HIGHER-ORDER THEORIES

Similar documents
HIGHER-ORDER THEORIES

Finite Element Method in Geotechnical Engineering

3D Elasticity Theory

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

12. Stresses and Strains

COMPOSITE PLATE THEORIES

Lecture 8. Stress Strain in Multi-dimension

Unit 13 Review of Simple Beam Theory

A free-vibration thermo-elastic analysis of laminated structures by variable ESL/LW plate finite element

COMPARISON OF PLATE MODELS FOR ANALYSIS OF LAMINATED COMPOSITES

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

FINITE ELEMENT MODELS WITH NODE-DEPENDENT KINEMATICS ADOPTING LEGENDRE POLYNOMIAL EXPANSIONS FOR THE ANALYSIS OF LAMINATED PLATES

FLEXURAL RESPONSE OF FIBER RENFORCED PLASTIC DECKS USING HIGHER-ORDER SHEAR DEFORMABLE PLATE THEORY

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

Hybrid-interface finite element for laminated composite and sandwich beams

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

Vibration Behaviour of Laminated Composite Flat Panel Under Hygrothermal Environment

Basic Equations of Elasticity

MAE 323: Lecture 1. Review

M5 Simple Beam Theory (continued)

MEC-E8001 FINITE ELEMENT ANALYSIS

IV B.Tech. I Semester Supplementary Examinations, February/March FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80

CIVL 7/8117 Chapter 4 - Development of Beam Equations - Part 2 1/34. Chapter 4b Development of Beam Equations. Learning Objectives

UNIVERSITY OF HAWAII COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

Thermal Vibration of Magnetostrictive Material in Laminated Plates by the GDQ Method

Composites Design and Analysis. Stress Strain Relationship

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

LOWELL WEEKLY JOURNAL

1 Bending of beams Mindlin theory

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

Bending of Simply Supported Isotropic and Composite Laminate Plates

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation

Nonlinear Thermo- Mechanics of Plates and Shallow Shells

FREE VIBRATION OF AXIALLY LOADED FUNCTIONALLY GRADED SANDWICH BEAMS USING REFINED SHEAR DEFORMATION THEORY

Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load

CIVL4332 L1 Introduction to Finite Element Method

Bending Analysis of Symmetrically Laminated Plates

Lecture 7: The Beam Element Equations.

Lecture 15 Strain and stress in beams

M E 320 Professor John M. Cimbala Lecture 10

4. Mathematical models used in engineering structural analysis

Mechanical Properties of Materials

Analytical Mechanics: Elastic Deformation

Lecture M1 Slender (one dimensional) Structures Reading: Crandall, Dahl and Lardner 3.1, 7.2

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Analysis of laminated composite skew shells using higher order shear deformation theory

Accepted Manuscript. R.C. Batra, J. Xiao S (12) Reference: COST Composite Structures. To appear in:

' Liberty and Umou Ono and Inseparablo "

Large Displacement Analysis of Sandwich Plates and Shells with Symmetric/Asymmetric Lamination

Chapter: 5 Subdomain boundary nodes

Two Posts to Fill On School Board

Symmetric Bending of Beams

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed

MECHANICS OF MATERIALS

Unit IV State of stress in Three Dimensions

Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure

Aircraft Structures Kirchhoff-Love Plates

Applications of Eigenvalues & Eigenvectors

MEC-E8001 Finite Element Analysis, Exam (example) 2018

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

General elastic beam with an elastic foundation

Mechanics PhD Preliminary Spring 2017

STRESS PROJECTION, LAYERWISE-EQUIVALENT, FORMULATION FOR ACCURATE PREDICTIONS OF TRANSVERSE STRESSES IN LAMINATED PLATES AND SHELLS

Professor Terje Haukaas University of British Columbia, Vancouver The M4 Element. Figure 1: Bilinear Mindlin element.

Due Tuesday, September 21 st, 12:00 midnight

Thermal buckling and post-buckling of laminated composite plates with. temperature dependent properties by an asymptotic numerical method

Stress, Strain, Mohr s Circle

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

Chapter 5 Structural Elements: The truss & beam elements

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

4 NON-LINEAR ANALYSIS

JEPPIAAR ENGINEERING COLLEGE

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

International Journal of Advanced Engineering Technology E-ISSN

Shape Control of Composite Structures with Optimally Placed Piezoelectric Patches

Dynamic analysis of laminated composite plates subjected to thermal/mechanical loads using an accurate theory

Variational principles in mechanics

2 Introduction to mechanics

Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen

Finite Element Modeling and Analysis. CE 595: Course Part 2 Amit H. Varma

Free-edge stresses in general cross-ply laminates

Bending and vibration of laminated plates by a layerwise formulation and collocation with radial basis functions

Free vibration analysis of beams by using a third-order shear deformation theory

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Interpolation Functions for General Element Formulation

3. The linear 3-D elasticity mathematical model

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

Free Vibration Response of a Multilayer Smart Hybrid Composite Plate with Embedded SMA Wires

Citation Composite Structures, 2000, v. 50 n. 2, p

An Efficient Coupled Polynomial Interpolation Scheme to Eliminate Material-locking in the Euler-Bernoulli Piezoelectric Beam Finite Element

Shear stresses around circular cylindrical openings

Finite element modelling of structural mechanics problems

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

BHAR AT HID AS AN ENGIN E ERI N G C O L L E G E NATTR A MPA LL I

MODIFIED HYPERBOLIC SHEAR DEFORMATION THEORY FOR STATIC FLEXURE ANALYSIS OF THICK ISOTROPIC BEAM

Transcription:

HIGHER-ORDER THEORIES Third-order Shear Deformation Plate Theory Displacement and strain fields Equations of motion Navier s solution for bending Layerwise Laminate Theory Interlaminar stress and strain continuity Equations of motion Numerical results 1

TSDT Displacement Field (continued) Reduction of the Displacement Field : Require that the top and bottom faces of the plate are free of shear stress h h xz( x, y,,) t yz( x, y,,) t 0 h h xz( x, y,,) t yz( x, y,,) t 0 w xz x zx 3z x x w 3h w 3h x hx x 0, x hx x 0 x 4 x 4 4 w x, 0 x x 3h x Third-Order Laminate Plate Theory

Third-Order Shear Deformation Plate Theory (TSDT) Displacement Field φ x (u,w) w 0 x ( u 0, w 0 ) Assumed Displacement Field 1 3 3 x x x u ( x, y, z,) t u( x, y,) t z ( x, y,) t z ( x, y,) t z ( x, y,) t 3 y y y u ( x, y, z,) t v( x, y,) t z ( x, y,) t z ( x, y,) t z ( x, y,) t u( xyzt,,,) wxyt (,,) Third-Order Laminate Plate Theory 3

Displacement Field of the Reddy Third-Order Laminate Plate Theory (RLPT) Displacement Field 3 4 w u1 ( x, y, z,) t u( x, y,) t zx( x, y,) t z x 3h x 3 4 w u( x, y, z,) t v( x, y,) t zy( x, y,) t z y 3h y u( xyzt,,,) wxyt (,,) 3 Strain Field (0) (1) (3) xx xx xx xx 3 yy yy z yy z yy xy xy xy xy (0) () xz xz xz z yz yz yz 4

Strain Field of the Reddy Third-Order Laminate Plate Theory Strain Field (continued) u 1 w x (0) x x (1) x xx xx v 1 w y yy, yy 4 y y, c1 xy y 3h xy u v w w x y y x x y y x x w (3) x x w xx y w (0) () xz yy c 1 x 1, xz x y y yz 3 1 c yz w xy y x y w y y x xy Third-Order Laminate Plate Theory 5

RLPT Equations of Motion @N xx @x @N xy @x + @N xy + @N yy @ ¹ Q x @x + @ ¹ Q y + @ @x @ P xx + c 1 @x " + c 1 I 0 Äu 0 + J 1 Ä Áx c 1 I 3 @ Äw 0 @x I 0 Äv 0 + J 1Áy Ä @ Äw 0 c 1 I 3 @w 0 Nxx @x + N @w 0 xy + @ @w 0 Nxy @x + N @w 0 yy + @ P xy @x + @ P yy + q I0 Äw 0 c 1I 6 @ Äw 0 @x + @ Äw 0 @Äu 0 I 3 @x + @Äv 0 @ Á Ä x + J4 @x + @ Á Ä y # Omit subscript 0 from u, v, and w @ M ¹ xx @x @ M ¹ xy @x + @ ¹ M xy + @ ¹ M yy ¹ Q x J 1 Äu 0 + K Ä Áx c 1 J 4 @ Äw 0 @x ¹ Q y J 1 Äv 0 + K Ä Áy c 1 J 4 @ Äw 0 ¹M M c 1 P ¹ Q Q c R Third-Order Laminate Plate Theory 6

RLPT Definition of Stress Resultants Conventional Stress Resultants < : N xx N yy N xy Z h h < : ¾ xx ¾ yy ¾ xy dz < : M xx M yy M xy Z h h < : ¾ xx ¾ yy ¾ xy z dz Higher-Order Stress Resultants < < : P xx P yy P xy Z h h : ¾ xx ¾ yy ¾ xy z3 dz ½ Rx R y ¾ Z h h ½ ¾yz ¾ z dz ¾ xz Mass Inertias I i Z h h ½ (z) i dz (i 0 1 6) J i I i c 1 I i+ K I c 1 I 4 + c 1I 6

RLPT Boundary Conditions Primary Variables : u n u s w 0 @w 0 @n Á n Á s Secondary Variables : N nn N ns ¹ Vn P nn ¹ Mnn ¹ Mns ¹V n c 1 µ @Pxx @x + @P xy n x + c 1 " µ I 3 Äu 0 + J 4 Ä Áx c 1 I 6 @ Äw 0 @x µ @Pxy @x n x " + @P yy n y µ # + I 3 Äv 0 + J 4Áy Ä @ Äw 0 c 1 I 6 n y + @P ns ¹Q x n x + ¹Q y n y + P(w0 ) + c 1 @s µ µ @w 0 P(w 0 ) N xx @x + N @w 0 @w 0 xy n x + N xy @x + N @w 0 yy n y Third-Order Laminate Plate Theory

Bending of a symmetric cross-ply (0/0/0/0) laminate under uniformly distributed load Deflection, w _ 0.00 0.01 0.016 0.014 0.01 0.010 0.00 0.006 3-D Elasticity Solution CLPT FSDT TSDT E 10 6 psi (7 Gpa) E 1 5E, G 1 G 13 0.5E G 3 0.E, ν 1 0.5 at x0 and xa v 0 w 0 0 _ φ y N xx M xx 0 y a SS 1 at y0 and yb u 0 w 0 0 _ φ x N yy M yy 0 b x 0.004 0 5 10 15 0 5 30 35 40 45 50 a/h SS-1 Figure Boundary 11.5 3 Conditions Third-Order Laminate Plate Theory

Bending of a symmetric cross-ply (0/0/0/0) laminate under uniformly distributed load 0.50 0.30 c ess coo d ate, 0.10-0.10-0.30 CLPT (E) FSDT (E) FSDT (C) TSDT (E) TSDT (C) (E): equilibrium-derived (C): constitutively-derived -0.50 0.00 0.10 0.0 0.30 0.40 0.50 0.60 Stress, σ _ xz (0,b/,z) Figure 11.5 6 Third-Order Laminate Plate Theory 10

Bending of a symmetric cross-ply (0/0/0/0) laminate under uniformly distributed load 0.50 0.30 c ess coo d ate, 0.10-0.10-0.30 CLPT (E) FSDT (E) FSDT (C) TSDT (E) TSDT (C) (E): equilibrium-derived (C): constitutively-derived -0.50 0.00 0.04 0.0 0.1 0.16 0.0 Stress, σ _ yz (a/,0,z) Third-Order Laminate Plate Theory 11

LAYERWISE LAMINATE THEORY y z Equilibrium of Interlaminar Stresses kth layer x (k+1)th layer z (k+1) σ zx (k+1) σ zy (k+1) σ zz (k) σ zx (k) σ zy (k) σ zz (k+1) σ zy (k+1) σ zx (k) σ zz (k+1) σ zz (k) σ zy (k) σ zx k+1 k x Layerwise Laminate Theory 1

INTERLAMINAR STRESS AND STRAIN CONTINUITY Equilibrium Requirements < ¾ xx ¾ : yy ¾ xy (k) < ¾ xx 6 ¾ : yy ¾ xy (k+1) < ¾ xz ¾ : yz ¾ zz (k) < ¾ xz ¾ : yz ¾ zz (k+1) < ¾ xz ¾ : yz ¾ zz (k) < ¾ xz ¾ : yz ¾ zz (k+1)! < xz : yz " zz (k) < xz 6 : yz " zz (k+1) Single-Layer Theories < ¾ xx ¾ : yy ¾ xy (k) < ¾ xx 6 ¾ : yy ¾ xy (k+1) < ¾ xz ¾ : yz ¾ zz (k) < ¾ xz 6 ¾ : yz ¾ zz (k+1) < " xx " : yy xy (k) < : " xx " yy xy (k+1) < xz : yz " zz (k) < xz yz : " zz (k+1) Layerwise Laminate Theory 13

LAYERWISE KINEMATIC MODEL NX u(x y z t) U I (x y t) I (z) I1 NX v(x y z t) V I (x y t) I (z) I1 MX w(x y z t) W I (x y t)ª I (z) I1 z Ith layer x z N I+1 I I 1 4 U N U I+1 U I U I 1 U 4 I+1 U I+1 U 3 U 3 1 I U I U 1 1 u I 1 U I 1 U I Φ I (z) Layerwise Laminate Theory 14

u(x y z t) v(x y z t) w(x y z t) Layerwise Displacement Field, Governing Equations, and FEM Approximation NX U I (x y t) I (z) I1 NX V I (x y t) I (z) I1 MX W I (x y t)ª I (z) I1 @N I xx @x @N I xy @x + @N I xy QI x N X + @N I yy QI y J1 NX J1 I IJ @ U J @t I IJ @ V J @t @ ~ Q I x @x + @ ~ Q I y ~ Q I z + ~ N I + q b ± I1 + q t ± IM MX J1 ~I IJ @ W J @t Finite element approximation p I3 I I1 U I (x y t) V I (x y t) W I (x y t) px U j I (t)ã j(x y) j1 px j1 V j I (t)ã j(x y) qx W j I (t)' j(x y) j1 15

Layerwise Kinematic Model Conventional 3D Layerwise D + 1D Cubic serendipity element Linear Lagrange element (1a) (in-plane) (through thickness) (1b) Quadratic serendipity element Quadratic Lagrange element (a) (in-plane) (b) (through thickness)

Table: Comparison of the number of operations needed to form the element sti ness matrices for equivalent elements in the conventional 3-D format and the layerwise -D format. Full quadrature is used in all. Element Type y Multipli. Addition Assignments 1a (3-D) 1,116,000 677,000 511,000 1b (LWPT) 43,000 370,000 106,000 a (3-D) 1,1,000 1,000 374,000 b (LWPT) 4,000 70,000 6,000 y Element 1a: 7 degrees of freedom, 4-node 3-D isoparametric hexahedron with cubic in-plane interpolation and linear transverse interpolation. Element 1b: 7 degrees of freedom, E1{L1 layerwise element. Element a: 1 degrees of freedom, 7-node 3-D isoparametric hexahedron with quadratic interpolation in all three directions. Element b: 1 degrees of freedom, E{Q1 layerwise element. Layerwise Laminate Theory 17

Layerwise Kinematic Model 3D modeling with D & 1D elements z z y y a h x a a a x -D quadratic Lagrangian element three quadratic layers through the thickness E 1 5 10 6 psi E E 3 10 6 psi G 1 0:5 10 6 psi G 13 G 3 0: 10 6 psi º 1 º 13 º 3 0:5 u(x a z) u(a y z) 0 v(a y z) u(x a z) 0 w(x a z) u(a y z) 0 Layerwise Laminate Theory 1

Validation of the Layerwise Theory Layerwise Laminate Theory 1

Verification of the Layerwise Theory Layerwise Laminate Theory 0

Variable Kinematic Model for Global-Local Analysis Composite displacement field: ESL Displacement field: u ESL 1 (x y z) u 0 (x y) + zá x (x y) u ESL (x y z) v 0 (x y) + zá y (x y) u ESL 3 (x y z) w 0 (x y) LWT Displacement field: u i (x y z) u ESL i (x y z) + ui LW T (x y z) u LW T 1 (x y z) u LW T (x y z) u LW T 3 (x y z) NX U I (x y) I (z) I1 NX V I (x y) I (z) I1 MX W I (x y)ª I (z) Layerwise Laminate Theory 1 I1

Laywerwise Kinematic Model (continued) z z 5 z 4 B FSDT Rotation U 5 0 U 4 Layerwise z 3 Translation U 3 U 1 z U z 1 z 1 A U 1 0 Layerwise Laminate Theory

y Sub-region Continuity of the Solution y LWT LWT LWT LWT LWT LWT LWT1 FSDT LWT1 LWT1 FSDT LWT1 FSDT FSDT FSDT FSDT FSDT FSDT At nodes At nodes, set U j V j 0, j1,,..,n, set W 0, j1,,..,n j x At nodes, set U j V j 0, j1,,..,n x (a) Enforcing strict subregion compatibility (b) Enforcing relaxed subregion compatibility Layerwise Laminate Theory 3

Free-Edge Problem E 1 0 10 6 psi. E.1 10 6 psi. E 3.1 10 6 psi. G 1 0.5 10 6 psi. G 13 G 3 G 1 ν 13 ν 3 ν 1 0.1 y a 10b b 4h h k Local Region Global Region (LWT) (FSDT) b x b a a 4 Layerwise Laminate Theory 4

Free-Edge Problem (continued) z h k 45 45 b b y Local Region LWT elements h k h k h k h k y Layerwise Laminate Theory 5

Free-Edge Problem (continued) Table: Description of global{local meshes for the (45/{45) s laminate under axial extension. Global-local meshes Remarks Mesh 1 Mesh Mesh 3 Mesh 4 Mesh 5 3D mesh Number of Elements in Local LWT Region 3 4 3 5 3 6 3 7 5 11 Width of Local Region 1 h k h k h k 3h k 16h k 6 Length of Local Region 5 a 6 5 a 6 5 a 6 5 a a Total Number of Active D.O.F. in VKFE Mesh 1,6,400,14 3,,116 (Strict Compatibility) Total Number of Active D.O.F. in VKFE Mesh,354,00 3,46 3,60,116 (Relaxed Compatibility) h k thickness of a single material ply. All ve VKFE meshes have the exact same in-plane discretization (5 11). Layerwise Laminate Theory 6

Free-Edge Problem (continued) z/hk σ zz Layerwise Laminate Theory 7

Free-Edge Problem (continued) z/hk σ xz Layerwise Laminate Theory

Free-Edge Problem (continued) z/hk σ xz σ zz Layerwise Laminate Theory

Summary In this lecture, we have discussed the following topics: Third-order Shear Deformation Plate Theory Development of governing equations Numerical results Layerwise Laminate Theory Development of governing equations Global-local analysis Numerical results Layerwise Laminate Theory 30