Density Limit and Cross-Field Edge Transport Scaling in Alcator C-Mod

Similar documents
Alcator C-Mod. Particle Transport in the Alcator C-Mod Scrape-off Layer

Alcator C-Mod. Particle Transport in the Scrape-off Layer and Relationship to Discharge Density Limit in Alcator C-Mod

Cross-Field Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator C-Mod

Evidence for Electromagnetic Fluid Drift Turbulence Controlling the Edge Plasma State in Alcator C-Mod

Operational Phase Space of the Edge Plasma in Alcator C-Mod

Cross-Field Transport in the SOL: Its Relationship to Main Chamber and Divertor Neutral Control in Alcator C-Mod

Effect of divertor nitrogen seeding on the power exhaust channel width in Alcator C-Mod

Evidence for electromagnetic fluid drift turbulence controlling the edge plasma state in the Alcator C-Mod tokamak

Blob sizes and velocities in the Alcator C-Mod scrapeoff

Cross-field plasma transport and main chamber recycling in diverted plasmas on Alcator C-Mod. Abstract

Critical edge gradients and flows with reversed magnetic field in Alcator C-Mod

Pedestals and Fluctuations in C-Mod Enhanced D α H-modes

H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod

Flow measurements in the Scrape-Off Layer of Alcator C-Mod using Impurity Plumes

FAR SCRAPE-OFF LAYER AND NEAR WALL PLASMA STUDIES IN DIII D

PSI meeting, Aachen Germany, May 2012

Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer

Statistical Analysis of Fluctuation Characteristics at High- and Low-Field Sides in L-mode SOL Plasmas of JT-60U

Fluctuation statistics in the scrape-off layer of Alcator C-Mod

Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

Scaling of divertor heat flux profile widths in DIII-D

ArbiTER studies of filamentary structures in the SOL of spherical tokamaks

Plasma Science and Fusion Center

Turbulence and flow in the Large Plasma Device

Divertor Heat Flux Reduction and Detachment in NSTX

Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-60U

Physics of the detached radiative divertor regime in DIII-D

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer

INTERMITTENT TURBULENCE AND COHERENT

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod

Scaling of divertor heat flux profile widths in DIII-D

THE ADVANCED TOKAMAK DIVERTOR

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

Predicting the Rotation Profile in ITER

Edge Zonal Flows and Blob Propagation in Alcator C-Mod P5.073 EPS 2011

Electron temperature barriers in the RFX-mod experiment

Results From Initial Snowflake Divertor Physics Studies on DIII-D

Characteristics of the H-mode H and Extrapolation to ITER

Particle and Energy Transport in the SOL of DIII-D and NSTX

Volume Recombination and Detachment in JET Divertor Plasmas

Experimental investigation of the parallel structure of fluctuations in the scrape-off layer of Alcator C-Mod

Power balance of Lower Hybrid Current Drive in the SOL of High Density Plasmas on Alcator C-Mod

ARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS

L-mode filament characteristics on MAST as a function of plasma current measured using visible imaging

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod

Modelling of JT-60U Detached Divertor Plasma using SONIC code

Rapid changes of turbulence propagation direction in the edge of

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D

arxiv: v1 [physics.plasm-ph] 14 Jul 2014

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas

L-Mode and Inter-ELM Divertor Particle and Heat Flux Width Scaling on MAST

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES

Comments on Particle and Energy Balance in the Edge Plasma of Alcator C-Mod

Influence of Beta, Shape and Rotation on the H-mode Pedestal Height

Particle transport results from collisionality scans and perturbative experiments on DIII-D

Varia%ons in Edge and SOL Turbulence in NSTX

ELMs on C-Mod. J.W. Hughes for the Alcator C-Mod team. C-Mod/NSTX Pedestal Workshop Princeton, NJ September 7 8, 2010

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics

GA A27437 SCALING OF THE DIVERTOR HEAT FLUX WIDTH IN THE DIII-D TOKAMAK

Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport*

Divertor physics research on Alcator C-Mod. B. Lipschultz, B. LaBombard, J.L. Terry, C. Boswell, I.H. Hutchinson

Progress in characterization of the H-mode pedestal

Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA Burrell, K.H. General Atomics PO Box San Diego, CA

High Speed Imaging of Edge Turbulence in NSTX

On the physics of shear flows in 3D geometry

GA A22863 PLASMA PRESSURE AND FLOWS DURING DIVERTOR DETACHMENT

Development of a New Gas Puff Imaging Diagnostic on the HL-2A Tokamak

Pedestal Stability and Transport on the Alcator C-Mod Tokamak: Experiments in Support of Developing Predictive Capability

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

Study of Enhanced D α H-modes Using the Alcator C-Mod Reflectometer

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

A novel tracer-gas injection system for scrape-off layer impurity transport and screening experiments

C-Mod Transport Program

EXD/P3-13. Dependences of the divertor and midplane heat flux widths in NSTX

Investigation of causes for the discrepancy between the measured and modeled helium emissions using a gas puff imaging diagnostic

Diffusion during Plasma Formation

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations

Convective transport by intermittent blob-filaments: comparison of theory and experiment

1 EX/P6-5 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation

Divertor Requirements and Performance in ITER

Development of an experimental profile database for the scrape-off layer

Correlation Between Plasma Rotation and Electron Temperature Gradient Scale Length in LOC/SOC Transition at Alcator C-Mod

Erosion and Confinement of Tungsten in ASDEX Upgrade

Simulation of Plasma Flow in the DIII-D Tokamak

ICRF Loading Studies on Alcator C-Mod

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER

GA A26119 MEASUREMENTS AND SIMULATIONS OF SCRAPE-OFF LAYER FLOWS IN THE DIII-D TOKAMAK

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices!

3D analysis of impurity transport and radiation for ITER limiter start-up configurations

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK

Fluctuations and transport in the TCV scrape-off layer

OV/2-5: Overview of Alcator C-Mod Results

Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control

ELMs and Constraints on the H-Mode Pedestal:

Transcription:

EX/D- Density Limit and Cross-Field Edge Transport Scaling in Alcator C-Mod B. LaBombard ), M. Greenwald ), R.L. Boivin ), B..A. Carreras 3), J.W. Hughes ), B. Lipschultz ), D. Mossessian ), C.S. Pitcher 4), J.L. Terry ), S.J. Zweben 5), and Alcator C-Mod Research Team ) M.I.T. Plasma Science and Fusion Center, 75 Albany St., Cambridge, MA 39 USA ) General Atomics, San Diego, CA, USA 3) Oak Ridge National Laboratory, Oak Ridge, TN, USA 4) Institute for Aerospace Studies, University of Toronto, Toronto, Canada. 5) Princeton Plasma Physics Laboratory, Princeton, NJ, USA e-mail contact of main author: labombard@psfc.mit.edu Abstract: Recent experiments in Alcator C-Mod have uncovered a direct link between the character and scaling of cross-field particle transport in the edge plasma and the density limit, n G. As ne is increased from low values to values approaching ~, an ordered progression in the cross-field edge transport physics occurs: first benign cross-field heat convection, then cross-field heat convection impacting the scrape-off layer (SOL) power loss channels and reducing the separatrix electron temperature, and finally bursty transport (normally associated with the far SOL) invading into closed flux surface regions and carrying a convective power loss that impacts the power balance of the discharge. These observations suggest that SOL transport and its scaling with plasma conditions plays a key role in setting the empirically observed density limit scaling law.. Introduction The Greenwald empirical scaling law does well to predict the maximum plasma density that can be achieved in a tokamak ( n G ) over a wide range of operational parameters []. Although it is well accepted that the final collapse of the plasma ultimately involves a thermal instability followed by an MHD disruption [], the underlying physics that causes the onset of this condition to precisely track the empirical law is a puzzle that is yet to be resolved [3]. This fundamental deficiency in understanding impacts fusion reactor design; extrapolation into untested regimes is uncertain. Experiments in Alcator C-Mod indicate that the level of plasma transport across the separatrix and into the scrape-of layer (SOL) is tightly linked to the edge plasma parallel collisionality which is in turn correlated with the normalized discharge density, ne. As the edge plasma becomes more collisional ( ne increased), cross-field particle fluxes and associated heat convection dramatically increase. The character of SOL profiles and fluctuations change as well, suggesting that a number of important edge plasma phenomena are interrelated and connected to the density limit scaling: a two-zone SOL structure, non-diffusive ( bursty ) transport, high level of plasma recycling on the main-chamber walls, and the onset of divertor detachment. In this paper, we review these observations made in Alcator C-Mod, paying specific attention to the way in which the edge plasma state evolves with increasing n / n. e G

..5 Time (milliseconds)..5..5 Time (milliseconds)..5..5 Time (milliseconds)..5..5 Time (milliseconds)..5 EX/D-. Scrape-Off Layer Profiles and Fluctuations Figure shows the cross-section of a typical ohmic-heated plasma equilibrium and locations of a number of key diagnostics used for these studies. Further details can be found in Ref. [4]. In low to moderate density discharges relative to n G, the scrape-off layer (SOL) is found to exhibit a two-layer structure [4]: a near SOL (~5 mm zone) with steep density and temperature gradients and a far SOL with flatter profiles (see top panel of Fig. ). In the near SOL region, the normalized fluctuation amplitude is the lowest and the data exhibit a steady stream of apparently random fluctuations (see normalized ion saturation current time series data in Fig. ). At the location where the density gradient noticeably flattens (distance into SOL, ρ, ~ 5 mm) the fluctuations also change. From this location outward the data exhibit lower-frequency, higher-amplitude fluctuations with intermittent, long-lived bursts of ion saturation current arriving at the probe. The auto-correlation functions of Isat/<Isat> taken at different locations in the SOL reflect the longer-lasting duration and increasing contribution of the bursts to the signal; the auto-correlation times systematically increase with distance into the SOL. A fast photo-diode array viewing a localized gas puff on the outside midplane provides an independent characterization of the edge turbulence in Alcator C-Mod [5]. The probability distribution functions (PDFs) of local visible light emission are found to be markedly different in the near and far SOL zones (see Fig.3). While the near SOL zone exhibits a near-gaussian SOL Density Profile Edge Thomson Scattering Tangential- Viewing Ly αarray Scanning Langmuir Mach Probe Limiter-Shadow Particle Flux Probe Horizontal Scanning Probe Fast Photo- Diode Array Turbulence Imaging FIG. - Alcator C-Mod Crosssection showing typical plasma equilibrium and key diagnostics. ( m -3 ). Far SOL Near SOL. 5 5 Distance into SOL (mm) Isat/<Isat> "Snapshots" τ ac ~.µs.µs 5.5µs 3µs µs..5..5 Time (ms) Limiter Shadow FIG. - Top panel: Density from horizontal scanning probe. Bottom panels: snapshots of Isat/<Isat> at different locations. Auto-correlation functions are shown at right. 5 Auto-Correlation Functions Isat/<Isat> (µs)

3 EX/D- Probability - ( m -3 ).. Fast-Diode Signals Gaussian Near SOL skewness =.5 kurtosis =.5 3 Light Signal (a.u.) SOL Density Profile FIG. 3 - Probability distribution functions are shown in bottom set of panels. Left: Dα light fluctuation amplitude in the Near and Far SOL regions. Right: fluctuation-induced cross-field particle flux (from horizontal scanning probe) in Far SOL region, colored according to lineaveraged density ( m -3 ). PDF, the far SOL zone is characterized by a highly skewed distribution, favoring an enhanced probability of large positive-amplitude events. Far SOL 5 5 Distance into SOL, ρ (mm) ρ = 3 mm skewness =. kurtosis =. Probability * <Flux> - ρ = 9 mm -4 Limiter Shadow 5 Fluctuation-Induced Fluxes (Γ ) ρ = 7 mm ne:.8.6.45.3.87-3 5 Flux/<Flux> Statistical analysis of fluctuation-induced particle fluxes inferred from the horizontal scanning probe in the far SOL suggests a non-diffusive component, similar to results obtain from the edge plasma of many other fusion experiments [6]. As shown in Fig. 3, the PDF of the fluxes exhibits a non-exponential tail for positive-flux transport events; events with greater than 4.6 times the mean flux account for 5% of the total particle transport; these events happen ~5% of the time. Although the particle flux across the SOL is found to increase sharply with increasing plasma density (see section 4), this statistical behavior in the far SOL persists over a wide range of plasma densities and is reminiscent of the behavior seen in self-organized transport systems. 3. Far SOL Transport and Main-Chamber Recycling Associated with the bursty, non-diffusive transport character of the far SOL is a large level of cross-field particle flux. Analysis of global particle balance in Alcator C-Mod discharges clearly shows that a large fraction of the efflux from the main-chamber plasma (core plasma plus SOL) arrives onto the main-chamber walls (limiters and divertor baffle plates) via a rapid cross-field transport mechanism [7]. The total particle flow along field lines into the divertor volume is weaker in comparison. This observation has important implications for divertor design; crossfield transport physics rather than divertor geometry can be more important in setting the midplane neutral pressure [8]. Effective cross-field particle diffusivities (Deff) are seen to

4 EX/D- increase by a factor of or more with distance from the separatrix, maintaining a relatively flat cross-field flux profile. In the far SOL, the value of Deff is often ill-defined (a large particle flux is driven by a near-zero density gradient), suggesting that a non-diffusive transport mechanism is at work there. Fast photo-diode measurements and high-resolution -D spatial imaging of turbulence in the SOL [9] have captured underlying dynamics of a rapid transport mechanism. Visible light emission from photo-diodes viewing 3 spatial locations in the far SOL separated by 3.4 mm indicate that bursts in visible light emission have radial correlation lengths of ~7 mm and radial phase velocities in the range of to 3 m s -. Most recently, turbulence imaging movies obtained with an advanced CCD camera system viewing along magnetic field lines (4 consecutive frames of 4 µs exposure) clearly record ~ cm scale blobs of emission traveling towards the wall with velocities of up to 5 m s - []. These structures appear to peel away from the steep-gradient, near SOL region and freely propagate to the wall. The latter observation suggests that the level of cross-field particle transport is set by conditions in the near SOL. 4. Scaling of Cross-field Particle Transport in the Near SOL Simultaneous measurements of plasma flows toward the divertor (via vertical-scanning Machprobe) and ionization profiles (via Lyα array) enable profiles of effective plasma diffusivity, Deff, to be directly inferred by a method discussed in Ref.[8]. This allows relative variations in transport to be tracked as a function of plasma conditions. Results from a regression analysis of Deff values in the near SOL region are shown in Fig. 4. The analysis includes a wide range of standard ohmic-heated discharges:.5 < Ip <. MA, 4 < B T < 6 tesla,.8x < n e < 3x m -3, yielding 7 data points with normalized density range,.5 < n / n <.53. D eff is shown correlated against different sets of regressors: (a) Te and n at ρ = mm, Ip, and B T, and (b) λ ei /L at ρ = mm. (Here, λ ei is the electron-ion mean-free path and L is the local magnetic field line length in the SOL.) The regression in Fig. 4 (a) suggests a B T /Ip dependence of D eff. One could consider this to be the result of a q (safety factor) dependence or a dependence on L. The single parameter regression in Fig. 4 (b) does almost as well as the 4 parameter regression, indicating that λ ei /L is a statistically relevant quantity [4]. The data set shown here contains twice as many points as that considered in Ref. [4] but yields a similar scaling, D eff ~ (λ ei /L) -.5. (We emphasize here that Deff does not scale like Bohm in either B T or Te, similar to conclusions drawn from earlier work on χ eff scalings [].) For fixed electron temperature at the separatrix, one might expect edge plasma parallel collisionality (~L/λ ei ) and ne to be nearly proportional (at fixed B T ), making ne a possible scaling parameter. Deff, Veff (=particle flux/density), and λ ei /L are plotted versus ne in Fig. 5 for the same set of data shown in Fig. 4. It is apparent that all quantities do indeed track with ne fairly well. Thus we see that ne can be used as a crude proxy for λ ei /L near the separatrix, with appropriate transformation. Since the density near the e G

...3.4.5.6..3.4.5.6 5 EX/D- (m s-).. (m s-).... Regression Analysis of D eff, mm into SOL Te -4.5 n. Ip -. BT.4 (a) (λei/l) -.5 (b) separatrix increases with n e, it is clearly evident from the plot of Veff in Fig. 5 that the crossfield particle flux near the separatrix increases much faster than n e, i.e., particle confinement in the edge region is degrading with increased n / n (decreased λ ei /L). 5. Heat Convection Multiple Correlation Coefficient =.75 Multiple Correlation Coefficient =.64... (m s-) FIG. 4 - Correlation of Deff with two different sets of regressors. Regression with single parameter, λ ei /L, captures essential trend. (m s - ) (m s - ) e.. G.. Data at mm into SOL Deff Veff λei/l....3.4.5.6 ne/n G I p (MA)..8.5 FIG. 5 - Effective diffusion coefficient (top), convection velocity (middle) and value of λ ei /L (bottom) at a location mm into the SOL are plotted versus normalized line-average density. Associated with the cross-field particle transport is a significant level of cross-field heat convection [4]. At low values of ne, cross-field heat convection is an important player, but only in the far SOL region where the profiles are flat, bursty transport behavior is prominent, and due to the low electron temperatures there (< ev), parallel electron heat conduction to the divertor structures is relatively weak. However, as ne is raised cross-field heat convection begins to compete with parallel conduction to the divertor in the near SOL region. At moderate values of ne, Te at the separatrix is also reduced from the normally stiff value (~5 ev) set by parallel electron conduction alone; the plasma transport losses in the SOL dramatically shift from parallel conduction-dominated to cross-field heat convection-dominated. Figure 6 illustrates the systematic changeover in SOL power balance that occurs with increasing ne. Data were taken from a series of discharges with different line-averaged densities but all other parameters held fixed (ohmic L-mode, Ip =.8 MA, B T = 5.3 tesla). For values of ne < ~.3, the power into the SOL (ohmic input power minus radiation) is nearly fully accommodated by parallel conduction to the divertor. When ne is increased beyond ~.3 a clear transition occurs: parallel conduction to the divertor drops and cross-field convection rises over the entire SOL (the value estimated near the separatrix is shown in Fig. 6); parallel

6 EX/D- (MW).5..5. 9 Ohmic L-Mode Datapoints: Ip =.8 MA B T = 5.3 tesla Input Power [Pin ] Power into SOL [Pin - Prad] Convection Across Sep. [Qconv ] Conduction to Divertor [Qdiv ]...3.4.5.6 n e /n G Outer Divertor Detached FIG. 6 - Power flow in the SOL for different values of ne in otherwise similar discharges. Q conv is the power convected across the separatrix. Q div is the total power carried towards the divertor by electron parallel conduction. conduction plus cross-field convection approximately account for the total power into the SOL. The outer divertor is seen to detach for ne > ~.35, which is consistent with the onset of a regime of reduced power flow into the divertor. This observation suggests that the threshold for divertor detachment is determined to a large degree by cross-field transport physics (leading to a reduction of parallel heat conduction into the divertor); a rapid turn-on of volumetric power and momentum loss mechanisms in the divertor region would naturally follow. 6. Behavior Near Density Limit The evolution of edge plasma transport behavior as the density limit is approached has been studied in discharges similar to that shown in Fig. 7: An ohmic L-mode discharge with a continuously ramping plasma density is established by gas puffing. After a period of ~.7 seconds, the plasma current is ramped down such that a density limit induced disruption occurs. The middle panel in Fig. 7 displays the total input power (ohmic), total radiated power (π bolometer), and an estimate of the power convected through a magnetic flux surface in the shadow of the main-chamber limiters. These traces indicate that the sum of radiation and limiter convection losses approximately account for the input power as the density limit is approached. The density limit is reached near the time when these losses exceed the input power. The horizontal scanning probe is used to record SOL profiles at three times, indicating a rapid reduction in λ ei /L near the separatrix. Cross-field profiles of density (normalized to n G ), electron temperature, and fluctuation characteristics are shown in Fig. 8. For ne ~.7, the probe was able to penetrate deeper inside closed flux surfaces owing to the reduced energy densities. Density and temperature profiles in the near SOL region show the familiar flattening as the core density is raised (or

...4 seconds.6.8....4 seconds.6.8. 7 EX/D- Diverted Discharge with Ramping ne/n G (MA) (MW)..5..5 Fig. 7. Time evolution of a discharge used to study SOL transport and fluctuation behavior near the density limit. Top panel: plasma current and line-averaged density. Middle panel: input power, total radiated power, and an estimate of heat convection onto main-chamber limiter surfaces based on limiter-shadow particle flux probe. Lower panel: ne and λ ei /L at mm into SOL obtained from the three times when the horizontal scanning probe is operated. λ ei /L near separatrix reduced). However, for ne ~.7 there no longer is a transition between a steep-gradient region in the near SOL and a shallow gradient region in the far SOL; densities, temperatures and gradients that are typical of the far SOL at low ne now appear to move inside the separatrix. As a consequence, the normalized density at the separatrix does not increase with n / n but appears to saturate at a value near ~.. e Input Power G ne/n G Plasma Current Line Averaged Density Radiated Power λei/l The fluctuation profiles show a similar evolution. At low ne, the auto-correlation times of floating potential signals and the normalized ion saturation current fluctuation amplitudes show the usual behavior; they track with the density gradient, being lower in a steep-gradient near SOL region and higher in a shallow-gradient far SOL region. For the density profile at ne ~.7 with no steep gradient region in the SOL, the auto-correlation times and the normalized ion saturation current fluctuation amplitudes are correspondingly large across the entire SOL and extend inside closed flux surfaces. In this regime, the edge plasma has apparently become so collisional and dominated by rapid cross-field transport that the change in magnetic topology between open and closed field lines no longer has a visible impact on the profiles. In summary, we see that as ne is increased from low values to values approaching ~, an ordered progression in the cross-field edge transport physics occurs, connected to the increase in edge plasma parallel collisionality: () benign cross-field heat convection affecting only the far SOL region, () cross-field heat convection impacting SOL power loss channels and reducing the separatrix electron temperature, (3) divertor detachment, due in part to a reduced power flow into the divertor, and finally (4) bursty transport normally restricted to the far 5 4 3 ( m -3 ).8.4 Heat Convection to Limiter/Wall based on Limiter Particle Flux Probe λei/l, mm into SOL.....4.6.8. (seconds) Horizontal Scanning Probe records profiles at three times

- -5 5 - -5 5-5 5 8 EX/D- Data from Deep Probe-Scan SOL Profiles.4. Density / n G ne/n G.7.4.3 (µs) (ev) 6 4 Electron Temperature Auto-Correlation Times (Vf data) - Fig. 8 - Cross-field profiles recorded by a scanning Langmuir probe (solid lines are spline fits to data points). Owing to the reduced Te for ne ~.7, the probe could be inserted well beyond the separatrix without overheating. Third panel: auto-correlation times of floating potential fluctuations. Bottom panel: RMS fluctuation level of ion saturation current normalized by the mean value. SOL region invading into closed flux surface regions and carrying a convective power loss that affects the power balance of the discharge. These observations suggest that a key underlying ingredient in the empirically observed density limit scaling law is the physics of cross-field particle transport in the edge and SOL regions. References RMS Isat/<Isat>. - -5 5 Separatrix Distance into SOL (mm) [] Greenwald, M., et al., Nuclear Fusion 8 (988) 99. [] Wesson, J.A., et al., Nuclear Fusion 9 (989) 64. [3] Greenwald, M., Plasma Physics and Controlled Fusion 44 () R7. [4] LaBombard, B., et al., Physics of Plasmas 8 () 7. [5] Terry, J.L., et al., Journal of Nuclear Materials 9 () 757. [6] Carreras, B.A., Lynch, V.E., and LaBombard, B., Physics of Plasmas 8 () 37. [7] Umansky, M.V., Krasheninnikov, S.I., LaBombard, B., and Terry, J.L., Physics of Plasmas 5 (998) 3373. [8] LaBombard, B., et al., Nuclear Fusion 4 () 4. [9] Zweben, S.J., et al., Physics of Plasmas 9 () 98. [] Terry, J.L., Zweben, S., and Maqueda, R., et al., this conference, paper EX/P5- (). [] LaBombard, B., et al., Journal of Nuclear Materials 4-43 (997) 49.