The KATRIN experiment: calibration & monitoring

Similar documents
Direct Neutrino Mass Measurement with KATRIN. Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration

measurement and reduc,on of low- level radon background in the KATRIN experiment Florian M. Fränkle for the KATRIN Collabora9on

Feasibility of photoelectron sources for testing the energy scale stability of the KATRIN β-ray spectrometer

The Vacuum Case for KATRIN

The KATRIN experiment

Past searches for kev neutrinos in beta-ray spectra

KATRIN, an experiment for determination of the -mass: status and outlook DSU2012

KATRIN a model independent experiment to determine the neutrino mass with 0.2 ev sensitivity

An angular defined pulsed UV LED photoelectron source for KATRIN

Commissioning the KATRIN Experiment with Krypton-83m

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex.

Transmission measurements at the KATRIN main spectrometer

KATRIN: Directly Measuring the Neutrino Mass

Current status and future prospects of direct neutrino mass experiments

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Neutrinos & Weak Interactions

Angular Correlation Experiments

Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC

Status of direct neutrino mass measurements and the KATRIN project

ANALYSIS OF SYNCHROTRON RADIATION USING SYNRAD3D AND PLANS TO CREATE A PHOTOEMISSION MODEL

Reines and Cowan Experiement

arxiv: v2 [physics.ins-det] 13 Jul 2012

The Antineutrino Electron Angular Correlation Coefficient a in the Decay of the Free Neutron

arxiv: v1 [physics.ins-det] 13 Feb 2009

Photoemission Spectroscopy

arxiv: v1 [physics.ins-det] 2 Feb 2009

Characterization of Secondary Emission Materials for Micro-Channel Plates. S. Jokela, I. Veryovkin, A. Zinovev

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

arxiv: v1 [physics.ins-det] 31 Mar 2011

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

Radiation Detection and Measurement

Sample Examination Questions

Basic physics Questions

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements

introduction experiment design sensitivity status and perspectives

Direct Measurements of the Neutrino Mass. Klaus Eitel Forschungszentrum Karlsruhe Institute for Nuclear Physics

H2 Physics Set A Paper 3 H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET A PAPER 3.

Lecture 18. Neutrinos. Part IV Neutrino mass and Sterile Neutrinos

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Secondary ion mass spectrometry (SIMS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Basic structure of SEM

Detecting Neutrinos Hamish Robertson, INT Summer School, Seattle 2009

Auger Electron Spectrometry. EMSE-515 F. Ernst

Requirements for the Final Phase of Project 8

X-ray Photoelectron Spectroscopy (XPS)

PENeLOPE. a UCN storage experiment with superconducting magnets for measuring the neutron lifetime

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Progress with the. MPIK / UW - PTMS in Heidelberg. Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer

Absolute activity measurement of 85 Kr with proportional counters

The Windowless Gaseous Tritium Source of KATRIN

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization.

Methods of surface analysis

Measurement of Tritium in Helium

Surface effects in Segmented Germanium Detectors

Lecture 22 Ion Beam Techniques

MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES

Trap assisted decay spectroscopy setup at ISOLTRAP

Electron Cloud Studies

Energy analyzer for spin polarized Auger electron spectroscopy

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5

Investigation of a Cs137 and Ba133 runs. Michael Dugger and Robert Lee

Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P )

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Chemical Engineering 412

The accelerators at LNS - INFN and diagnostics aspects of the radioactive beams

DESIGN OF A WIEN FILTER AND MEASUREMENT OF LONGITUDINAL POLARIZATION OF BETA PARTICLES BY S. S. ABHYANKAR AND M. R. BHIDAY

Auger Electron Spectroscopy Overview

MSE 321 Structural Characterization

Alpha-Energies of different sources with Multi Channel Analyzer

X-Ray Photoelectron Spectroscopy (XPS)

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors.

POSITION SENSITIVE DETECTION OF CONCEALED SUBSTANCES EMPLOYING PULSED SLOW NEUTRONS

The KATRIN experiment - direct measurement of neutrino masses in the sub-ev region

Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons

High efficiency 3 He neutron detector TETRA for DESIR.

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

IEPC M. Bodendorfer 1, K. Altwegg 2 and P. Wurz 3 University of Bern, 3012 Bern, Switzerland. and

Building a Tracking Detector for the P2 Experiment

X-Ray Photoelectron Spectroscopy (XPS)

Department of Radiation Protection, Nuclear Science Research Institute, Japan Atomic Energy Agency

Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering

4. Inelastic Scattering

CHARGED PARTICLE INTERACTIONS

Møller Polarimetry for PV Experiments at 12 GeV

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Analysis of Insulator Samples with AES

Beta Spectroscopy. Glenn F. Knoll Radiation Detection and Measurements, John Wiley & Sons, Inc. 2000

Proportional Counters

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES)

A RICH Photon Detector Module with G-APDs

GAMMA DETECTORS FOR High energy Inelastic Neutron Scattering. E.M. Schooneveld

Today, I will present the first of two lectures on neutron interactions.

Status and Perspectives of the KATRIN Experiment

Transcription:

The KATRIN experiment: calibration & monitoring NPI Rez near Prague

content KATRIN overview < Am/Co measurements at Mainz < first Rb/Kr measurements at Mainz < multiple background events <

the KATRIN experiment > next generation tritium experiment > beta decay experiment > to measure neutrino mass > model independent way > compl. to double β decay & cosm. > sensitivity 0.2 ev (90%c.l.) (no signal) > discovery potential 0.35 ev (5 σ) > design report, 2005

calibration & monitoring interested in energy < voltage measured < matching each other calibration < no physical motivation < bias of 10 ev -> mass of 1e 6 ev < diff. of tritium & helium mass 1.7 ev < > stability of calibration monitoring > strong physical motivation > time change of bias of 0.03 ev > implies fictitious mass of 0.02 ev

Am/Co measurements at Mainz

Am/Co source > 241 Am gammas 26344.8 ± 0.2 ev > width better than 0.03 ev > half-life of 432 y > 1.11 GBq by Amersham > photoeffect on a Co foil > K-shell bind. eng. 7708.78 ± 0.02 ev > with respect to Fermi level > width 1.3 ev > el. kin. eng about 18636.0 ± 0.2 ev > chemical shifts 2.0 ev

Am/Co measurements history 3.5 3.0 2.5 count rate [Hz] 2.0 1.5 > autumn 2003, ESA 12 Rez/Prague > induced by X-rays 0.5 > MC by A. Spalek > spring 2004, Mainz > reassembled source part > autumn 2004, Mainz > understanding background > spring 2005, Mainz > final feasibility study ESA 12 measurement & MC sim. ^ 1.0 0.0 9000 9500 10000 10500 11000 energy [ev]

Mainz setup > source part reassembled > Am/Co source in the magnet B > pumped to about 2e 9 mbar > if baked up to 250 C > pumping speed 1500 l/s > a full electrode, two grids > air coils > Earth field compensation coils > tank pumped to 1e 10 mbar > segmented detector > 1.5 kev resolution

spectrometer performance > Rb/Kr K-32 line > energy of about 17824 ev > natural width of 2.8 ev > theoretical res. 1.5 ev @ 17.8 kev > el. inhomog. 0.5 V (rough) > HV ripple 0.8 V 22 20 18 16 14 12 10 8 6 4 2 0 17810 17815 17820 17825 17830 17835 17840 Energy [ev] > spec res. 1.5 ev > fitted position 17824.83 ± 0.03 ev > fitted width 3.16 ± 0.12 ev > chi^2/d.o.f. 0.94

the first scan 3340 3320 3300 3280 3260 3240 3220 3200 18560 18580 18600 18620 18640 18660 18680 Energy [ev] > vanishing effect > background of 3.2 khz

gamma background count rate [Hz] 9 8 7 6 5 4 3 2 1 > Am 26.3 & 59.6 kev gammas > Np X-rays > Am self-absorption > factor of 2.2 for 26.3 gammas > Am X-rays > all these emit electrons 0 0 10 20 30 40 50 60 70 energy [kev] the thinner Co foil the better < 0.1 µm on mylar foil, hard to sputter < 3.0 µm Co foil picked up < the thinnest, self-supported <

tilted source position > monel shielding 58 deg. > source tilted 65 deg. > 26.3 kev shielded completely > 59.6 kev suppressed significantly > transmission checked by 57 Co > lower by factor of 2 7 6 5 4 3 the tilted source holder ^ 57 Co K-14.4 line, the tilted way < 2 1 7260 7270 7280 7290 7300 7310 Energy [ev]

adiabatic way 2300 2200 2100 2000 1900 1800 1700 1600 16000 16500 17000 17500 18000 18500 19000 19500 20000 Energy [ev] > energy res. 4.2 ev @ 18.6 kev > 300 el./s > as expected

turning nonadiabatic 460 440 420 400 380 360 340 320 300 280 > energy res. 2.7 ev @ 18.6 kev > 3.6 T mag. A&B, 5.2 G an. plane > worse adiabacity > lower background > bck. component from the source > Np & Am X-rays > photoeffect on Co L-shells 260 240 16000 18000 20000 22000 24000 26000 28000 Energy [ev]

sputtering the foil > well defined surface > reproducibility > get rid of Co oxides > in favor of metal component > Ar ions of about 100 ev > about 16 nm of Co sputtered 335 330 reference sputtered 325 320 315 310 305 the setup during the sputtering ^ black before, and magenta after < 300 295 18600 18610 18620 18630 18640 18650 Energy [ev]

turning even more nonadiabatic 800 700 600 500 400 > fixing magnetic flux > 2.4 T mag. A&B, 0.56 T cm 2 > varying energy resolution > starting 3.9 ev (5.0 G) (black) > reaching the adiabatic edge > 2.4 ev (3.1 G) (magenta) > loosing the ability to guide el. > finishing 1.5 ev (1.9 G) > signal to background ration 300 200 100 17000 17500 18000 18500 19000 19500 Energy [ev]

turning even more nonadiabatic 700 600 500 400 300 200 100 > fixing energy resolution > (mag. field at the an. plane) > zooming the det. image > (varying detector field) > improving signal to bckg. ratio > paying the effect > getting space at the an. plane 0 17000 17500 18000 18500 19000 19500 Energy [ev]

nonadiabatic way 22 21 20 19 18 17 > energy res. 1.4 ev @ 18.6 kev > 2.4 T mag. A&B, 1.8 G an. plane > mag. flux 0.17 T cm 2 > effect of about 2 Hz > background of about 16 Hz > our best 16 18620 18622 18624 18626 18628 18630 18632 18634 18636 Energy [ev]

Am/Co conclusion good & stable source < to monitor & calibrate < > J. Bonn for sharing his experience, assistance & hospitality > E. Otten for valuable discussions, financial support > F. Glück for his code to calculate el. & mag. fields, and to track el. > B. Flatt for spec. introduction

first Rb/Kr measurements at Mainz, A. Kovalik INP Rez near Prague, ЛЯП ОИЯИ Дубна

Rb/Kr source > a convenient solid source > to monitor > June, 2005, Mainz > 29 kbq source (83Rb, 86 d) > evaporated at Rez/Prague > memo to be published

spectrometer setup > spectrometer magnets 45 A > mag. fields of 5.4 T > pumped to 5e-10 mbar > Rb/Kr in the magnet > pumped to 8e-9 mbar > no bake up > detector charged up 40 V > the inner segment only > moderate conditions

the first scan > Iair = 0 A > Ic = 60 A (1.7 T) full field > Ban. = 11.5 G, res. 3.8 ev > beam diameter of 43 cm > source diameter of 6.7 mm 15 16 14 12 10 8 14 13 6 12 11 10 4 17000 17200 17400 17600 17800 18000 Energy [ev] 9 8 7 6 17700 17720 17740 17760 17780 17800 17820 17840 Energy [ev] > a wide scan at the top > a zoom on the left

optimized position > keeping the setup constant > moving the source > 4.5 mm down, 1 mm left > signal to background ratio 80 70 90 80 70 60 50 40 30 20 60 50 40 10 16800 17000 17200 17400 17600 17800 18000 18200 18400 Energy [ev] 30 20 17700 17720 17740 17760 17780 17800 17820 17840 Energy [ev] > a wide scan at the top > a zoom on the left

improved resolution > Iair = -7.5 A > Ic = 35 A (1.0 T) > Ban. = 4.9 G, res. 1.6 ev > worse adiabaticity 40 40 35 30 25 20 15 35 10 30 25 20 15 10 5 17700 17720 17740 17760 17780 17800 17820 17840 Energy [ev] 5 16800 17000 17200 17400 17600 17800 18000 18200 18400 Energy [ev] > a wide scan at the top > a zoom on the left > background component coming from the source

optimized mapped area 60 50 Ic = 55 A Ic = 45 A Ic = 35 A Ic = 25 A 40 30 20 10 0 17000 17200 17400 17600 17800 18000 18200 18400 Energy [ev] > Iair = -7.5 A > Ic = 55, 45, 35, 25 A > Ban. 5.6, 5.3, 4.9, 4.6 G > res. 1.8, 1.7, 1.6, 1.5 ev

the K-32 line > Ic = 25 A, Iair = -7.5 A > analyz. plane field of 4.6 G > resolution of 1.5 ev > 29 % of the source mapped 20 18 22 20 18 16 14 12 10 8 6 4 2 16 14 12 0 17810 17815 17820 17825 17830 17835 17840 Energy [ev] 10 8 6 17810 17812 17814 17816 17818 17820 17822 17824 17826 Energy [ev] > the K-32 line at the top > low energy tail on the left

the K-32 line fitted > position about 17824 ev > width 2.8 ev > theoretical res. 1.5 ev > el. inhomog. 0.5 V (rough) > HV ripple 0.8 V 20 18 16 14 12 10 > spec. res. of 1.5 ev > position 17824.83 ± 0.03 ev > width 3.16 ± 0.12 ev > chi^2/d.o.f = 0.94 8 6 4 2 17820 17822 17824 17826 17828 Energy [ev] > spec. res. of 2.0 ev > position 17825.12 ± 0.03 ev > width 2.96 ± 0.12 ev > chi^2/d.o.f = 0.94 > 83mKr activity est. 1.9 kbq > gamma spec. 29 kbq > e.i. 6.6 % of 83mKr kept

L-9.4 lines > keeping the setup constant > resolution of 0.6 ev > detector eff. 3 times lower > both 83Rb & 83mKr decays 160 140 120 100 80 60 40 140 20 120 100 80 0 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 Energy [ev] 60 40 20 7450 7460 7470 7480 7490 7500 Energy [ev] > L-9.4 lines at the top > the L1-9.4 line on the left

L-32 lines > keeping the setup constant > resolution of 2.6 ev 70 60 50 40 30 40 35 30 25 20 15 20 10 0 30300 30350 30400 30450 30500 30550 Energy [ev] 10 5 0 30450 30455 30460 30465 30470 30475 30480 Energy [ev] > L-32 lines region at the top > the L3-32 line on the left

Rb/Kr conclusion & outlook all lines clearly observed < no disturbing backgrnd. < source quality superior < activity to be enhanced < Kr escape to be avoided < long term stability < > J. Bonn for assistance, ideas, experience shared, and financial support > F. Glück for his elmag. code > A. Spalek & D. Venos who prepared the source

multiple background events at Mainz, J. Bonn NPI Rez near Prague, Universität Mainz

experimental evidence 10 1 10 0 10-1 10-2 10-3 10-4 > B. Flatt: background, X-ray gun > N. Titov: background > the tritium runs & sweeping electrodes with HV > no evidence in the tritium data 10-5 0 50 100 150 200 250 300 350 400 Energy [kev] several electrons < with the retarded energy < at the same moment <

not an electronic effect 10 1 10 0 10-1 10-2 10-3 10-4 10-5 0 50 100 150 200 250 300 350 400 Energy [kev] > gammas not multiplied

a scope look

a scope look

independence of count rate > 1.11 GBq Am/Co vs. > pure spectrometer background > 25 kv vs. 18.6 kv (no reason) > the same behavior 10 1 10 0 10-1 10-2 Am/Co induced, U 0 = 25.0 kv pure background, U 0 = 18.2 kv 10-3 10 0 10-1 Am/Co induced, U 0 = 25.0 kv pure background, U 0 = 18.2 kv 10-4 10-5 0 20 40 60 80 100 120 140 160 180 200 Energy [kev] 10-2 10-3 10-4 the first segment data on the top ^ the third segment data on the left < 10-5 0 50 100 150 200 250 300 350 400 450 Energy [kev]

mirrors and traps > spectrometer a magnetic trap > analyzing plane & magnets > canceled by I_B = 0 A & > strong counter-field I_air = 10 A. > electrodes directly mapped 10-1 10-2 10-3 I B = 50 A I B = 0 A 10-4 10-1 I B = 50 A I B = 0 A 10-2 10-5 0 20 40 60 80 100 120 140 160 180 200 Energy [kev] 10-3 10-4 the first segment data on the top ^ the third segment data on the left < 10-5 0 50 100 150 200 250 300 350 400 450 Energy [kev]

shaping time > 3 µs vs. 1 µs > too slow to separate the events 10 2 10 1 10 0 3 µs 1 µs 10-1 10-2 10-3 10 1 10 0 3 µs 1 µs 10-4 10-5 0 50 100 150 200 250 300 350 400 Energy [kev] 10-1 10-2 10-3 10-4 the first segment data on the top ^ the third segment data on the left < 10-5 0 50 100 150 200 250 300 350 400 450 Energy [kev]

energy resolution 101 100 10-1 > 1.5 G, 1.3 G, and 1.1 G > 1.2 ev, 1.0 ev, 0.9 ev @ 18.6 kev > diam. of 47, 50, 55 cm first seg. > diam. of 80, 87, 94 cm third seg. > full electrode of 100 cm in diam. > grids with diam. of 89, 80 cm Ban = 1.5 G Ban = 1.3 G Ban = 1.1 G 10-2 10-3 10-4 101 Ban = 1.5 G Ban = 1.3 G Ban = 1.1 G -5 10 100 0 50 100 150 200 250 Energy [kev] 300 350 400 10-1 -2 10 the first segment data on the top ^ the third segment data on the left < 10-3 10-4 -5 10 0 50 100 150 200 250 Energy [kev] 300 350 400 450

beam diameter > diam. of 47 (80) cm 1 st (3 rd ) seg. > 1.2 ev (1.5 G) @ 0.26 T cm 2 > 2.4 ev (3.0 G) @ 0.51 T cm 2 > 2.0 ev @ 0.51 T cm 2, 47 -> 50 cm > neither resolution nor beam diam. > adiabacity driven 10 1 10 0 10-1 10-2 10-3 Φ = 0.26 T.cm 2, d an = 47 cm, res. 1.2 ev 18.6 kev Φ = 0.51 T.cm 2, d an = 47 cm, res. 2.4 ev 18.6 kev Φ = 0.51 T.cm 2, d an = 50 cm, res. 2.0 ev 18.6 kev 10 1 10 0 Φ = 0.26 T.cm 2, d an = 47 cm, res. 1.2 ev 18.6 kev Φ = 0.51 T.cm 2, d an = 47 cm, res. 2.4 ev 18.6 kev Φ = 0.51 T.cm 2, d an = 50 cm, res. 2.0 ev 18.6 kev 10-4 10-5 0 20 40 60 80 100 120 140 Energy [kev] 10-1 10-2 10-3 10-4 the first segment data on the top ^ the third segment data on the left < 10-5 0 20 40 60 80 100 120 140 Energy [kev]

adiabacity > 2.6 G, 3.8 G, 4.9 G, and 6.1 G > 1.9, 2.8, 3.6, 4.5 ev @ 18.6 kev > narrowing the beam flux > suppressing the effect > Am/Co spec. to be subtracted 10 2 10 1 10 0 10-1 10-2 res. 1.9 ev 18.6 kev, d an = 50 cm res. 2.8 ev 18.6 kev, d an = 41 cm res. 3.6 ev 18.6 kev, d an = 36 cm res. 4.5 ev 18.6 kev, d an = 33 cm 10-3 10 1 10 0 10-4 res. 1.9 ev 18.6 kev, d an = 86 cm res. 2.8 ev 18.6 kev, d an = 72 cm res. 3.6 ev 18.6 kev, d an = 63 cm res. 4.5 ev 18.6 kev, d an = 57 cm 10-5 0 20 40 60 80 100 120 140 Energy [kev] 10-1 10-2 10-3 10-4 the first segment data on the top ^ the third segment data on the left < 10-5 0 20 40 60 80 100 120 140 Energy [kev]

screening voltage > 1.8 G, 1.3 ev @ 18.6 kev > +5 V, +10 V, +15 V screening > both the intermed. & dipole el. > can cure the effect 10 2 10 1 10 0 10-1 10-2 U = +0 V U = +5 V U = +10 V U = +15 V 10-3 10 1 10 0 10-4 U = +0 V U = +5 V U = +10 V U = +15 V 10-5 0 20 40 60 80 100 120 140 Energy [kev] 10-1 10-2 10-3 10-4 the first segment data on the top ^ the third segment data on the left < 10-5 0 20 40 60 80 100 120 140 Energy [kev]

true secondary electrons 0.06 0.05 0.04 Probability 0.03 0.02 0.01 0 0 50 100 150 200 Energy [ev] > secondary electron emission > elastical reflection > redifussion > true secondary electrons phenomenological prob. model < by M.A. Furman & M.T.F. Pivi < LBNL-52807 (2003) <

probability of the process 0.4 0.35 0 rad π/8 rad π/4 rad 3π/8 rad 0.3 0.25 Probability 0.2 0.15 0.1 0.35 0.3 0.25 E 0 = 10 ev E 0 = 50 ev E 0 = 70 ev E 0 = 100 ev E 0 = 200 ev 0.05 0 0 50 100 150 200 Incident energy [ev] Probability 0.2 0.15 0.1 incident energy dependence - top ^ incident angle dependence - left < 0.05 0 0 π/8 π/4 Incident angle [rad] 3π/8 π/2

yield per incident electron 1.6 1.4 0 rad π/8 rad π/4 rad 3π/8 rad True secondary electrons yield 1.2 1 0.8 0.6 0.4 True secondary electrons yield 1.4 1.2 1 0.8 0.6 0.4 E 0 = 10 ev E 0 = 50 ev E 0 = 70 ev E 0 = 100 ev E 0 = 200 ev 0.2 0 0 50 100 150 200 Incident energy [ev] incident energy dependence - top ^ incident angle dependence - left < 0.2 0 0 π/8 π/4 Incident angle [rad] 3π/8 π/2

yield per penetrated electron 30 25 0 rad π/8 rad π/4 rad 3π/8 rad True secondary electrons yield 20 15 10 True secondary electrons yield 45 40 35 30 25 20 15 10 E 0 = 10 ev E 0 = 50 ev E 0 = 70 ev E 0 = 100 ev E 0 = 200 ev 5 0 0 50 100 150 200 Incident energy [ev] incident energy dependence - top ^ incident angle dependence - left < 5 0 0 π/8 π/4 Incident angle [rad] 3π/8 π/2

a simulation mockup > few tens of electrons produced > to be guided to the detector > have to be bound on a field-line > a nonadiabatic process > driven by plasmons (problably) > as for the reflected ones > they may hit the electrode again > to leave & bind on a field-line > they hit the detector ~1 µs later > repeatedly some reflected by the mag. field< not many of them < energy < resolution accepted < energy > resolution high prob. <

multiple events conclusion & outlook multiple background events < driven by lack of adiabacity < true secondary el. suggested < simulation offered < unknown nonadiabatic process < a threshold energy study? contribution to tritium background? > F. Glück for his code to calculate el. & mag. fields, and to track el. > E. Otten for valuable discussions

acknowledgment O. Dragoun < A. Kovalik, ЛЯП ОИЯИ Дубна < M. Rysavy, A. Spalek, D. Venos < J. Bonn, E. Otten, Universität Mainz < F. Glück, FZK Karlsruhe < B. Flatt, Universität Mainz <