The Virtual Element Method: an introduction with focus on fluid flows

Similar documents
arxiv: v1 [math.na] 27 Jan 2016

A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. Marco Verani

Virtual Element Methods for general second order elliptic problems

arxiv: v1 [math.na] 27 Jan 2016

Divergence free Virtual Elements for the Stokes problem on polygonal meshes

H(div) and H(curl)-conforming Virtual Element Methods

VEM s for the numerical solution of PDE s. F. Brezzi

arxiv: v1 [math.na] 11 Sep 2017

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Virtual Elements for plates and shells

Mimetic Finite Difference methods

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations

THE NONCONFORMING VIRTUAL ELEMENT METHOD

Serendipity Finite Element Methods for Cardiac Electrophysiology Models

February 18, :41 WSPC/INSTRUCTION FILE Brezzi-Corrections VIRTUAL ELEMENT METHOD FOR GENERAL SECOND ORDER ELLIPTIC PROBLEMS ON POLYGONAL MESHES

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

ABHELSINKI UNIVERSITY OF TECHNOLOGY

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM)

arxiv: v1 [math.na] 8 Jan 2019

LEAST-SQUARES FINITE ELEMENT MODELS

Hybridized Discontinuous Galerkin Methods

LibMesh Experience and Usage

arxiv: v1 [math.na] 11 Feb 2015

arxiv: v1 [math.na] 29 Feb 2016

A Virtual Element Method for the Transmission Eigenvalue Problem

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016

Discontinuous Galerkin Methods

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

Numerical Solutions to Partial Differential Equations

Discontinuous Petrov-Galerkin Methods

ICES REPORT A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams

LibMesh Experience and Usage

Finite element approximation of eigenvalue problems

arxiv: v1 [math.na] 8 Feb 2018

Scientific Computing I

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

arxiv: v1 [math.na] 3 Jun 2018

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Computer simulation of multiscale problems

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen

A P4 BUBBLE ENRICHED P3 DIVERGENCE-FREE FINITE ELEMENT ON TRIANGULAR GRIDS

TMA4220: Programming project - part 1

arxiv: v1 [math.na] 21 Dec 2018

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

Solutions of Selected Problems

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

MATH 676. Finite element methods in scientific computing

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen

Iterative Methods for Linear Systems

Boundary Value Problems and Iterative Methods for Linear Systems

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

1 Discretizing BVP with Finite Element Methods.

Simple Examples on Rectangular Domains

A $C^1$ virtual element method for the Cahn-Hilliard equation with polygonal meshes

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma

Computational Methods for Engineering Applications II. Homework Problem Sheet 4

Numerical Solutions to Partial Differential Equations

Numerical methods for the Navier- Stokes equations

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem:

Numerical Solutions to Partial Differential Equations

Linear algebra II Homework #1 due Thursday, Feb A =

H(div) and H(curl)-conforming VEM

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Some New Elements for the Reissner Mindlin Plate Model

Spline Element Method for Partial Differential Equations

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES

Part D: Frames and Plates

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems

A very short introduction to the Finite Element Method

Isogeometric Analysis:

The Plane Stress Problem

Some remarks on the stability coefficients and bubble stabilization of FEM on anisotropic meshes

A non-standard Finite Element Method based on boundary integral operators

Higher-Order Compact Finite Element Method

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1

QUADRILATERAL H(DIV) FINITE ELEMENTS

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators

Local discontinuous Galerkin methods for elliptic problems

Robust exponential convergence of hp-fem for singularly perturbed systems of reaction-diffusion equations

The Mortar Boundary Element Method

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations

A primer on Numerical methods for elasticity

Transcription:

The Virtual Element Method: an introduction with focus on fluid flows L. Beirão da Veiga Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca VEM people (or group representatives): P. Antonietti, B. Ayuso, S. Berrone, S. Bordas, F. Brezzi, A. Cangiani, R. Falk, G. Gatica, C. Lovadina, G. Manzini, D. Marini, D. Mora, G. Paulino, P. Pietra, R. Rodriguez, S. Scacchi, A. Russo, G. Vacca, M. Verani, P. Wriggers,... L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 1 / 31

The Virtual Element Method The Virtual Element Method (VEM) is a generalization of the Finite Element Method. VEM allow to use very general polygonal and polyhedral meshes, also for high polynomial degrees and without overwhelming complications. The flexibility of VEM is not limited to the mesh: an example will be shown later. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 2 / 31

Why polygons/polyhedrons? The interest (and use in commercial codes ) for polytopes is growing. Immediate combination of tets and hexahedrons Easier/better meshing of domain and data features (cracks, sliding meshes, inclusions...) Automatic use of hanging nodes Adaptivity: more efficient mesh refinement/coarsening Generate meshes with more local rotational simmetries Robustness to distortion... for example CD-ADAPCO and ANSYS. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 3 / 31

Virtual elements: current range of problems Poisson problem (initial paper) Diffusion-convection-reaction in primal and mixed form Stokes problem Plate bending problems Linear elasticity, nonlinear elasticity and inelasticity Discrete fracture networks Cahn-Hilliard equation Contact problems Eigenvalue problems Topology optimization Time dependent problems... L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 4 / 31

The model problem We consider the Poisson problem in two dimensions u = f in Ω, u = 0 on Ω, where Ω R 2 is a polygonal domain; the loading f is assumed in L 2 (Ω). Variational formulation: where a(v, w) = find u V := H0 1 (Ω) such that a(u, v) = f v dx v V, Ω Ω v w dx, v, w V. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 5 / 31

A Virtual Element Method [BdV,Brezzi,Cangiani,Manzini,Marini,Russo, M3AS 2013] We will build a discrete problem in following form { find uh V h such that where a h (u h, v h ) =< f h, v h > v h V h, V h V is a finite dimensional space; a h (, ) : V h V h R is a discrete bilinear form approximating the continuous form a(, ); < f h, v h > is a right hand side term approximating the load L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 6 / 31

A Virtual Element Method [BdV,Brezzi,Cangiani,Manzini,Marini,Russo, M3AS 2013] We will build a discrete problem in following form { find uh V h such that where a h (u h, v h ) =< f h, v h > v h V h, V h V is a finite dimensional space; a h (, ) : V h V h R is a discrete bilinear form approximating the continuous form a(, ); < f h, v h > is a right hand side term approximating the load Let m 1 be a fixed integer index. Such index will represent the degree of accuracy of the method. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 6 / 31

The local spaces V h E Let Ω h be a simple polygonal mesh on Ω. This can be any decomposition of Ω in non overlapping polygons E with straight faces. The space V h will be defined element-wise, by introducing local spaces V h E ; the associated local degrees of freedom. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 7 / 31

The local spaces V h E Let Ω h be a simple polygonal mesh on Ω. This can be any decomposition of Ω in non overlapping polygons E with straight faces. The space V h will be defined element-wise, by introducing local spaces V h E ; the associated local degrees of freedom. For all E Ω h : V h E = { v H 1 (E) : v P m 2 (E), v e P m (e) e E }. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 7 / 31

The local spaces V h E Let Ω h be a simple polygonal mesh on Ω. This can be any decomposition of Ω in non overlapping polygons E with straight faces. The space V h will be defined element-wise, by introducing local spaces V h E ; the associated local degrees of freedom. For all E Ω h : V h E = { v H 1 (E) : v P m 2 (E), v e P m (e) e E }. the functions v V h E are continuous (and known) on E; the functions v V h E are unknown inside the element E! it holds P m (E) V h E L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 7 / 31

Depiction of the degrees of freedom for V h E m=1 m=2 m=3 Green dots stand for vertex pointwise values Red squares represent edge pointwise values (m 2 per edge) Blue squares represent internal (volume) moments v h p m 2 p m 2 P m 2 (E). E L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 8 / 31

The space V h The global space V h is built by assembling the local spaces V h E as usual: V h = {v H 1 0 (Ω) : v E V h E E Ω h } The total d.o.f.s are one per internal vertex, m 1 per internal edge and m(m 1)/2 per element. The choice of degrees of freedom guarantees the global continuity of the functions in V h. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 9 / 31

The bilinear form a h (, ) The bilinear form a h (, ) is built element by element a h (v h, w h ) = E Ω h a E h (v h, w h ) v h, w h V h, where a E h (, ) : V h E V h E R are symmetric bilinear forms that mimic a E h (, ) a(, ) E by satisfying stability and consistency conditions. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 10 / 31

A projection operator We introduce the following energy projector Π : V h E P m (E) defined by, for all v h V h E, { a E (Πv h, p) = a E (v h, p) p P m (E)/R P 0 (Πv h ) = P 0 (v h ) (projection on constants). L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 11 / 31

A projection operator We introduce the following energy projector Π : V h E P m (E) defined by, for all v h V h E, { a E (Πv h, p) = a E (v h, p) p P m (E)/R P 0 (Πv h ) = P 0 (v h ) (projection on constants). An integration by parts gives a E (p, v h ) = p v h dx E = ( p) v h dx + E E ( p n E ) v h ds. for all p P m (E), v h V h E. Thus Π is COMPUTABLE. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 11 / 31

The local bilinear forms It is immediate to check that v h, w h V h E a E (v h, w h ) = a E (Πv h, Πw h ) + a E ((I Π)v h, (I Π)w h ). L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 12 / 31

The local bilinear forms It is immediate to check that v h, w h V h E a E (v h, w h ) = a E (Πv h, Πw h ) + a E ((I Π)v h, (I Π)w h ). We introduce the discrete bilinear form ah E (v h, w h ) = a E (Πv h, Πw h ) + s E ((I Π)v h, (I Π)w h ) where the symmetric bilinear form s E : V h E V h E R is positive definite; scales (in h) like the original bilinear form s E (v h, v h ) a E (v h, v h ) v h V h E, Πv h = 0. NOTE: the above discrete form is exact for polynomials in P m. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 12 / 31

The discrete load term We consider m 2 first. Let, for all E Ω h, the approximated load f h E be the L 2 -projection of f E on P m 2 (E). Then (f h, v h ) h := E Ω h E f h v h dx that is computable due to the internal dofs of V h E. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 13 / 31

The discrete load term We consider m 2 first. Let, for all E Ω h, the approximated load f h E be the L 2 -projection of f E on P m 2 (E). Then (f h, v h ) h := E Ω h E f h v h dx that is computable due to the internal dofs of V h E. In the case m = 1 a simple integration rule based on the vertex values of the polygon can be used, for instance (f h, v h ) h := ( ) 1 f dx v h (ν) dx. N E E Ω h E ν E Note: for m = 2 better choices can be made [Ahmad, Alsaedi, Brezzi, Marini, Russo, CMA 2013], [BdV, Brezzi, Marini, SINUM 2013]. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 13 / 31

A convergence result Let the sequence {Ω h } h satisfy the following mesh assumptions: each element E in Ω h is star-shaped with respect to a ball of uniform radius ( or suitable union of ) ; for each element E in Ω h, the lenght of all edges is comparable with its diameter h E ( not needed by paying (1 + log(he /h e )) ). Then the following holds [... volley team..., M3AS 2013]. Theorem Let the stability and consistency assumptions hold. Then, if f H s (Ω h ) and u H s+1 (Ω h ), we have u u h H 1 (Ω) C ( hs u H s+1 (Ω h ) + f ) H s (Ω h ) for 0 s m and with C independent of h. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 14 / 31

k-plain div(k u)+αu = f exact solution: ue(x, y) =y x +log y 3 + x +1 xy xy 2 + x 2 y + x 2 + x 3 +sin(5x) sin(7y) 1 diffusion: K(x, y) =1 zero-order term: α(x, y) =1 right-hand-side: f(x, y) = log y 3 + x +1 1 y 5 x + (y 3 + x +1) 2 + 9 y 4 (y 3 + x +1) 2 xy xy2 + x 2 y + x 2 + x 3 6 y +75sin(5x) sin(7y) 3 y 3 + x +1 L2 norm of the exact solution: ue 0,Ω =0.6431084584 H1 seminorm of the exact solution: ue 1,Ω =5.031264492 Generated by genue on 09-Nov-2013 16:08:59

0 h=hmean slope: Π uh u e 0,Ω = 4.011, Π u h u e 0,Ω = 4.014 10 2 10 3 10 4 10 5 h 5 h 4 h 3 h 2 0 Π uh u e 0,Ω Π u h u e 0,Ω 0 h=hmean slope: Π uh u e 0,Ω = 3.010, Π u h u e 0,Ω = 3.013 10 0 10 1 10 2 10 3 h 5 h 4 h 3 h 2 0 Π uh u e 0,Ω Π u h u e 0,Ω 10 6 h 1 10 4 h 1 10 7 10 5 10 8 10 6 10 10 2 10 1 10 0 2 10 1 10 0 L 2 error k =3 H 1 error triangle0.01 88 polygons, h max = 0.174116, h mean = 0.149291 triangle0.005 177 polygons, h max = 0.133616, h mean = 0.107452 triangle0.001 809 polygons, h max = 0.063418, h mean = 0.049083 triangle0.0005 1627 polygons, h max = 0.044872, h mean = 0.034516 triangle0.0001 7921 polygons, h max = 0.019754, h mean = 0.015641

0 h=hmean slope: Π uh u = 5.009, Π u u = 5.017 e 0,Ω h e 0,Ω 10 4 0 h=hmean slope: Π uh u e 0,Ω = 4.003, Π u h u e 0,Ω = 4.013 10 2 Π 0 u h u e 0,Ω Π 0 u h u e 0,Ω 10 5 h 5 Π u h u e 0,Ω 10 3 h 5 Π u h u e 0,Ω 10 6 h 4 10 4 h 4 h 3 h 3 10 7 10 5 h 2 h 2 10 8 10 6 h 1 h 1 10 9 10 7 10 10 10 8 10 2 10 1 10 0 10 2 10 1 10 0 L 2 error k =4 H 1 error triangle0.01 88 polygons, h max = 0.174116, h mean = 0.149291 triangle0.005 177 polygons, h max = 0.133616, h mean = 0.107452 triangle0.001 809 polygons, h max = 0.063418, h mean = 0.049083 triangle0.0005 1627 polygons, h max = 0.044872, h mean = 0.034516 triangle0.0001 7921 polygons, h max = 0.019754, h mean = 0.015641

0 h=hmean slope: Π uh u e 0,Ω = 5.928, Π u h u e 0,Ω = 5.871 10 5 0 h=hmean slope: Π uh u e 0,Ω = 5.020, Π u h u e 0,Ω = 5.010 10 4 Π 0 u h u e 0,Ω Π 0 u h u e 0,Ω 10 6 Π u h u e 0,Ω 10 5 h 5 Π u h u e 0,Ω 10 7 h 5 10 6 h 4 10 8 h 4 h 3 10 7 10 9 h 3 h 2 10 10 h 2 10 8 h 1 10 11 h 1 10 9 10 12 10 10 10 10 2 10 1 10 0 2 10 1 10 0 L 2 error k =5 H 1 error triangle0.01 88 polygons, h max = 0.174116, h mean = 0.149291 triangle0.005 177 polygons, h max = 0.133616, h mean = 0.107452 triangle0.001 809 polygons, h max = 0.063418, h mean = 0.049083 triangle0.0005 1627 polygons, h max = 0.044872, h mean = 0.034516 triangle0.0001 7921 polygons, h max = 0.019754, h mean = 0.015641

Convection-diffusion: an example We consider the problem on Ω = [0, 1] 2 ε u + b u = 0 in Ω, u(0, y) = (1 cos (2πy))/2 y [0, 1], u(1, y) = 0 y [0, 1], homogeneous Neumann BCs in remaining boundary, where ε = 10 2 and b = ( 1, 1/3). The data on the left edge will be transported (with some amplitude loss) and generate a layer near the right edge. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 15 / 31

Convection-diffusion: an example Triangular mesh with VEM: joined 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 16 / 31

Convection-diffusion: an example Solution plot (polynomial degree one): VEM solution k=1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 17 / 31

The three dimensional case In principle the 3D case is analogous; the degrees of freedom are one point value per vertex (m 1) point values per edge M0 f, Mf 1,.., Mf m 1 moments per face M0 E, ME 1,.., ME m 2 moments per element. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 18 / 31

The three dimensional case In principle the 3D case is analogous; the degrees of freedom are one point value per vertex (m 1) point values per edge M0 f, Mf 1,.., Mf m 1 moments per face M0 E, ME 1,.., ME m 2 moments per element. A more efficient formulation with less degrees of freedom per face M0 f, Mf 1,.., Mf m 2 moments per face can be built using the L 2 projector in [Ahmed, Alsaedi, Brezzi, Marini, Russo, CMA 2013]. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 18 / 31

The Stokes problem Find (u, p) such that ν u p = f in Ω, div u = 0 in Ω, u = 0 on Ω, VARIATIONAL FORM: Find (u, p) V Q, such that ν u : v + p div v = f v for all v V, Ω Ω Ω q div u = 0 for all q Q, Ω where the velocity and pressure spaces V = [H 1 0 (Ω)]2, Q = L 2 0 (Ω). L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 19 / 31

A first VEM approximation where Find (u h, p h ) V h Q h, such that a h (u h, v h ) + p h div v h = (f, v) h for all v h V h, Ω q h div u h = 0 for all q h Q h, Ω V h = [V h ] 2 (of degree m), Q h = { q L 2 0 (Ω) : q } E P m 1 E Ω h, a h (v h, w h ) ν v h : w h (vector version of the previous one!) Ω NOTE: The second form is computable (integrate by parts); the inf-sup condition holds! (m 2) L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 20 / 31

A new virtual velocity space (m 2) Let W h = { v [H0 1 } (Ω)]2 : v E W h E E Ω h where W h E := { v [H 1 (E)] 2 : v e [P m (e)] 2 e E, { ν v s [Pm 2 (E)] 2, s L 2 0 (E), div v P m 1 (E). The functions in W h E are solution of a local Stokes problem with polynomial data; in particular, the divergence of functions in W h E are polynomials of degree m 1 (known explicitly); the dimension of W h E is the same as that of V h E. (!!) L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 21 / 31

Degrees of freedom We take as degrees of freedom for W h E : vertex pointwise values; (m-2) pointwise values for every edge e E; L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 22 / 31

Degrees of freedom We take as degrees of freedom for W h E : vertex pointwise values; (m-2) pointwise values for every edge e E; divergence moments (div v h ) p m 1 p m 1 P m 1 (E)/R; E L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 22 / 31

Degrees of freedom We take as degrees of freedom for W h E : vertex pointwise values; (m-2) pointwise values for every edge e E; divergence moments (div v h ) p m 1 p m 1 P m 1 (E)/R; E orthogonal moments (x = [ x 2, x 1 ] ) v h x p m 3 p m 3 P m 3 (E). E L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 22 / 31

New VEM approximation Let [BdV, Lovadina, Vacca, ArXiv and submitted] Find (u h, p h ) W h Q h, such that a h (u h, v h ) + p h div v h = (f, v) h for all v h W h, Ω q h div u h = 0 for all q h Q h, Ω By using that [P m 2 ] 2 = P m 1 x P m 3, it can be shown that we can still compute v h : p m for all p m [P m (E)] 2, E and thus build the form a h (, ) (loading term analogous). L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 23 / 31

Advantages The second row of the discrete problem implies p m 1 div u h = 0 E Ω h, p m 1 P m 1 (E). E Moreover we remind that THEREFORE: (divu h ) E P m 1 (E) E Ω h. the solution u h is pointwise divergence free; the second row of the problem implies, in particular, that all the divergence moments degrees of freedom of u h vanish! L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 24 / 31

Reduced problem Let the reduced problem Find (u h, p h ) Ŵh Q h, such that a h (u h, v h ) + p h div v h = (f, v) h for all v h Ŵh, Ω q h div u h = 0 for all q h Q h, where Ω Ŵ h W h with all the divergence moment DoFs set to zero; Q h are piecewise constant functions. NOTE: the solution u h is the same as that of the original problem but many degrees of freedom (both for velocities and pressures) are saved. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 25 / 31

A convergence result (m 2) Let the sequence {Ω h } h satisfy the following mesh assumptions: each element E in Ω h is star-shaped with respect to a ball of uniform radius; for each element E in Ω h, the lenght of all edges is comparable with its diameter h E. Then the following holds [LBdV, Lovadina, Vacca, ArXiv and submitted]. Theorem If the right hand side makes sense, we have u u h H 1 (Ω) + p p h L 2 (Ω) C ( hs u H s+1 (Ω h ) + f ) H s (Ω h ) + p H s (Ω h ) for 0 s m and with C independent of h. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 26 / 31

Numerical tests TEST: Ω = [0, 1] 2 and loading in accordance with ( ) 1 u(x, y) = 2 cos2 (x) cos(y) sin(y) 1 p(x, y) = sin(x) sin(y). 2 cos2 (y) cos(x) sin(x) We consider the error quantities δ(u) := ui u h 1,h u I and δ(p) := pi p h L 2 1,h p I. L 2 and the mesh families L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 27 / 31

Numerical tests: Voronoi meshes L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 28 / 31

Numerical tests: triangular meshes L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 29 / 31

Numerical tests: quad meshes L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 30 / 31

Conclusions The Virtual Element Method is a novel generalization of FEM (2013) that allows for general polytopal meshes The flexibility of the method is reflected also in other aspects, such as the divergence-free scheme shown Virtual elements need (more development and) to approach and be tested on more complex problems (Navier-Stokes,...) and benchmarks We believe the idea is valuable and opens up various interesting research directions both for theoretical and applicative people. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 31 / 31

Construction of the stiffness matrix We introduce the following energy projector defined by, for all v h V h E, Π : V h E P m (E) { a E (Πv h, p) = a E (v h, p) p P m (E)/R P 0 (Πv h ) = P 0 (v h ) The operator P 0 is a projection on constants, that for m 2 is simply the average, and for m = 1 the vertex value average. NOTE: due to the consistency assumption, the projection operator above is computable (more later). L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 32 / 31

Construction of the stiffness matrix It is immediate to check that v h, w h V h E a E (v h, w h ) = a E (Πv h, Πw h ) + a E ((I Π)v h, (I Π)w h ). Then the bilinear form a E h (v h, w h ) = a E (Πv h, Πw h ) + s E ((I Π)v h, (I Π)w h ) is consistent and stable, provided the positive bilinear form s E : V h E V h E R scales like the original bilinear form a. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 33 / 31

Construction of the stiffness matrix It is immediate to check that v h, w h V h E a E (v h, w h ) = a E (Πv h, Πw h ) + a E ((I Π)v h, (I Π)w h ). Then the bilinear form a E h (v h, w h ) = a E (Πv h, Πw h ) + s E ((I Π)v h, (I Π)w h ) is consistent and stable, provided the positive bilinear form s E : V h E V h E R scales like the original bilinear form a. Let now the local stiffness matrix M E M E ij := a E h (ϕ i, ϕ j ) i, j = 1, 2,..., N with {ϕ i } the canonical basis associated to the degrees of freedom. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 33 / 31

Construction of the stiffness matrix We introduce also {m α } n α=1 a basis for the polynomial space P m = span{m α } n α=1. Since P m V h E, the matrix dof 1 (m 1 ) dof 1 (m 2 )... dof 1 (m n ) dof 2 (m 1 ) dof 2 (m 2 )... dof 2 (m n ) D =....... dof N (m 1 ) dof N (m 2 )... dof N (m n ) expresses the {m α } in terms of the V h E basis. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 34 / 31

Construction of the stiffness matrix We have also a matrix P 0 ϕ 1... P 0 ϕ N a E (ϕ 1, m 2 )... a E (ϕ N, m 2 ) B =..... a E (ϕ 1, m n )... a E (ϕ N, m n ) expressing (in terms of the bases) the right hand side in the definition { a E (Πv h, p) = a E (v h, p) p P m (E)/R P 0 (Πv h ) = P 0 (v h ) NOTE: such matrix is computable! (integration by parts and d.o.f.s definition) L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 35 / 31

Construction of the stiffness matrix Let P 0 m 1 ( P 0 m 2... P 0 m n 0 m2, m 2 )0,P... ( ) m2, m n G = BD =..... (. 0 mn, m 2 )0,P... ( ) mn, m n 0,P 0,P. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 36 / 31

Construction of the stiffness matrix Let P 0 m 1 ( P 0 m 2... P 0 m n 0 m2, m 2 )0,P... ( ) m2, m n G = BD =..... (. 0 mn, m 2 )0,P... ( ) mn, m n Compute the matrices corresponding to the projection operator: Π = (G) 1 B, Π = DΠ. 0,P 0,P. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 36 / 31

Construction of the stiffness matrix Let P 0 m 1 ( P 0 m 2... P 0 m n 0 m2, m 2 )0,P... ( ) m2, m n G = BD =..... (. 0 mn, m 2 )0,P... ( ) mn, m n Compute the matrices corresponding to the projection operator: Π = (G) 1 B, Π = DΠ. Finally compute the local stiffness matrix M E = Π T G Π + (I Π) T (I Π). 0,P 0,P. L. Beirão da Veiga (Univ. of Milan-Bicocca) The Virtual Element Method PARIS - 2015 36 / 31