Nuclear Structure from Decay Spectroscopy

Similar documents
-Strength Determination Using Total Absorption -Ray Spectroscopy

Chapter VI: Beta decay

2007 Fall Nuc Med Physics Lectures

Gamma-neutron competition above the neutron separation energy in betadelayed

Allowed beta decay May 18, 2017

α particles, β particles, and γ rays. Measurements of the energy of the nuclear

Studies involving discrete spectroscopy. Studies involving total absorption or calorimetry

Part II Particle and Nuclear Physics Examples Sheet 4

Experiments with exotic nuclei I. Thursday. Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives.

MRTOF mass measurements at GARIS-II: Toward SHE identification via mass spectroscopy

Beta-Decay Strength Measurement, Total Beta-Decay Energy Determination, and Decay-Scheme Completeness Testing by Total Absorption γ-ray Spectroscopy *

Measurements of βnenergy

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

BETA DECAY. Q = m x m y. Q = m x m y 2m e. + decay, a. + Decay : X! Y e

Stability of heavy elements against alpha and cluster radioactivity

I. 2. Reduction of the Gamow-Teller Matrix Element for the β-decay in 70 Ga- 70 Zn by the 35-MeV (p,n) Reaction on 70 Zn

Introduction to NUSHELLX and transitions

Radioactivity at the limits of nuclear existence

β-delayed neutron emission probability measurements at RIKEN RIBF

Lecture 11 Krane Enge Cohen Williams. Beta decay` Ch 9 Ch 11 Ch /4

Beta-delayed neutron emission: New experimental study of angular properties.

What do we know experimentally about the N=149, N=151 and N=153 isotones?

α particles, β particles, and γ rays. Measurements of the energy of the nuclear

Beta Decay Studies in nuclear structure

Beta-decay. studies with proton-rich. rich nuclei. Bertram Blank. Université Bordeaux 1 / CENBG

Theoretical basics and modern status of radioactivity studies

Chem 481 Lecture Material 1/30/09

Nuclear and Particle Physics

PHY492: Nuclear & Particle Physics. Lecture 8 Fusion Nuclear Radiation: β decay

Particle radioactivity

Beta decay for neutron capture Sean Liddick

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

RFSS: Lecture 6 Gamma Decay

15. Nuclear Decay. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 15. Nuclear Decay 1

Physics 3204 UNIT 3 Test Matter Energy Interface

New data on β decay of exotic nuclei close to 100 Sn:

Beta Decay of Exotic Nuclei

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following:

Nuclear Spin and Stability. PHY 3101 D. Acosta

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

Projected shell model for nuclear structure and weak interaction rates

Chapter Three (Nuclear Radiation)

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei

Deformation of the N=Z nucleus 72 Kr via beta decay

Alpha Particle: or Beta Particle: or Neutron: or n 0. Positron: Proton: or p + Gamma Ray:

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI

Particle emission at the proton drip-line

Beta and gamma decays

THE CHART OF NUCLIDES

Laser Spectroscopy on Bunched Radioactive Ion Beams

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter

'Nuclear Structure of the Neutron Rich Region around Z=28 towards and beyond N=50' WOG workshop Leuven March 9 11, 2009 Mark Huyse

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie

Chapter 10 - Nuclear Physics


Theoretical Nuclear Physics

Nuclear Chemistry. Chapter 23

Nuclides with excess neutrons need to convert a neutron to a proton to move closer to the line of stability.

Instead, the probability to find an electron is given by a 3D standing wave.

General Physics (PHY 2140)

Chapter 44. Nuclear Structure

Nuclear Decays. Alpha Decay

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

Composite Nucleus (Activated Complex)

16.5 Coulomb s Law Types of Forces in Nature. 6.1 Newton s Law of Gravitation Coulomb s Law

PHL424: Nuclear fusion

Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission

Types of radiation resulting from radioactive decay can be summarized in a simple chart. Only X-rays, Auger electrons and internal conversion

Radiometric Dating (tap anywhere)

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach

Nuclear Chemistry Notes

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

High-resolution Study of Gamow-Teller Transitions

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Chapter 3 Radioactivity

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons

Charge Exchange and Weak Strength for Astrophysics

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0

Chem 481 Lecture Material 1/23/09

Alpha decay, ssion, and nuclear reactions

A. Incorrect! Do not confuse Nucleus, Neutron and Nucleon. B. Incorrect! Nucleon is the name given to the two particles that make up the nucleus.

= : K A

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Electromagnetic modulation of monochromatic neutrino beams

Fission fragment mass distributions via prompt γ -ray spectroscopy

Atoms and the Periodic Table

Nuclear Symmetry Energy and its Density Dependence. Chang Xu Department of Physics, Nanjing University. Wako, Japan

Thursday, April 23, 15. Nuclear Physics

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below:

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A)

da u g ht er + radiation

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Transcription:

Nuclear Structure from Decay Spectroscopy Most nuclei decay. Provides complementary information to reaction studies. Studies can be done at the lowest count rates access furthest from stability. Alpha, proton, beta, gamma.

Decay spectroscopy vs Reactions Decay Spectroscopy Production and observation widely separated in time. Difficult to change decays (not impossible) Relatively few channels available. Studies possible at rates lower than 1/day. Reactions Production and observation close in time. Reaction mechanism provides some flexibility Many channels typically open. Typically requires 100 particles/second.

Decay Spectroscopy Production Separation Experiment High energy Fragmentation Medium energy ISOL Low-energy Multi-nucleon transfer Mass separator Laser spectroscopy Chemistry Energy Loss Semiconductor Moving tape Gas Detectors Passive material

Experimental Setups Active detector correlation Beta-delayed gamma Moving Tape Collector Ion implantation Passive Detectors

A Sample of Experimental Setups Active detector correlation Wasabi (RIKEN) BCS (MSU) Astrobox (TAMU) Saturn/Tape (ANL) Rising (GSI) Leribss (ORNL) Tape (TRIUMF)

What decays? p + 4n 3n 2n n - Proton number 2p p 2p n t d n p 3p Neutron number

Experimental Observables Many different types of decay spectroscopy. Beta-decay Alpha decay Proton decay Isomeric decays Widely varying timescales nanoseconds age of universe Widely varying energies ev to 10 MeV Measure three important quantities energy Where is the state? half-lives What is the time difference between creation and destruction? branching ratios Where does the decay go, what gets emitted? Selection rules Connect to underlying structure

Question 212 Bi is a member of a naturally occurring 232 Th radioactive decay series The half-life of 212 Bi is 61 minutes. The decay braches at 212 Bi 35.94%, t 1/2, = 168 min. 64.06% -, t 1/2, = 94 min. If your experimental setup is only sensitive to - what halflife do you measure? 212 Po 212 Bi 208 Tl A 61 min B 94 min C 168 min D 262 min E not enough information

Relationships Measure time distribution. Determine t 1/2 // T 1/2 Correct for Q branching ratios. X S Y Y t / = ln 2 λ λ = 1 τ λ = Σ λ t /, = ln 2 λ

Particle Emission Competition between decays Beta decay λ ~ Q Charged particle λ ~ e ħ [ Adapted from M. Pfützner

Alpha Decay X Y + α + Q Two body decay. Energy split between participants. Q influenced by shell closure. Gieger-Nuttal relationship between Q and t 1/2 W. Loveland, D.J. Morrissey, and G.T. Seaborg. Modern Nuclear Chemistry H. Geiger and J.M. Nuttal, Philos. Mag. 22, 613 (1911)

Alpha Decay Difference between theory and experiment contains nuclear structure. Pre-formation factor, RF C (R) 2 C. Qi et al., Phys. Rev. Lett. 103, 072501 (2009) A. N. Andreyev et al., Phys. Rev. Lett., 110, 242502 (2014)

0.55 0.45 f (<.50 0.018 4.4-9 f 9.163 8.10 0.10 0.02 f 2.3-5 f 0.0049 7.7-4 f 0.67 0.33 0.80 0.18 0.02 f 0.61 0.39 0.12 0.88 0.76 0.24 0.0001 7.33 7.27 0.0053f 0.08 0.92 5.9-4 f 8.9-8 f 0.97 0.03 f 6.38 0.98 f 0.93 0.07 f 2.3-7 f 0.0031 2-5 f f 0.77 0.23 f 6.92 0.92 f f 440 ms 8.28 f 0.75 0.25 f f 1.7 s 17 s 3.8 ms Superheavy Elements Recall talk by M. Stoyer See talk tomorrow by J. Gates Location of the island of (enhanced) stability. Proton number Db Rf Lr No Md Fm Es Cf 150 Sg Db 256 1.6 s Rf 255 1.64 s Lr 254 13 s No 253 1.7 m Md 252 2.3 m Fm 251 5.30 h Es 250 2.2 h 8.6 h Cf 249 351 y Bh Sg 258 2.9 ms Db 257 0.8 s 1.5 s Rf 256 6.2 ms 0.003 f Sg 259 0.48 s Rf 257 3.9 s 4.0 s Lr 255 Lr 256 16.4 s 2.1 s 27 s No 254 55 s Md 253 6 m (<.50 Fm 252 25.4 h Es 251 33 h Cf 250 13.1 y No 255 3.1 m Md 254 10 m 28 m Fm 253 3.0 d Es 252 472 d Hs Db 258 Db 259 4.3 s 0.51 s Rf 258 12 ms Lr 257 0.65 s No 256 2.91 s Md 255 27 m Fm 254 3.24 h Es 253 20.5 d Cf 251 Cf 252 898 y 2.64 y Rg Ds Mt Bh 261 Bh 262 11.8 ms 8.0 ms 102 ms Sg 261 0.23 s Db 260 1.5 s Rf 259 3.0 s Lr 258 3.9 s No 257 24.5 s Md 256 77 m Fm 255 20.1 h 21 ms Ds 267 0.03 ms? Mt 266 1.7 ms Bh 264 Sg 263 0.3 s 0.9 s Db 262 Db 263 34 s 27 s Rf 261 3.3 s 68 s Rf 262 1.2 s? 152 154 156 158 6.3 s 1.2 ms 5.52 h Es 254 39.3 h 276 d 39.8 d Cf 253 17.8 d Hs 264 0.45 ms 70 ns Sg 262 8 ms 60.5 d Db 261 1.8 s 2. 63 h f Lr 260 3 m No 259 58 m Md 258 57 m 51 d Fm 257 100 d Es 256 7.6 h 25.4 m Cf 255 1.4 h Hs 266 2.3 ms Lr 261 Lr 262 39 m 3.6 h No 260 106 ms Md 259 Md 260 95 m 31.8 d Fm 258 Fm 259 0.38 ms 1.5 s Cf 256 12.3 m Sg 264 37 ms Es 257 7.8 d Ds 269 0.18 ms Hs 267 0.8 s 52 ms Ds 270 6 ms 0.1 ms Bh 266 Bh 267 Sg 265 Sg 266 17 s 0.3 s Rf 263 8 s No 262 5 ms Rg 272 Ds 271 69 ms 1.6 ms Mt 270 5.0 ms Hs 269 9.7 s Sg 267 80 s Hs 270 7.6 s 20 m 1.2 h 113 112 Rg 274 6.4 ms Ds 273 0.17 ms Hs 271 4 s 1 m 29 h 1.3 h 118 117 116 115 114 113/278 0.24 ms 112/277 0.69 ms 0.4 s 9.8 s 1.9 m 23 h 9.7 ms 4 ms 0.72 s 0.19 s 50 s 0.17 s 0.07 s 3.6 s 0.20 s 8 s 0.10 s 0.48 s 0.82 ms 3.8 s 11 s E sh =-3 32 ms 87 ms 0.13 s 97 ms Z = 114 160 162 164 166 168 170 172 174 176 178 180 182 184 Neutron number 26 s 0.5 s 5.5 s 20 s 29 s 7.1 ms 0.48 s 0.80 s -4 18 ms 220 ms 16 ms 2.6 s -5 14 ms 80 ms 18 s 61 ms -6 48 238 249 Ca + U... Cf -7 T 1/2 A/Z 29 s E (MeV) EC - SF

Proton Emission X Y + p + Q Protons can also be emitted from nucleus. Conserve angular momentum and parity. Strong dependency between l, t 1/2, and Q p. M. Pfutzner et al., Rev. Mod. Phys., 84, 567 (2012)

Two Proton Emission Two protons can also be emitted from nucleus. Strong dependency between l, t 1/2, and Q p. X Y + 2p + Q M. Pfutzner et al., Rev. Mod. Phys., 84, 567 (2012)

Two Proton Emission Angle and energy dependence between two protons.

Optical Time Projection Chamber Courtesy M. Pfützner M. Ćwiok et al., IEEE TNS, 52, 2895 (2005) K. Miernik et al., Nucl. Instrum. Methods. Phys. Res. A 581, 194 (2007)

Analysis Courtesy M. Pfützner M. Ćwiok et al., IEEE TNS, 52, 2895 (2005) K. Miernik et al., Nucl. Instrum. Methods. Phys. Res. A 581, 194 (2007)

45 Fe 2p xp Courtesy M. Pfützner

45 Fe Courtesy M. Pfützner K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007)

45 Fe Courtesy M. Pfützner K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007)

Outlook Courtesy M. Pfützner M. Pfutzner et al., Rev. Mod. Phys., 84, 567 (2012)

What is beta decay? Mediated by the weak interaction. Conversion of neutron into proton or vice versa Three different forms B- decay B+ decay Electron Capture 63 Zn 64 Zn 65 Zn 66 Zn 67 Zn 62 Cu 63 Cu 64 Cu 65 Cu 66 Cu 61 Ni 62 Ni 63 Ni 64 Ni 65 Ni p n + e + v 60 Co 61 Co 62 Co 63 Co 64 Co n p + e + v p + e n + v

Question Order the fundamental forces in order of increasing strength. A weak, strong, electromagnetic, gravitational B gravitational, weak, strong, electromagnetic C strong, weak, electromagnetic, gravitational D weak, gravitational, electromagnetic, strong E gravitational, weak, electromagnetic, strong

Q values BE/A (MeV) 63 Cr A = 63 Z p n + e + v n p + e + 63 Ni v p + e n + v 63 Ge Three body process Beta-decay Q-value determined from masses. Q - : Mass [ A Z] Mass [ A (Z+1)] Q + : Mass [ A Z] Mass [ A (Z+1)] 2m e c 2 Q EC : Mass [ A Z] Mass [ A (Z-1)] Q values can range up to many MeV 60 Fe 0.260 MeV 63 Co 11.2 MeV

Selection Rules Beta decay follows selection rules. Electron, neutrino are spin ½ particles. S = 1 - parallel S = 0 - antiparallel Allowed approximation Relative angular momentum of electron/neutrino is 0 Fermi S = 0 J = J i J f = 0 Gamow-Teller S = 1 J = J i J f = 1 A X A Y + e + v Parent Daughter Character 6 He (0 + ) 6 Li (1 + ) Gamow- Teller 14 0 (0 + ) 14 N (0 +,2.313 MeV) Fermi n ( 1/2 + ) p (1/2 + ) mixed

Decay Rate Beta decay rate depends on three factors Matrix element (nuclear structure) Density of final states Coulomb field from nucleus Fermi integral, f, is tabulated depends on Daughter Z End point Forbidden decays ~ x10-4 per degree of forbiddeness λ = 2π ħ M = M ρ(e ) φ V φ λ = g M f(z E C )

Matrix Elements f Z E t = K g M f Z E t = B(F) C + B(GT) Isospin raising/lowering operator Isospin and spin operators B F φ τ φ B(GT) φ στ φ Can be calculated

f Behavior of f as a function of Q value. Half-life energy dependence ~E 5 All things being equal Empirical functions can also be used. Z= 82 Z= 8 S.A. Moszkowski, Phys. Rev. 82, 35 (1951)

Log ft ~ 4000 beta decays Known initial and final spin and parity Empirical classification useful as a guide λ = g M f(z E C ) f(z K E )t / = g M Log ft Log ft B. Singh, J.L.Rodriguez, S.S.M. Wong, J.K. Tuli, NDS, 84, 487 (1998)

Simple Example odd-a Co Odd-A 63,65,67,69 Co isotopes. Known half-lives and branching ratios. Dominated by simple f 5/2 to f 7/2 transition. 0.5 d 5/2 g 9/2 0 p 3/2 N = 40 p 1/2 f 5/2 p 3/2 Log t 1/2-0.5-1 -1.5 Z = 28 N = 28-2 0 2000 4000 6000 8000 10000 12000 f 7/2 f 7/2 Q (kev)

Beta-decay strength 1 = S t (E )f(z, E ) / Courtesy R. Grzywacz P = Σ S (E )f(z, E ) Σ S (E )f(z, E )

Half-lives A ~ 70 A ~ 200 A ~ 110 S. Nishimura et al., Phys. Rev. Lett. 106, 052502 (2012). I. Morales et al., Phys. Rev. Lett. 113, 022702 (2014). C. Mazzocchi et al., Phys. Rev. C 88, 064320 (2013).

Connection to Astrophysics: xn Courtesy M. Mumpower

xn Courtesy K. Miernik

xn Courtesy K. Miernik K. Miernik et al., Phys. Rev. Lett. 111, 132502 (2013)

xn Courtesy K. Miernik K. Miernik et al., Phys. Rev. Lett. 111, 132502 (2013)

Outcomes Courtesy K. Miernik K. Miernik et al., Phys. Rev. Lett. 111, 132502 (2013) I.N. Borzov, Phhys. Rev. C, 67, 025802 (2003) P. Möller et al., Phys. Rev. C, 67, 055802 (2003)

Pandemonium Courtesy K. Rykaczewski K. Rykaczewski, Physics, 3, 94 (2010). J. Hardy et al., Phys. Lett. B, 71 307 (1977)

Solution: Total Absorption Spectroscopy Measure entire distribution Ideal TAS OSIRIS LNPS LBNL-GSI Lucrecia Adapted J.L. Tain INL SuN Don t worry Krzysztof Duke et al., Nucl. Phys. A, 151, 609 (1970). Bykov et al., IAN SSSR 44, 918 (1980) Greenwood et al., NIMA 314, 514 (1992) Rubio et al., JPG 31, S1477 (2005) Karny et al., NIMB, 126, 211 (1997)

Nuclear Structure from Beta Decay: Experiment Shape determination 76 Sr E. Nacher et al., Phys. Rev. Lett. 92, 232501 (2004).

Total Absorption Spectroscopy Modular Total Absorption Spectroscopy Courtesy K. Rykaczewski

Nuclear Reactors Following the shutdown of a nuclear reactor the core is still warm. Why? A Heat from gravitational energy release following core collapse. B Heat from thermal neutron induced fission. C Heat from gamma ray emission. D Heat from neutrino induced interactions. E Heat from radioactive decay. A. Algora et al., Phys. Rev. Lett. 105, 202501 (2010).

Connections: Decay Heat Priority 1 decay heat: 139 Xe 139 Cs 5% cumulative yield in n th + 235 U fission 7 th in direct production per 235 U fission Average gamma-ray energy increase of 47% MTAS 240 -lines populating 63 levels known from 139 Xe decay 18 new s and 11 new β-fed levels added to 139 Xe decay scheme Courtesy K. Rykaczewski