A comparison theorem for nonsmooth nonlinear operators

Similar documents
The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge

ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS. Zhongwei Shen

Laplace s Equation. Chapter Mean Value Formulas

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

HARNACK S INEQUALITY FOR GENERAL SOLUTIONS WITH NONSTANDARD GROWTH

THE TWO-PHASE MEMBRANE PROBLEM REGULARITY OF THE FREE BOUNDARIES IN HIGHER DIMENSIONS. 1. Introduction

Some lecture notes for Math 6050E: PDEs, Fall 2016

Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations

arxiv: v1 [math.ap] 25 Jul 2012

REGULARITY AND COMPARISON PRINCIPLES FOR p-laplace EQUATIONS WITH VANISHING SOURCE TERM. Contents

DETERMINATION OF THE BLOW-UP RATE FOR THE SEMILINEAR WAVE EQUATION

LORENTZ ESTIMATES FOR ASYMPTOTICALLY REGULAR FULLY NONLINEAR ELLIPTIC EQUATIONS

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Nonlinear aspects of Calderón-Zygmund theory

and finally, any second order divergence form elliptic operator

On non negative solutions of some quasilinear elliptic inequalities

A GENERAL CLASS OF FREE BOUNDARY PROBLEMS FOR FULLY NONLINEAR ELLIPTIC EQUATIONS

The De Giorgi-Nash-Moser Estimates

HESSIAN MEASURES III. Centre for Mathematics and Its Applications Australian National University Canberra, ACT 0200 Australia

is a weak solution with the a ij,b i,c2 C 1 ( )

arxiv: v2 [math.ap] 6 Sep 2007

Boundedness, Harnack inequality and Hölder continuity for weak solutions

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Some aspects of vanishing properties of solutions to nonlinear elliptic equations

HOMEOMORPHISMS OF BOUNDED VARIATION

Symmetry of nonnegative solutions of elliptic equations via a result of Serrin

Propagation of Smallness and the Uniqueness of Solutions to Some Elliptic Equations in the Plane

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

arxiv: v1 [math.ap] 27 May 2010

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS

2 A Model, Harmonic Map, Problem

A GENERALIZATION OF THE FLAT CONE CONDITION FOR REGULARITY OF SOLUTIONS OF ELLIPTIC EQUATIONS

arxiv: v2 [math.ap] 17 Jul 2018

Continuity of Solutions of Linear, Degenerate Elliptic Equations

JUHA KINNUNEN. Harmonic Analysis

Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

Lecture No 1 Introduction to Diffusion equations The heat equat

arxiv: v1 [math.ap] 18 Jan 2019

A Dirichlet problem in the strip

Regularity estimates for fully non linear elliptic equations which are asymptotically convex

DEGREE AND SOBOLEV SPACES. Haïm Brezis Yanyan Li Petru Mironescu Louis Nirenberg. Introduction

Ahmed Mohammed. Harnack Inequality for Non-divergence Structure Semi-linear Elliptic Equations

The oblique derivative problem for general elliptic systems in Lipschitz domains

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true

ON SOME ELLIPTIC PROBLEMS IN UNBOUNDED DOMAINS

ON THE REGULARITY OF WEAK SOLUTIONS OF THE 3D NAVIER-STOKES EQUATIONS IN B 1

Minimization problems on the Hardy-Sobolev inequality

Some Remarks About the Density of Smooth Functions in Weighted Sobolev Spaces

CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT. We are interested in discussing the problem:

On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS

arxiv: v2 [math.ap] 12 Apr 2019

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS

A metric space X is a non-empty set endowed with a metric ρ (x, y):

A Hopf type lemma for fractional equations

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r)

Growth Theorems and Harnack Inequality for Second Order Parabolic Equations

On Liouville type theorems for the steady Navier-Stokes equations in R 3

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1.

Universal inequalities for eigenvalues. of elliptic operators in divergence. form on domains in complete. noncompact Riemannian manifolds

VISCOSITY SOLUTIONS OF ELLIPTIC EQUATIONS

MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

Second Order Elliptic PDE

Liouville-type theorems and decay estimates for solutions to higher order elliptic equations

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators

Mathematical Research Letters 4, (1997) HARDY S INEQUALITIES FOR SOBOLEV FUNCTIONS. Juha Kinnunen and Olli Martio

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem

Sobolev Spaces. Chapter 10

Elementary Theory and Methods for Elliptic Partial Differential Equations. John Villavert

i=1 α i. Given an m-times continuously

Uniqueness of ground states for quasilinear elliptic equations in the exponential case

Fachrichtung 6.1 Mathematik

Local maximal operators on fractional Sobolev spaces

HARNACK INEQUALITY FOR QUASILINEAR ELLIPTIC EQUATIONS WITH (p, q) GROWTH CONDITIONS AND ABSORPTION LOWER ORDER TERM

Boot camp - Problem set

SYMMETRY IN REARRANGEMENT OPTIMIZATION PROBLEMS

Elliptic PDEs of 2nd Order, Gilbarg and Trudinger

Introduction to Real Analysis Alternative Chapter 1

CHAPTER 2. Laplace s equation

Growth estimates through scaling for quasilinear partial differential equations

Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains

Nonlinear elliptic systems with exponential nonlinearities

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

A HARNACK INEQUALITY FOR NONLINEAR EQUATIONS

Sobolev embeddings and interpolations

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

Partial Differential Equations

Observability and measurable sets

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Transcription:

A comparison theorem for nonsmooth nonlinear operators Vladimir Kozlov and Alexander Nazarov arxiv:1901.08631v1 [math.ap] 24 Jan 2019 Abstract We prove a comparison theorem for super- and sub-solutions with non-vanishing gradients to semilinear PDEs provided a nonlinearity f is L p function with p > 1. The proof is based on a strong maximum principle for solutions of divergence type elliptic equations with VMO leading coefficients and with lower order coefficients from a Kato class. An application to estimation of periodic water waves profiles is given. 1 Introduction Let Ω be a domain in R n, n 2. We will consider super- and sub-solutions of the equation u+f(u) = 0 in Ω, (1) where f is a real valued function from L p loc (R) with some p > 1. To make the term f(u) welldefined (measurable and belonging to L p loc (Ω)) we will assume that u C1 (Ω) and u 0 in Ω. Usually, f is supposed to be continuous in almost all papers, dealing with equation (1) and its generalisations (see, for example, [6] and [11] and numerous papers citing these notes). It was shown in [4, Remark 2.3] that the strong maximum principal may fail if the function f is only Hölder continuous with an exponent less than 1. Optimal conditions on smoothness of f for validity of the strong maximum principal can be found in [12]. The main difference in our approach is that we compare functions in a neughborhood of a point where the gradients are not vanishing. This allows to remove any smoothness assumptions on f. One of the main results of this paper is the following assertion: Theorem 1.1 Let f L p loc (Ω), p > 1. Also let u 1, u 2 Cloc 1 (Ω) have non-vanishing gradients in Ω and satisfy the inequalities u 1 +f(u 1 ) 0 and u 2 +f(u 2 ) 0 (2) in the weak sense. If u 1 u 2 and u 1 (x 0 ) = u 2 (x 0 ) for some x 0 Ω then u 1 = u 2 in the whole Ω. Department of Mathematics, University of Linköping, SE-581 83 Linköping, Sweden St.-Petersburg Department of Steklov Mathematical Institute, Fontanka, 27, St.-Petersburg, 191023, Russia, and St.-Petersburg State University, Universitetskii pr. 28, St.-Petersburg, 198504, Russia 1

We note that the theorem is not true without assumptions that the gradients do not vanish, which follows from [4] (see [7]). In the case p > n this theorem was proved in [7]. The proof there was based on a weak Harnack inequality for non-negative solutions to the second order equation in divergence form Lu := D j (a ji (x)d i u)+b j (x)d j u = 0 in Ω (3) and closely connected with L p properties of the coefficients b j. Therefore one of our main concerns is a strong maximum principle for solutions to (3). We always assume that the matrix (a ij ) is symmetric and uniformly elliptic: ν ξ 2 a ij (x)ξ i ξ j ν 1 ξ 2, x Ω, ξ R n. It was proved in [14] that if b L p loc (Ω) (here b = (b 1,...,b n )) with p > n then a non-negative weak solution to (3) satisfies (here B ρ (x) stands for the ball of radius ρ centered at x) ρ n/γ u L γ (B 2ρ (x 0 )) C inf u(x), (4) x B ρ(x 0 ) where B 3ρ (x 0 ) Ω and γ (1,n/(n 2)). So the restriction p > n in this assertion inherits in our theorem in [7] 1. For our purpose another type of assumptions on the coefficients b j are more appropriate. It is called the Kato condition, see [3] and [13]. Definition 1 We say that f K n,α if f(y) sup x y n αdy 0 as r 0. (5) x x y r It was proved in [8] that inequality (4) still holds if b 2 K n,2. For Hölder continuous coefficients a ji (4) was proved in [15] under the assumption b K n,1. We note that from the last assertion it follows (4) when b L p loc, p > 1, depends only on one variable and the leading coefficients are Hölder continuous. For our applications we need the leading coefficients to be only continuous. So all above mentioned results are not enough for our purpose. Here we prove a theorem which deals with slightly discontinuous leading coefficients and allows b α K n,α with α close to 1 for lower order coefficients. In order to formulate this result we need some definitions. Definition 2 Let f(x) be a measurable and locally integrable function. Define a quantity f #r (x) := 1 f(y) 1 f(z)dz dy; ω f (ρ) = sup supf #r (x). B r B r x r ρ B r(x) B r(x) 1 It was pointed out in [10, Theorem 2.5 ] that (4) holds if b log 1/2 (1 + b ) L 2 loc (Ω) for n = 2 and if b L n loc (Ω) for n 3. 2

We say that f VMO(R n ) if ω f (ρ) is bounded and ω f (ρ) 0 as ρ 0. In this case the function ω f (ρ) is called VMO-modulus of f. For a bounded Lipschitz domain Ω the space f VMO(Ω) is introduced in the same way but the integrals in the definition of f #r (x) are taken over B r (x) Ω. Definition 3 We say that a function σ : [0,1] R + belongs to the Dini class D if σ is increasing, σ(t)/t is summable and decreasing. It should be noted that assumption about the decay of σ(t)/t is not restrictive (see Remark 1.2 in [1] for more details). We use the notation κ(ρ) = ρ 0 σ(t) t dt. Theorem 1.2 Let n 3. Assume that the leading coefficients a ij VMO(Ω). Suppose that b α K n,α and b(y) α sup x y dy n α σα (r), (6) x r/2 x y r for some α > 1 and σ D. If a function u W 1,p (Ω), p > n, satisfies u 0 and Lu 0 in Ω then either u > 0 in Ω or u 0 in Ω. Remark 1 Notice that the assumption b α 2 K n,α2 does not imply b α 1 K n,α1 for any 1 < α 1 < α 2. However, if the condition (6) holds with α = α 2 then the Hölder inequality ensures b α 1 K n,α1, and (6) holds with α = α 1 (and another function σ D). For n = 2 we need a stronger assumption. Theorem 1.3 Let n = 2. Assume that the leading coefficients a ij VMO(Ω). Suppose that sup x r/2 x y r b(y) α log α r x y dy σ α (r), (7) x y 2 α for some α > 1 and σ D. If a function u W 1,p (Ω), p > 2, satisfies u 0 and Lu 0 in Ω then either u > 0 in Ω or u 0 in Ω. For γ (0,1) we define the annulus X r,γ (x) = {y B r (x) : x y > γr}. (8) If the location of the center is not important we write simply B r and X r,γ. As usual, for a bounded bomain Ω we denote by W 1,q 0 (Ω), q > 1, the closure in W 1,q (Ω) of the set of smooth compactly supported function, with the norm u W 1,q 0 (Ω) = ( Ω u q dx) 1/q. 3

2 Strong maximum principle for operators with lower order terms 2.1 Coercivity Let Ω be a bounded subdomain in Ω. Consider the problem L 0 u := D j (a ij (x)d i u) = f in Ω ; u = 0 on Ω. (9) We say that the operator L 0 is q-coercive in Ω for some q > 1, if for each f W 1,q (Ω ) the problem (9) has a unique solution u W 1,q 0 (Ω ) and this solution satisfies u W 1,q 0 (Ω ) C q f W 1,q (Ω ) (10) with C q independent on f and u. It is well known that for arbitrary measurable and uniformly elliptic coefficients the operator L 0 is 2-coercive in arbitrary bounded Ω. Further, if the coefficients a ij VMO(Ω) then the operator L 0 is q-coercive for arbitrary q > 1 in arbitrary bounded Ω Ω with Ω C 1, see [2]. The coercivity constant C q depends on Ω and VMO-moduli of a ij. Moreover, by dilation we can see that for Ω = B r, r 1, this constant does not depend on r. For Ω = X r,γ, r 1, C q depends on γ but not on r. Let now the operator in (9) be q-coercive for certain q > 2. Put f = f +f 0, where f = (f 1,...,f n ) (L q (Ω )) n and f 0 L nq/(n+q) (Ω ). Then by the imbedding theorem f W 1,q (Ω ) and (10) takes the form We need the following local estimate. n u W 1,q 0 (Ω ) C( f j L q (Ω ) + f 0 L nq/(n+q) (Ω )). j=1 Theorem 2.1 Let Ω be a bounded Lipschitz subdomain of Ω and let the operator in (9) be q-coercive for certain q > 2. Let also u W 1,q (Ω ) is such that Then for a fixed λ (0,1) D j (a ji (x)d i u) = 0 in Ω B r ; u = 0 on Ω B r. u L q (B λr Ω ) Cr 1 u L q (B r Ω ), (11) where C may depend on the domain Ω, q, λ and the coercivity constant C q but it is independent of r. 4

Proof. First, we claim that the problem (9) is s-coercive for any s [2,q]. Indeed, we have coercivity for s = 2 and s = q, and the claim follows by interpolation. Second, the estimate (11) for q = 2 follows by the the Caccioppoli inequality. For q > 2 we choose a cut-off function ζ such that ζ = 1 on B λr and ζ = 0 outside B λ1 r, where λ < λ 1 < 1, and ζ cr 1. Then D j (a ji (x)d i (ζu)) = D j (a ji (x)ud i ζ)+(d j ζ)a ji (x)d i u in Ω ; ζu = 0 on Ω. Then by the s-coercivity of the operator we have u L s (B λr ) Cr 1 ( u L s (B λ1 r) + u L ns/(n+s) (B λ1 r)) We choose s = min(q,2n/(n 2)). Then the last term in the right-hand side is estimated by Cr n/s n/2 u L 2 (B λ1 r), and hence by the proved estimate for q = 2, we obtain (11) for q = s. Repeating this argument (but using now the estimate (11) for q = s) we arrive finally at (11). 2.2 Estimates of the Green functions Let L be an operator of the form (3), and the assumptions of Theorem 1.2 are fulfilled. We establish the existence and some estimates of the Green function G = G(x,y) for the problem in sufficiently small ball B r Ω. Lu = f in B r ; u = 0 on B r, (12) Lemma 2.1 Let n 3. There exists a positive constant R depending on n, the ellipticity constant ν, VMO-moduli of coefficients a ij, the exponent α and the function σ from (6) such that for any r R there is the Green function G(x,y) of the problem (12) in a ball B r Ω. Moreover, it is continuous w.r.t. x for x y and satisfies the estimates G(x,y) C 1 x y n 2; if x y dist(x, B r )/2 then G(x,y) C 2 x y n 2, (13) where the constants C 1 and C 2 depend on the same quantities as R. Proof. We use the idea from [15]. Denote by G 0 (x,y) the Green function of the problem (9) in the ball B r. The estimates (13) for G 0 were proved in [9] (see also [5]): 0 < G 0 (x,y) C 10 x y n 2; if x y dist(x, B r )/2 then G 0 (x,y) where the constants C 10 and C 20 depend only on n and ν. 5 C 20 x y n 2, (14)

By Remark 1, we can assume without loss of generality α < n/(n 1). Put q = α > n and denote by C q the coercivity constant for L 0 in the ball. We begin with the estimate for any B ρ (y) Ω b(x) D x G 0 (x,y) dx = b(x) D x G 0 (x,y) dx B ρ(y) ( j=0 X ρ 2 j,1 (y) 2 j=0 X ρ 2 j,1 (y) 2 )1 ( D x G 0 (x,y)) q q dx X ρ 2 j,1 (y) 2 ) 1 b(x) q q dx =: By (11) and (14), we have A j1 C(n,ν,C q )(2 j 1 ρ) 1 n q, and (6) gives ( A j1 A j2 2 n q 1 b(x) ) q 1 q C dx 2 n q 1 Cσ(2 j ρ). x y n q Therefore, B ρ(y) X ρ 2 j,1 (y) 2 b(x) D x G 0 (x,y) dx 2 n q 1 C j=0 Next, we write down the equation for G and obtain ρ σ(2 j ρ) A(n,ν,q,C q ) 0 σ(t) t A j1 A j2. j=0 dt Aκ(ρ). (15) L 0 (G G 0 ) = b DG (I +G 0 (b D))(G G 0 ) = b DG 0 (16) G = G 0 G 0 (b DG 0 )+G 0 (b DG 0 ) (b DG 0 ) =: provided this series converges. We claim that J k (x,y) C 10C k κ k (r) x y n 2 for a proper constant C. Indeed, J k+1 (x,y) = Denote 2ρ = x y. Then ( J k+1 (x,y) + k=0 = J k+1 (x,y) C 10C k+1 κ k+1 (r) x y n 2, (17) B r J k (x,z)(b(z) D z G 0 (z,y))dz. J k ) J k (x,z) b(z) D z G 0 (z,y) dz =: I 1 +I 2. B r\b ρ(x) B r B ρ(x) 6

We have by (15) I 1 B r\b ρ(x) 2n 2 C 10 C k κ k (r) x y n 2 C 10 C k κ k (r) x z n 2 (b(z) D z G 0 (z,y)) dz B r\b ρ(x) b(z) D z G 0 (z,y) dz 2n 1 AC 10 C k κ k+1 (r) x y n 2 (here we used an evident inequality κ(2r) 2κ(r)). Further, AC k κ k (r) I 2 x z b(z) D zg n 2 0 (z,y) dz. B r B ρ(x) By (11) and (14), ( )1 DG 0 (z,y)) q q dy Aρ 1 n q. B r B ρ(x) Using the assumption q > n we get I 1 A2 C k κ k (r) ( ρ n q 1 B r B ρ(x) b(z) ) q 1 q dz A2 C k κ k (r) x z (n 2)q ρ n q 1 ρ 1 n 2 n 2 A 2 C k κ k+1 (r) q κ(ρ), x y n 2 and the claim follows if we put C = 2 n 2 (A+2C 10 ). Thus, the series in (16) converges if κ(r) is sufficiently small. Moreover, if 2 n 2 (A + 2C 10 )κ(r) C 20 C 20 +2C 10 then (14) implies (13) with C 1 = C 10 + C 20, C 2 2 = C 20. 2 To prove the continuity of G we take x such that x x ρ/2 = x y /4. Since q > n, the estimate (11) and the Morrey embedding theorem give n G 0 (x,y) G 0 ( x,y) C 30 (n,ν,c q ) x x 1 q x y. n q 1 We write down the relation G(x,y) G ( x,y) = k=0 ( ) J k (x,y) J k ( x,y) and deduce, similarly to (17), that n J k (x,y) J k ( x,y) C 30 C k κ k x x 1 q (r) = x y n q 1 n = J k+1 (x,y) J k+1 ( x,y) C 30 C k+1 κ k+1 (r) x x 1 q x y. n q 1 7

Therefore, if κ(r) is sufficiently small, x x 1 n q G(x,y) G( x,y) C 3 x y. n q 1 Remark 2 In fact, since q can be chosen arbitrarily large, G is locally Hölder continuous w.r.t. x for x y with arbitrary exponent β (0,1). Now let X r,γ Ω. Consider the Dirichlet problem Lu = f in X r,γ ; u = 0 on X r,γ. (18) Lemma 2.2 The statement of Lemma 2.1 holds for the problem (18). The constants R, C 1 and C 2 may depend on the same quantities as in Lemma 2.1 and also on γ. The proof of Lemma 2.1 runs without changes. 2.3 Approximation Lemma and weak maximum principle Lemma 2.3 Under assumptions of Lemma 2.1, let u be a weak solution of the equation Lu = f in B r Ω, with r R where R is the constant from Lemma 2.1. Let f be a finite signed measure in B r. Put b m i := b i χ { b m} and define a sequence f m L (B r ) such that f m f in the space of measures. Denote by u m the solution of the problem Then L m u m := D i (a ij D j u m )+b m i D iu m = f m in B r ; u m = u on B r. B r u m (x) u(x) dx 0 as m. Proof. It is easy to see that the difference v m = u m u solves the problem L m v m = (b i b m i )D iu+f m f in B r ; v m = 0 on B r. Using the Green function G m of the operator L m in B r with the Dirichlet boundary conditions we get ( ) v m (x) dx (b i b m i )D i u + f m f sup G m (x,y) dx. y B r B r B r B r By Lemma 2.1, G m (x,y) C x y 2 n with constant independent of m. Thus, the supremum of the last integral is bounded. The first integral in brackets tends to zero by the Lebesgue Dominated convergence Theorem, and the Lemma follows. 8

Corollary 2.1 If Lu = f 0 in B r, and u 0 on B r, then u 0 in B r. This statement follows from standard weak maximum principle and Lemma 2.3. Lemma 2.4 Let X r,γ Ω and let r R where R is the constant from Lemma 2.2. Then the assertion of Lemma 2.3 and the corollary 2.1 are still true. 2.4 Strong maximum principle Lemma 2.5 Let B r Ω be a ball and let r R where R satisfies the assumptions of Lemma 2.1 and Lemma 2.2 with γ = 1/4. Then the Green function of L in B r is strictly positive: G(x,y) > 0 for x,y B r, x y. Proof. First suppose that G(x,y) < 0 for certain x B r and for a positive measure set of y. By continuity of G in x we have G(x,y) < 0 for a (maybe smaller) positive measure set of y and an open set of x. Therefore, we can choose a bounded nonnegative function f such that u(x) = B r G(x,y)f(y) < 0 on an open set. But this would contradict to the weak maximum principle, see Corollary 2.1. Thus, we can change G on a null measure set and assume it nonnegative. Next, suppose that for certain y the set S(y ) = {x B r : G(x,y ) = 0} is non-empty. We choose then x 0 S(y ) and y 0 B r \S(y ) such that ρ := x 0 y 0 = dist(y 0,S(y )). Due to the second estimate in (13) x 0 is separated from y, while ρ can be chosen arbitrarily small. So, we can suppose that B 2ρ (y 0 ) B r \{y }; B ρ/2 (y 0 ) S(y ) =. We introduce the Green function Ĝ of L in B 2ρ(y 0 ) and claim that the function δĝ(,y0 ) with sufficiently small δ > 0 is a lower barrier for G(,y ) in the annulus X 2ρ,1/4 (y 0 ). Indeed, the boundary X 2ρ,1/4 (y 0 ) consists of two spheres. Notice that G(,y ) > 0 on B ρ/2 (y 0 ) while Ĝ(,y 0 ) = 0 on B 2ρ (y 0 ). Thus, there exists a positive δ such that G(,y ) δĝ(,y0 ) on X 2ρ,1/4, and the claim follows. By Lemma 2.4 G(,y ) δĝ(,y0 ) in the whole annulus, and, in particular, G(x 0,y ) δĝ(x0,y 0 ) > 0 (the last inequality follows from the second estimate in (13)). The obtained contradiction proves the Lemma. Proof of Theorem 1.2. We repeat in essential the proof of Lemma 2.5. Denote the set S = {x Ω : u(x) = 0} and suppose that S Ω. Then we can choose x 0 S and y 0 Ω\S such that ρ := x 0 y 0 = dist(y 0,S), and ρ can be chosen arbitrarily small. Repeating the proof of Lemma 2.5 we introduce the same Dirichlet Green function Ĝ(,y0 ) of L in B 2ρ (y 0 ) and show that δĝ(,y0 ) with sufficiently small δ > 0 is a lower barrier for u in the annulus X 2ρ,1/4 (y 0 ). This ends the proof. 9

2.5 The case n = 2 The case n = 2 is treated basically in the same way as the case n 3, but some changes must be done mostly due to the fact that the estimate of the Green function contains logarithm. Let us explain what changes must be done in the argument in compare with n 3. Denote by G 0 (x,y) the Green function of the problem (9) in the disc B r. Then for x y B r, ( 0 < G 0 (x,y) C 10 log r ) x y +2 ; ( if x y dist(x, B r )/2 then G 0 (x,y) C 20 log r ) x y +2, (19) where the constants C 10 and C 20 depend only on the ellipticity constants of the operator L 0. Indeed by [9] these estimates can be reduced to similar estimates for the Laplacian, when they can be verified directly (in this case the Green function can be written explicitly). Analog of Lemma 2.1 reads as follows. Lemma 2.6 Let n = 2. There exists a positive constant R depending on the ellipticity constant ν, VMO-moduli of coefficients a ij, the exponent α and the function σ from (7) such that for any r R there is the Green function G(x,y) of the problem (12) in a disc B r Ω. Moreover, it is continuous w.r.t. x for x y and satisfies the estimates ( G(x,y) C 1log r ) x y +2 ; ( if x y dist(x, B r )/2 then G(x,y) C 2log r ) x y +2, (20) where the constants C 1 and C 2 depend on the same quantities as R. To prove this statement we establish the inequality (15) by using the estimate (19) and the assumption (7) instead of (6). The rest of the proof runs without changes. Corresponding analog of Lemma 2.2 is true here also. The remaining part of the proof of Theorem 1.3 is the same as that of Theorem 1.2. 3 Comparison theorem for nonlinear operators 3.1 Proof of Theorem 1.1 We recall that the statement of Theorem 1.1 with p > n was proved in [7, Theorem 1] by reducing it to the strong maximum principle for the equation (3) with continuous leading coefficients and f(x 1 ) playing the role of a coefficient b 1. Since the function f depends only on one variable, the assumption f L p loc (R) with a certain p > 1 implies (6) and (7) with α = p. Thus, we can apply our Theorems 1.2 and 1.3 (for n 3 and n = 2, respectively) instead of [7, Lemma 1], and the proof of [7, Theorem 1] runs without other changes. 10

3.2 Application to water wave theory In the paper [7], two theorems were proved on estimates of the free surface profile of water waves on two-dimensional flows with vorticity in a channel, see Theorems 2 and 3 in [7]. The vorticity function ω in that theorems was assumed to belong to L p loc (R) with p > 2 and the proof was based on the application of [7, Theorem 1]. Now the application of our Theorem 1.1 allows us to weaken the apriori assumption for the vorticity function to ω L p loc (R), p > 1. Acknowledgements. V. K. acknowledges the support of the Swedish Research Council (VR) Grant EO418401. A. N. was partially supported by Russian Foundation for Basic Research, Grant 18-01-00472. He also thanks the Linköping University for the hospitality during his visit in January 2018. References [1] D.E. Apushkinskaya, A.I. Nazarov, A counterexample to the Hopf-Oleinik lemma (elliptic case). Anal. PDE 9 (2016), 439 458. [2] S.-S. Byun, L. Wang, Elliptic Equations with BMO Coefficients in Reifenberg Domains. Comm. Pure Appl. Math. 57 (2004), N10, 1283 1310. [3] E.B. Davies, A.M. Hinz, Kato class potentials for higher order elliptic operators. J. London Math. Soc. (2) 58 (1998), 669 678. [4] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68 (1979), 209 243. [5] M. Grüter, K.-O. Widman, The Green function for uniformly elliptic equations. Manuscripta Math. 37 (1982), N3, 303 342. [6] J.B. Keller, On solutions of u = f(u). Comm. Pure Appl. Math. 10 (1957), 503-510. [7] V. Kozlov, N. Kuznetsov, A comparison theorem for super- and subsolutions of 2 u+f(u) = 0 and its application to water waves with vorticity. Algebra & Analysis 30 (2018), N3, 112 128. [8] K. Kurata, Continuity and Harnack s inequality for solutions of elliptic partial differential equations of second order. Indiana Univ. Math. J. 43 (1994), N2, 411 440. [9] W. Littman, G. Stampacchia, H.F. Weinberger, Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 43 77. [10] A.I. Nazarov, N.N. Uraltseva, The Harnack inequality and related properties for solutions to elliptic and parabolic equations with divergence-free lower-order coefficients. Algebra & Analysis 23 (2011), N1, 136-168 (Russian); English transl.: St. Petersburg Math. J. 23 (2012), N1, 93-115. 11

[11] R. Osserman, On the inequality u f(u). Pacific J. Math. 7 (1957), 1641 1647. [12] P. Pucci, J. Serrin, The strong maximum principle revisited. J. Differential Equations 196 (2004) N1, 1 66. [13] M. Schechter, Spectra of partial differential operators. Second edition. North-Holland Series in Applied Mathematics and Mechanics 14. North-Holland Publishing Co., Amsterdam, 1986. [14] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967), 721 747. [15] Q. Zhang, A Harnack inequality for the equation (a u)+b u = 0, when b K n+1. Manuscripta Math. 89 (1996), N1, 61 77. 12