoming. 2004 SLAC Summer Institute Petr Shagin p.30/34

Electroweak interactions γ γ γ µ µ Z 0 W W µ µ γ µ µ ν µ QED (through four loops + five loops estimated): ppm # Weak (through two loops): ppm 2004 SLAC Summer Institute Petr Shagin p.31/34

Hadronic light-by-light γ H γ µ µ (1.1 0.22 ppm) K. Melnikov and A. Vainshtein, hep-ph/0312226 2004 SLAC Summer Institute Petr Shagin p.32/34

Evolution of the experimental precision + CERN µ 10.3 - CERN µ 9.4 + BNL97 µ 12.9 + BNL98 µ 5.1 + BNL99 µ 1.3 + BNL00 µ 0.7 - BNL01 µ 0.7 116590 116591 116592 116593 116594 8 10 a µ 2004 SLAC Summer Institute Petr Shagin p.33/34

Corrections to Electric field correction: Effect of term on non-magic muons ( calculated from measured radial distribution: ppm ); Pitch correction: Vertical betatron oscillation changes the rms angle between muon orbit and correction term in : ppm 2004 SLAC Summer Institute Petr Shagin p.34/34