Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681

Similar documents
Main questions Motivation: Recognition

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

Lecture 8: Camera Calibra0on

September 20 Homework Solutions

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

1.B Appendix to Chapter 1

Physics 201 Lecture 2

Normal Random Variable and its discriminant functions

Response of MDOF systems

Introduction. Section 9: HIGHER ORDER TWO DIMENSIONAL SHAPE FUNCTIONS

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Sklar: Sections (4.4.2 is not covered).

Rotations.

Forms of Energy. Mass = Energy. Page 1. SPH4U: Introduction to Work. Work & Energy. Particle Physics:

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Chapters 2 Kinematics. Position, Distance, Displacement

Some Inequalities variations on a common theme Lecture I, UL 2007

EEM 486: Computer Architecture

Water Hammer in Pipes

Chapter 6. Isoparametric Formulation

( ) () we define the interaction representation by the unitary transformation () = ()

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

Notes on the stability of dynamic systems and the use of Eigen Values.

PHYS 1443 Section 001 Lecture #4

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

OP = OO' + Ut + Vn + Wb. Material We Will Cover Today. Computer Vision Lecture 3. Multi-view Geometry I. Amnon Shashua

Lecture 8: Camera Calibration

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

MODEL SOLUTIONS TO IIT JEE ADVANCED 2014

VACSY AND INTERPOLATION OF EXPERIMENTAL DATA

Unit 2 Exponents Study Guide

Motion in Two Dimensions

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES DATA

Chapter 6 Plane Motion of Rigid Bodies

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

4.8 Improper Integrals

Scattering at an Interface: Oblique Incidence

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

CHAPTER 10: LINEAR DISCRIMINATION

Torsion, Thermal Effects and Indeterminacy

Advanced time-series analysis (University of Lund, Economic History Department)

THE USE OF HAND-HELD TECHNOLOGY IN THE LEARNING AND TEACHING OF SECONDARY SCHOOL MATHEMATICS

Main questions Motivation: Recognition

Physics 120 Spring 2007 Exam #1 April 20, Name

Chapter Lagrangian Interpolation

Effects of polarization on the reflected wave

01 = Transformations II. We ve got Affine Transformations. Elementary Transformations. Compound Transformations. Reflection about y-axis

Review of linear algebra. Nuno Vasconcelos UCSD

PHY2053 Summer C 2013 Exam 1 Solutions

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

Name Class Date. Line AB is parallel to line CD. skew. ABDC } plane EFHG. In Exercises 4 7, use the diagram to name each of the following.

Geometric Correction or Georeferencing

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.)

Fingerprint Registration Using Centroid Structure and Line Segments 1

Variants of Pegasos. December 11, 2009

Solution in semi infinite diffusion couples (error function analysis)

[5] Solving Multiple Linear Equations A system of m linear equations and n unknown variables:

3 Motion with constant acceleration: Linear and projectile motion

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

Version 001 test-1 swinney (57010) 1. is constant at m/s.

A Principled Approach to MILP Modeling

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Density Matrix Description of NMR BCMB/CHEM 8190

Minimum Squared Error

Mathematics 805 Final Examination Answers

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

Minimum Squared Error

( ) ( ) ( ) ( ) ( ) ( ) j ( ) A. b) Theorem

TSS = SST + SSE An orthogonal partition of the total SS

Three Dimensional Coordinate Geometry

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

Algebra Of Matrices & Determinants

e t dt e t dt = lim e t dt T (1 e T ) = 1

Diode rectifier with capacitive DC link

( ) [ ] MAP Decision Rule

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

Physics 2A HW #3 Solutions

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are

Fundamentals of Linear Algebra

EXERCISE - 01 CHECK YOUR GRASP

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

VECTORS, TENSORS, AND MATRICES. 2 + Az. A vector A can be defined by its length A and the direction of a unit

Density Matrix Description of NMR BCMB/CHEM 8190

Lecture 8. Newton s Laws. Applications of the Newton s Laws Problem-Solving Tactics. Physics 105; Fall Inertial Frames: T = mg

? plate in A G in

Math 315: Linear Algebra Solutions to Assignment 6

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab

MEP Practice Book ES3. 1. Calculate the size of the angles marked with a letter in each diagram. None to scale

Transcription:

Revew: Trnsforons Trnsforons Modelng rnsforons buld cople odels b posonng (rnsforng sple coponens relve o ech oher ewng rnsforons plcng vrul cer n he world rnsforon fro world coordnes o cer coordnes Perspecve proecon of 3D coordnes o 2D Anon vr rnsforons over e o cree oon CSE 68 CSE 68 Trnsforons - Modelng Trnsforons - ewng world OBJECT CAMERA WORLD CSE 68 CSE 68

Modelng Trnsforons Affne Trnsforons Trnsfor obecs/pons Trnsfor coordne sse Trnsfor P (,, o Q (,, Affne rnsforon: + 2 + 3 + 4 2 + 22 + 23 + 24 3 + 32 + 33 + 34 CSE 68 CSE 68 Trnslon Sclng Trnslon b (,, : + + + (,, Sclng b (s, s, s : s s s CSE 68 CSE 68 2

Roon Roon round -s Roon couner-clocwse b ngle round he -s: cos( sn( sn(+cos( r r Proof: α r cos(α r sn(α r cos(α + r cos(α cos( r sn(α sn( cos( sn( r sn(α + r cos(α sn( + r sn(α cos( sn( + cos( Roon couner-clocwse b ngle round he -s: cos( sn( sn( + cos( CSE 68 CSE 68 Roon round -s Roon couner-clocwse b ngle round he -s: cos( sn( sn( + cos( Or cos( + sn( sn( + cos( CSE 68 Sclng b (s, s, s : s s s Roon couner-clocwse b ngle l round dhe -s: cos( sn( sn( + cos( Trnslon b (,, : + + + Mr Mulplcon s s s cos( sn( sn( cos( CSE 68? 3

4 Hoogeneous Coordnes Represen P b (,,, nd Q b (,,, (Hoogeneous coordnes Trnslon b (,, : + + CSE 68 Sclng b (s, s, s : s s s s s s + Roon Mrces Roon couner-clocwse b ngle round he -s: cos( sn( sn( + cos( cos( sn( sn( cos( l b l d h CSE 68 cos( sn( sn( cos( cos( sn( sn( cos( Roon couner-clocwse b ngle round he -s: cos( sn( sn( + cos( Roon couner-clocwse b ngle round he -s: cos( + sn( sn( + cos( Affne Trnsforon Mr Affne rnsforon: + 2 + 3 + 4 2 + 22 + 23 + 24 CSE 68 3 + 32 + 33 + 34 Trnsforon Mr: 34 33 32 3 24 23 22 2 4 3 2 Sherng Sher long he -s: + h CSE 68 h

Reflecon cross he -s: (- Reflecon Reflecon s specl cse of sclng! Eleenr Trnsforons Trnslon Roon Sclng Sher Wh bou nverses? CSE 68 CSE 68 Inverse Trnsforons Copose Trnsforons Trnslon Scle Roon Scle b (2,, Trnsle b (2, 5, Roe b 3 couner-clocwse round dhe -s Trnsle b (, -5, Sher CSE 68 CSE 68 5

6 Copose Trnsforon Mrces Scle b (2,, ; Trnsle b (2, 5, ; Roe b 3 couner-clocwse round he -s; T l b ( 5 CSE 68 2 Scle 5 2 Trnsle 86 5 5 86 Roe Trnsle b (, -5, 5 Trnsle Copose Trnsforon Mrces Scle b (2,, ; Trnsle b (2, 5, ; Roe b 3 couner-clocwse round he -s; T l b ( 5 CSE 68 443 88 47 5 72 Trnsle b (, -5, Order Mers! Trnsforons re no necessrl couve! Trnsle b (2,, R b 3 Roe b 3 T l b (2 CSE 68 Roe b 3 Trnsle b (2,, Order of Trnsforon Mrces Appl rnsforon rces fro rgh o lef Trnsle b (2,, R b 3 2 86 5 5 86 CSE 68 Roe b 3 Roe b 3 Trnsle b (2,, 86 5 5 86 2

7 Trnslon nd rnslon? Sclng nd sclng? Roon nd roon? l d l Whch rnsforons coue? CSE 68 Trnslon nd sclng? Trnslon nd roon? Sclng nd roon? Eleenr Trnsforons Eleenr rnsforons: Trnslon; Roon; Sclng; Sher CSE 68 Theore: Ever ffne rnsforon cn be decoposed no eleenr operons Euler s Theore: Ever roon round he orgn cn be decoposed no roon round he -s followed b roon round he -s followed b roon round he -s (or sngle roon bou n rbrr s ecors ecor (,, Hoogeneous coordnes: (,,, CSE 68 Affne rnsforon: 34 33 32 3 24 23 22 2 4 3 2 ecors Roon: cos( sn( sn( cos( s CSE 68 Sclng: Trnslon: (Noe: No chnge s s

P Trnsfor Prerc Lne P(u u M M M u Q(u Q W Lne rnsfored pon on lne? pon on rnsfored lne M(P(u T? M(P T + u* T Lne hrough P (,,, n drecon (,,, : P(u P T + u* T {(,,, + u* (,,, : u Rels} Appl ffne rnsforon r M o lne P(u: M *P(u { M (P T + u T : u Rels} { M P T + um T : u Rels} { Q + u : u Rels} Theore: Affne rnsforons rnsfor lnes o lnes CSE 68 CSE 68 Affne Trnsforon of Lnes Affne Cobnons P R b M Q M M R b Q P CSE 68 CSE 68 8

Affne Cobnons Properes of Affne Trnsforons Affne cobnons of P (,,, nd Q (,,, : {R (,,, + b (,,, :,b Rels nd + b } Appl ffne rnsforon r M o ( P T +bq T gves: M ( P T + b Q T M P T + M b Q T M P T + b M Q T P + b Q MR R Theore: Affne rnsforons preserve ffne cobnons Affne rnsforons p lnes o lnes; Affne rnsforons preserve ffne cobnons; Affne rnsforons preserve prllels; Affne rnsforons chnge volue b De(M ; An ffne rnsforon cn be decoposed no eleenr rnsforons Affne rnsforons [does/does no] preserve ngles? Affne rnsforons [does/does no] preserve he nersecon of wo lnes? Affne rnsforons [does/does no] preserve dsnces? CSE 68 CSE 68 Properes of Trnsforon Mrces Properes of Pure Roon Mrces Frs colun s how (,,, rnsfors Second colun s how (,,, rnsfors Thrd colun s how (,,, rnsfors Mr holds how coordne es rnsfor nd how orgn rnsfors?? 2? 3? 4???????? 2???? 3???? 4 2 3 4 22 23 24 32 33 34 42 43 44 2 3 4 22 23 24 32 33 34 44 42 43 Rows (coluns re orhogonl o ech oher A row do produc n oher row Ech row (colun do produc es self R T R - CSE 68 CSE 68 9

Coordne Fre Orenon Rgh hnded coordne sse: Lef hnded coordne sse: (Ino pge Coordne fre s gven b orgn nd hree uull orhogonl un vecors,,, - defned n (,, spce Muull orhogonl (do producs:?;?;? Un vecors (do producs:?;?;? (Ou of pge CSE 68 CSE 68 Orenon Rgh hnded coordne sse: Lef hnded coordne sse: Coordne Trnsforons Gven obec d pons defned n he (,,, coordne fre, Gven he defnon of (,,, n (,, coordnes, Cross produc:? Cross produc:? How do ou deerne he coordnes of he obec d pons n he (,,, fre? How do ou es wheher (,, s lef hnded or rgh hnded? CSE 68 CSE 68

Coordne chnge (Trnslon (,, b CSE 68 c b c (,, Chnge fro (,b,c, coordnes o (,,, coordnes: Move (,b,c, o (,,, nd nver 2 Move d relve fro (,, ou o poson b ddng Coordne chnge (Roon (,, b -s roon b CSE 68 c b c (,, Chnge fro (,b,c, coordnes o (,,, coordnes: Roe (,b,c b nd nver 2 Roe d b - Obec Trnsforons CSE 68 Gven (,,,p defned n he (,,, coordne fre, Trnsfor pons defned n he (,,, coordne fre o he (,,, coordne fre Roe obec o ge o lne up wh, hen rnsle o Obec Trnsforons CSE 68 Affne rnsforon r:

2 Coordne Trnsforons CSE 68 Gven (,,,p defned n he (,,, coordne fre, Trnsfor pons n (,,, coordne fre o (,,, coordne fre Appl rnsfor o coordne sse, hen nver: Coordne sse rnsfor: rnsle b -, hen roe o lgn wh Coordne Trnsforons CSE 68 R T Coordne Trnsforons CSE 68 Affne rnsforon r: Appl RT o coordne sse Appl (RT - o d T - R - Coposon of coordne chnge M 2 M 2 CSE 68 M chnges fro coordne fre (,,, o (,,, M 2 chnges fro coordne fre (,,, o (,,, Chnge fro coordne fre (,,, o (,,,:? π

Coposon of rnsforons - eple B B A Trnsforons of norl vecors n n s un norl vecor o plne π M s n ffne rnsforon r How s n rnsfored, o eep perpendculr o he plne, under: rnslon? roon b? unfor sclng b s? sherng or non-unfor sclng? π CSE 68 CSE 68 Sher rnsforon n n n n s un norl vecor o plne π: (-n, M s sher rnsforon r h onl odfes -coordnes If we us rnsfor he n s vecor, hen M n T n Bu we wn n h hs non-ero -coordne vlue CSE 68 Trnsforons of norl vecors Plnr equon: + b + c + d Le N (, b, c, d (Noe: (, b, c s norl vecor Le P (,,, be pon n plne π n π Plnr equon: N P P M s n ffne rnsforon r (M T s M rnspose Le P M P T Fnd N such h N P (rnsfored plnr equon N P ; NP T ; N (M - M P T ; (N M - (M P T ; (N M - P T ; So N NM - To pu n colun-vecor for, (N T (NM - T (M - T N T So N ((M - T N T T nd (M - T s he rnsforon r o e N T no N T Noe: If M s roon r, (M - T M CSE 68 3