Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator

Similar documents
Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method

3.2 A2 - Just Like Derivatives but Backwards

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Large Scale Data Analysis Using Deep Learning

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Mathematics Ext 2. HSC 2014 Solutions. Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 keystoneeducation.com.

Module 7 (Lecture 25) RETAINING WALLS

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Lecture 6. Notes on Linear Algebra. Perceptron

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions

M.5 Modeling the Effect of Functional Responses

Control of Mobile Robots

Yang-Hwan Ahn Based on arxiv:

Chapter 22 : Electric potential

10.4 The Cross Product

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Math 171 Spring 2017 Final Exam. Problem Worth

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

CS249: ADVANCED DATA MINING

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

ON A CONTINUED FRACTION IDENTITY FROM RAMANUJAN S NOTEBOOK

Module 7 (Lecture 27) RETAINING WALLS

Lecture 11. Kernel Methods

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems

Creeping Movement across a Long Strike-Slip Fault in a Half Space of Linear Viscoelastic Material Representing the Lithosphere-Asthenosphere System

Review of Linear Algebra

Radial Basis Function (RBF) Networks

(1) Introduction: a new basis set

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES

2018 Fall Semester Quiz 4 For General Chemistry I (CH101)

AMS526: Numerical Analysis I (Numerical Linear Algebra)

3. Mathematical Modelling

General Strong Polarization

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix

Numerical Solution of Fredholm and Volterra Integral Equations of the First Kind Using Wavelets bases

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

2.4 Error Analysis for Iterative Methods

There are two things that are particularly nice about the first basis

F.1 Greatest Common Factor and Factoring by Grouping

Terms of Use. Copyright Embark on the Journey

Integrating Rational functions by the Method of Partial fraction Decomposition. Antony L. Foster

Linear Algebra Massoud Malek

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

Property Testing and Affine Invariance Part I Madhu Sudan Harvard University

Lecture 23: 6.1 Inner Products

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

10.1 Three Dimensional Space

MATH Topics in Applied Mathematics Lecture 2-6: Isomorphism. Linear independence (revisited).

8. Active Filters - 2. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

7.3 The Jacobi and Gauss-Seidel Iterative Methods

Classwork. Example 1 S.35

Module 4 (Lecture 16) SHALLOW FOUNDATIONS: ALLOWABLE BEARING CAPACITY AND SETTLEMENT

Math 3191 Applied Linear Algebra

Classical RSA algorithm

Patterns of soiling in the Old Library Trinity College Dublin. Allyson Smith, Robbie Goodhue, Susie Bioletti

Section 2: Equations and Inequalities

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous

(2) Orbital angular momentum

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding

Predicting Winners of Competitive Events with Topological Data Analysis

Dressing up for length gauge: Aspects of a debate in quantum optics

Systems of Linear Equations

Linear Algebra V = T = ( 4 3 ).

6.1. Inner Product, Length and Orthogonality

Algebraic Codes and Invariance

Exam Programme VWO Mathematics A

Lesson 7: Linear Transformations Applied to Cubes

Angular Momentum, Electromagnetic Waves

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Quantities that involve BOTH a magnitude and a direction are called vectors. Quantities that involve magnitude, but no direction are called scalars.

Acceleration due to Gravity

Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering. Stochastic Processes and Linear Algebra Recap Slides

SECTION 5: POWER FLOW. ESE 470 Energy Distribution Systems

Lecture 3 Optimization methods for econometrics models

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition

BHASVIC MαTHS. Skills 1

Topics. Module 3 Lecture 10 SHALLOW FOUNDATIONS: ULTIMATE BEARING CAPACITY NPTEL ADVANCED FOUNDATION ENGINEERING-I

Haar Basis Wavelets and Morlet Wavelets

Revision : Thermodynamics

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Applied Linear Algebra in Geoscience Using MATLAB

Thermodynamic Cycles

" = Y(#,$) % R(r) = 1 4& % " = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V,

A A A A A A A A A A A A. a a a a a a a a a a a a a a a. Apples taste amazingly good.

Uncertain Compression & Graph Coloring. Madhu Sudan Harvard

General Strong Polarization

Review of Last Class 1

Independent Component Analysis and FastICA. Copyright Changwei Xiong June last update: July 7, 2016

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations

Simultaneous state and input estimation of non-linear process with unknown inputs using particle swarm optimization particle filter (PSO-PF) algorithm

ECS130 Scientific Computing. Lecture 1: Introduction. Monday, January 7, 10:00 10:50 am

Crash course Verification of Finite Automata Binary Decision Diagrams

F.3 Special Factoring and a General Strategy of Factoring

P.3 Division of Polynomials

Transcription:

Lecture No. 1 Introduction to Method of Weighted Residuals Solve the differential equation L (u) = p(x) in V where L is a differential operator with boundary conditions S(u) = g(x) on Γ where S is a differential operator Find an approximation, u app, which satisfies the above equation uu aaaaaa = uu BB + αα kk φφ kk (xx) NN kk=1 where α k = unknown parameters which we must find ϕ k = set of known functions which we define a priori The approximating functions that make up u app must be selected such that they satisfy: Admissibility conditions: these define a set of entrance requirements. Completeness: ensures that the procedure will work. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 1 18

Basic Definitions 1. Admissibility of functions In order for a function to be admissible a function must Satisfy the specified boundary conditions Be continuous such that interior domain functional continuity requirements are satisfied Thus for a function f to be admissible for our stated problem we must have: Boundary conditions satisfied S ( f )=g(x) on Γ f must have the correct degree of functional continuity e.g. to satisfy LL(ff) = dd2 ff dddd2, the function and its first derivative must be continuous. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 2 18

This defines the Sobelov Space requirements (used to describe functional continuity). Relaxed admissibility conditions: we may back off from some of the stated admissibility conditions either which b.c. s we satisfy or what degree of functional continuity we require CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 3 18

2. Measure of a Function Point Norm defines the maximum value and as such represents a point measure of a function Point norm of vector aa maximum element of a a max therefore we select the max values of aa = aa 1 aa 2 Point norm of a function f maximum value of f within the domain f max Euclidian Norm represents an integral measure: The magnitude of a vector may also be expressed as: aa 2 = aa 1 2 + aa 2 2 + aa = aa TT aa 1 2 This represents the inner produce of the vector onto itself. Note that the mean square value represents an integral measure as well. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 4 18

Integral measure of a function Let s extend the idea of a norm back to an integral when an infinite number of values between x 1 and x 2 occur. aa 1 aa 2 aa = nn aa nn Therefore there are an infinite number of elements in the vector. This can be represented by the segment. xx 1 < xx < xx 2. The integral norm of the functional values over the segment is defined as: ff EE 2 = ff 2 dddd xx 1 We use a double bar for the Euclidian Norm to distinguish it from a point norm. Note that ff EE 0 and only equals zero when f = 0. Therefore, we can use norms as a measure of how well our approximation to the solution is doing (e.g. examine uu aaaaaa uu ) We ll be using Euclidian norms. xx 2 CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 5 18

3. Orthogonality of a function We use orthogonality as a filtering process in the selection of functions and in driving the error to zero. Vectors are orthogonal when ϴ = 90 A test for orthogonality is the dot product or inner product: aa bb = aa bb cos ϴ = aa 1 bb 1 + aa 2 bb 2 where aa = aa 1 ıı 1 + aa 2 ıı 2 aa bb = aa TT bb = bb TT aa Hence if a b = 0, vectors a and b are orthogonal. This concept can now be extended to N dimensions. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 6 18

Extend the vector definitions of orthogonality to the limit as N (i.e. to functions) xx 2 Examine ff gggggg xx 1 If this equals zero, then the functions are orthogonal. Therefore orthogonality of functions depends on both the interval and the functions. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 7 18

The inner product of 2 functions establishes the condition of orthogonality: xx 2 ff gg dddd = ff, gg xx 1 e.g. sin nnnnnn LL nn = 0, 1, 2 defines a set of functions which are orthogonal over the interval [0, L]. The figure shows two such functions which are orthogonal over this interval: In addition sin nnnnnn LL functions vanish at the ends of the interval. This is a useful feature. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 8 18

For real functions: < ϕ 1, ϕ 2 > = < ϕ 2, ϕ 1 > α < ϕ 1, ϕ 2 > = < α ϕ 1, ϕ 2 > < ϕ 1, ϕ 2 + ϕ 3 > = < ϕ 1, ϕ 2 > + < ϕ 1, ϕ 3 > Linear Independence: A sequence of functions ϕ 1 (x), ϕ 2 (x),, ϕ n (x) is linearly independent if: α 1 ϕ 1 + α 2 ϕ 2 + α 3 ϕ 3 + + α n ϕ n = 0 for any point x within the interval only when α i = 0 for all i. An orthogonal set will be linearly independent. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 9 18

4. Completeness Consider n functions ϕ 1,ϕ 2,, ϕ n which are admissible. Therefore they satisfy functional continuity and the specified b.c. s. In addition these functions are linearly independent. Now set up the approximate solution: A sequence of linearly independent functions is said to be complete if we have convergence as N. Therefore functions comprise a complete sequence if uu uu aaaaaa 0 as N where u = the exact solution and u app = our approximate solution. Hence we require convergence of the norm. Examples of complete sequences: Sines Polynomials Bessel functions CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 10 18

Summary of Basic Definitions 1. Admissibility: these represent our entrance requirements. 2. Norm: indicates how we measure things 3. Orthogonality: allows us to drive the error to zero. 4. Completeness: tells us if it will work? Solution Procedure Given: L(u) = p(x) S(u) = g(x) in V on Γ We define an approximate solution in series form uu aaaaaa = uu BB + NN αα kk φφ kk kk=1 where αα kk are unknown parameters φφ kk are a set of known functions from a complete sequence CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 11 18

We must enforce admissibility Boundary condition satisfaction: Ensure that SS uu aaaaaa = gg on Γ Let s pick uu BB such that SS(uu BB ) = gg on Γ Since uu BB satisfied the b.c. s, all φφ kk must vanish on the boundary SS(φφ kk ) = 0 kk Thus each φφ kk must individually vanish on the boundary. In addition all φφ kk s satisfy the functional continuity requirements, they form an admissible set of functions. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 12 18

So far we have enforced satisfaction of uu aaaaaa on the boundary. However we violate the d.e. in the interior. This defines the Residual Error. Ԑ II = LL uu aaaaaa pp(xx) NN Ԑ II = LL(uu BB ) + αα kk LL(φφ kk ) pp(xx) kk=1 We note that Ԑ II represents a point measure of the interior error. For the exact solution, Ԑ II = 0 xx in V CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 13 18

We must solve for N different unknown coefficients, αα kk, k = 1, N. To accomplish this we select N different independent functions ww 1, ww 2, ww 3 ww NN and let: Ԑ II ww ii dddd = < Ԑ II, ww ii > = 0 for ii = 1, 2, NN vv Therefore we constrain the inner product of the error and a set of weighting functions to be zero. Note: if we don t select w i, i = 1, N functions to be linearly independent, we ll get duplicate equations and ultimately generate a singular matrix. Hence we have posed N constraints on the residual φφ i s are designated as the trial functions w i s are designated as the test functions (they test how good the solution is). CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 14 18

Substituting for Ԑ I into the integral inner product relationship We define NN αα kk < ww ii, LL(φφ kk ) > = < (LL(uu BB ) pp, ww ii ) > kk=1 ii = 1, 2, NN aa ii,kk ww ii, LL(φφ kk ) cc ii LL(uu BB ) pp, ww ii Thus we can write the system of simultaneous algebraic equations We note that k = column index; NN aa ii,kk αα kk = cc ii kk=1 i = row index ii = 1, 2, NN Hence we now have a set of algebraic equations from our d.e. aa ii,kk αα kk = cc ii and we can solve for our unknowns, αα kk. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 15 18

In the operator L(u) is linear, we get N linear algebraic equations. When the d.e. is nonlinear, the method still works but you get nonlinear algebraic equations. Then we require the test functions w i to be orthogonal to the residual, since < Ԑ II, ww ii > = 0 In the limit we would require an infinite number of test functions to be orthogonal to the residual. In the limit, the error diminishes to zero. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 16 18

Analogy to vectors Let some vector aa = aa 1 ee 1 + aa 2 ee 2 represent the error. Thus the coefficients of the vector a 1 and a 2 represent components of some error. ee 1 and ee 2 are the unit directions and also represent the test functions which are orthogonal and linearly independent. Now let s constrain a such that aa ee 1 = 0. This constrains a such that a 1 = 0. Now select another vector independent of ee 1. We therefore select ee 2 for the next orthogonality constraint. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 17 18

Therefore we now force aa ee 2 = 0 (aa 2 ee 2) ee 2 = 0 and thus we constrain a 2 = 0. Thus we have drive a to zero! For a 3-D vector we would need 3 ee ii s. When we consider a function, an infinite number of test functions will be needed to drive the error to zero. However we also need to increase the number of linearly independent functions in the trial functions such that we have a sufficient number of degrees of freedom. CE 60130 FINITE ELEMENT METHODS- LECTURE 1 - u pdated 2018 01-25 Page 18 18