NP-hardness of the stable matrix in unit interval family problem in discrete time

Similar documents
New Lyapunov Krasovskii functionals for stability of linear retarded and neutral type systems

Characterization of Convex and Concave Resource Allocation Problems in Interference Coupled Wireless Systems

Taylor series based nite dierence approximations of higher-degree derivatives

ON THE COMPLEXITY OF SOLVING THE GENERALIZED SET PACKING PROBLEM APPROXIMATELY. Nimrod Megiddoy

On at systems behaviors and observable image representations

1 Last time: least-squares problems

A characterization of consistency of model weights given partial information in normal linear models

216 S. Chandrasearan and I.C.F. Isen Our results dier from those of Sun [14] in two asects: we assume that comuted eigenvalues or singular values are

A Single-letter Upper Bound for the Sum Rate of Multiple Access Channels with Correlated Sources

IBM Almaden Research Center, 650 Harry Road, School of Mathematical Sciences, Tel Aviv University, TelAviv, Israel

Linear stochastic approximation driven by slowly varying Markov chains

PROOF OF TWO MATRIX THEOREMS VIA TRIANGULAR FACTORIZATIONS ROY MATHIAS

Applied Mathematics Letters. Comparison theorems for a subclass of proper splittings of matrices

Matrices: 2.1 Operations with Matrices

The spectral decomposition of near-toeplitz tridiagonal matrices

Complexity analysis of job-shop scheduling with deteriorating jobs

Detailed Proof of The PerronFrobenius Theorem

Robust linear optimization under general norms

1 The independent set problem

NP-hardness results for linear algebraic problems with interval data

An Uplink-Downlink Duality for Cloud Radio Access Network

Diagonalization by a unitary similarity transformation

A Characterization of the Hurwitz Stability of Metzler Matrices

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point

MATRICES. a m,1 a m,n A =

An O(n 2 ) algorithm for maximum cycle mean of Monge matrices in max-algebra

A Questionable Distance-Regular Graph

Pade approximants and noise: rational functions

Spectrally arbitrary star sign patterns

Computing the Norm A,1 is NP-Hard

Spectral Properties of Matrix Polynomials in the Max Algebra

Spectral inequalities and equalities involving products of matrices

Stat 159/259: Linear Algebra Notes

A matrix over a field F is a rectangular array of elements from F. The symbol

MATHEMATICAL ENGINEERING TECHNICAL REPORTS

Eects of small delays on stability of singularly perturbed systems

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

Spatial autoregression model:strong consistency

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels

Interval solutions for interval algebraic equations

Modified Gauss Seidel type methods and Jacobi type methods for Z-matrices

Nonlinear Programming Algorithms Handout

Solution Set 7, Fall '12

Inverse Perron values and connectivity of a uniform hypergraph

Linear Algebra: Characteristic Value Problem

An estimation of the spectral radius of a product of block matrices

First, we review some important facts on the location of eigenvalues of matrices.

Divisor matrices and magic sequences

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

A note on continuous behavior homomorphisms

A NEW EFFECTIVE PRECONDITIONED METHOD FOR L-MATRICES

12.4 Known Channel (Water-Filling Solution)

An Even Order Symmetric B Tensor is Positive Definite

Null controllable region of LTI discrete-time systems with input saturation

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with

An alternative proof of the Barker, Berman, Plemmons (BBP) result on diagonal stability and extensions - Corrected Version

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

DOWNLINK transmit beamforming has recently received

Z-Pencils. November 20, Abstract

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

On the Optimal Phase Control in MIMO Systems with Phase Quantization

Math Matrix Algebra

Review of Some Concepts from Linear Algebra: Part 2

OUTLINE 1. Introduction 1.1 Notation 1.2 Special matrices 2. Gaussian Elimination 2.1 Vector and matrix norms 2.2 Finite precision arithmetic 2.3 Fact

Total 170. Name. Final Examination M340L-CS

A New SLNR-based Linear Precoding for. Downlink Multi-User Multi-Stream MIMO Systems

SIMPLE CONDITIONS FOR PRACTICAL STABILITY OF POSITIVE FRACTIONAL DISCRETE TIME LINEAR SYSTEMS

OPTIMAL SCALING FOR P -NORMS AND COMPONENTWISE DISTANCE TO SINGULARITY

Automatica, 33(9): , September 1997.

QUALITATIVE CONTROLLABILITY AND UNCONTROLLABILITY BY A SINGLE ENTRY

ELEC E7210: Communication Theory. Lecture 10: MIMO systems

Kernels of Directed Graph Laplacians. J. S. Caughman and J.J.P. Veerman

On the Kalman-Yacubovich-Popov lemma and common Lyapunov solutions for matrices with regular inertia

Invertibility and stability. Irreducibly diagonally dominant. Invertibility and stability, stronger result. Reducible matrices

Determinants Chapter 3 of Lay

Experimental evidence showing that stochastic subspace identication methods may fail 1

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5

15 Singular Value Decomposition

Minimum Repair Bandwidth for Exact Regeneration in Distributed Storage

Algebra II Vocabulary Alphabetical Listing. Absolute Maximum: The highest point over the entire domain of a function or relation.

Constrained Leja points and the numerical solution of the constrained energy problem

Chapter 3 Transformations

Contents. 6 Systems of First-Order Linear Dierential Equations. 6.1 General Theory of (First-Order) Linear Systems

c 1995 Society for Industrial and Applied Mathematics Vol. 37, No. 1, pp , March

Resolving infeasibility in extremal algebras 1

A Tropical Extremal Problem with Nonlinear Objective Function and Linear Inequality Constraints

Jordan normal form notes (version date: 11/21/07)

An indicator for the number of clusters using a linear map to simplex structure

The Nearest Doubly Stochastic Matrix to a Real Matrix with the same First Moment

Matrices and Linear Algebra

Uniqueness of Generalized Equilibrium for Box Constrained Problems and Applications

Linear Regression and Its Applications

Functional Analysis Review

Computing the pth Roots of a Matrix. with Repeated Eigenvalues

Copositive matrices and periodic dynamical systems

Realization of set functions as cut functions of graphs and hypergraphs

We first repeat some well known facts about condition numbers for normwise and componentwise perturbations. Consider the matrix

Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard

1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze Theorem. Intermediate Value Theorem. Extreme Value Theorem.

Transcription:

Systems & Control Letters 42 21 261 265 www.elsevier.com/locate/sysconle NP-hardness of the stable matrix in unit interval family problem in discrete time Alejandra Mercado, K.J. Ray Liu Electrical and Computer Engineering Department and Institute for Systems Research, University of Maryland, College Par, MD 2742, USA Received 22 January 2; received in revised form 2 July 2 Abstract We show that to determine if a family of matrices, each with parameters in the unit interval, contains a matrix with all eigenvalues inside the unit circle is an NP-hard problem. We also discuss how this problem is closely related to the widespread problem of power control in wireless systems. c 21 Elsevier Science B.V. All rights reserved. Keywords: Complexity; NP-hardness 1. Introduction In a wireless networ, an optimal solution to the automatic power control problem can be obtained using Frobenius theorem [1]. Once a signal to interference and noise ratio SINR has been assigned to each user, the existence of an optimal power control solution requires that the pathgain matrix should have all its eigenvalues inside the unit circle [8]. If the pathgain matrix conforms with this constraint, then the SINR values are called feasible. In a wireless system where users have dierent SINR requirements due to dierent multimedia service types, the system designer endeavors to assign the highest possible SINR levels to all the users, according to their service types. The problem of nding a set of feasible SINR levels that are somehow optimal, in the sense that they are as high as possible considering the priorities of each service type, has been proposed in [6]. This problem is closely related Corresponding author. Tel.: +1-31-45-7319; fax: +1-31- 3124-992. E-mail address: santiago@eng.umd.edu A. Mercado. to the Stable Ran One Perturbed Matrix problem [1], except that it refers to discrete-time stability and not continuous-time stability. Henceforth, we denote the discrete-time problem as Power-P. One method to show that Power-P is NP-hard is by using the problem stable matrix in unit interval family problem [1] for discrete time, hereafter denoted as SMIUIF. The principal undertaing of this paper is to show that SMIUIF is NP-hard. This problem, in turn, can be used to show NP-hardness for some communications problems, as discussed in Section 3, including the problem mentioned above, Power-P. We shall denote the set of positive integers as Z +, and the set of rational numbers as Q. The problem statement is: SMIUIF. Let n Z + ; and let I be a set of coordinates; I= {i; j: 16i; j6n}; which is partitioned into two subsets; I 1 ; and I 2. Let A be a set of real matrices; dened by A = {A: Ai; j Q; for i; j I 1 and Ai; j [ 1; 1]; for i; j I 2 }. Does A contain a matrix with all of its eigenvalues inside the unit circle? 167-6911/1/$ - see front matter c 21 Elsevier Science B.V. All rights reserved. PII: S167-691195-5

262 A. Mercado, K.J.R. Liu / Systems & Control Letters 42 21 261 265 From a linear system s perspective, our wor supplements that which was done in [7] where NP-hardness is shown for several robust stability problems. The second problem addressed in [7] is to determine if the members of an interval family, similar to our A, have their eigenvalues inside or on the unit circle. The dierence between that problem and ours is that the problem in [7] ass if all members of the family are stable, we as if there is at least one member which is stable. SMIUIF has been shown to be NP-hard for the stabilization in a continuous-time linear feedbac system by Blondel and Tsitsilis [1], but not for the discrete-time linear feedbac system. For the continuous-time case, the matrix is stable if the eigenvalues are on the left side of the complex plane. For the discrete-time case, which we address, the matrix is stable if the eigenvalues are inside of the unit circle. The proof used here is similar to that used in [1], except that the family of matrices used in the instance of SMIUIF, A, must be dened dierently, and the parameters used in describing the members of A must be chosen dierently. The distinction between continuous-time and discrete-time cases is noteworthy in that the latter is relevant to some communications problems. NP-hardness for the discrete-time case has been assumed to be true in the control of systems whose components are distributed over a networ, where the networ has a limited communication capacity [3,4]. However, it was not proven. As mentioned before, the optimal power control in wireless systems is another example. This is discussed further in Section 3. 2. Proof of NP-hardness for SMIUIF To show that SMIUIF is NP-hard, we use the nown NP-complete problem [2]: Problem 1. Let {a i } i=1;:::;l be a set of integers. Do there exist t 1 ;:::;t l { 1; 1} such that l a i t i =? 1 i=1 Here, three intermediate results are presented, in order to streamline the proof for the problem of interest. Lemma 1. Let a be a real vector of length l; and be a real scalar. The l +1 l +1 size matrix A 1 = aa T... has eigenvalues zero with multiplicity l and a simple eigenvalue a T a. Proof. A 1 has ran 1, and the rest follows. Lemma 2. The l +1 l +1matrix x 1 A 2 =... x l x 1 x l where =3=4 l; =1=2a T a; =5a T a=2; and x i { 1; 1}; for i=1;:::;l;has all eigenvalues inside the unit circle. Proof. We can show that the characteristic polynomial of A 2 is det A 2 = l + l 2 l 1 = l 1 2 + l 2 : 2 Eq. 2 has l 1 roots at zero, and two additional roots at = + 2 2 4l 2 : 3 2 From the premise, we now that 2 l, which maes the discriminant negative, so that 2 = l 2. Also from the premise, it is nown that 1= l. Thus all eigenvalues of A 2 are inside the unit circle. Lemma 3. Let B be the l +1 l +1matrix dened by Il l + aa T y B= x T ; 1 where x and y are vectors in [ 1; 1] l ; a is a vector in Z l ; [; 1]; 1=2 l; 1= l; and 1; 2 l. If B has a zero eigenvalue; then 2 x T a T a +1 aat y = 1: 4

A. Mercado, K.J.R. Liu / Systems & Control Letters 42 21 261 265 263 Proof. By premise, i = for some eigenvalues of B. Denote the eigenvector associated to i as C i = q, where is a vector and q is a scalar. So, { I + aa T + qy = BC i = x T + 1q =: Now, I + aa T is negative denite, so it is invertible, therefore, = qi + aa T 1 y : Since q = requires that C i =, it can be deduced that q, which results in 2 x T I + aa T 1 y + 1=: Using the matrix inversion lemma [9], Eq. 4 is nally obtained. Theorem 1. Problem SMIUIF is NP-hard. Proof. The proof has three parts [5]: Part 1: An instance of Problem 1 is reduced to an instance of Problem SMIUIF. Let the integers a i ;i=1;:::;l, be an instance of Problem 1. Let x; y [ 1; 1] l, and A be a family of matrices which are parameterized by x and y: A = {Ax; y:x; y [ 1; 1] l }; where aa T y Ax; y= x T ; 5 with =3=4 l; =1=2a T a, =5a T a=2. The family of matrices A is an instance of Problem SMIUIF. Part 2: If the instance of Problem 1 is true, then the instance of Problem 2 is true. In other words, if there exists a set {t i } i=1;:::;l, that satises Eq. 1, then there is at least one stable matrix in the interval family, A. Let the collection of t i { 1; 1}; i=1;:::;l, satisfy 1. Consider the member of A which has x T = t 1 ;:::;t l, denoted x, and y = x, denoted y. Note that, because of Eq. 1, x Ta = at x =. We show that this matrix, A = Ax ; y, is veried to be stable in polynomial time, i.e., it has all of its eigenvalues inside the unit circle. Indeed, A can be decomposed as follows: aa T ::: A =. +.. x : ::: ::: }{{} denote A 1 x T }{{} denote A 2 Lemma 1 states that matrix A 1 has a zero eigenvalue with multiplicity l, and a simple eigenvalue at a T a, which, by premise, falls inside the interval a T a 1. Lemma 2 states that matrix A 2 has all its eigenvalues inside the unit circle. Let be an eigenvalue of A, with eigenvector C: A C =A 1 + A 2 C = C A 2 1 + A 1 A 2 C = A 1 C: 6 The fact that x T a=at x =, results in A 1 A 2 =A 2 A 1 =, so A 1 A 1 C=A 1 C: 7 Therefore, if A 1 C is not zero, then is an eigenvalue of A 1. Conversely, if C is in the nullspace of A 1, then is an eigenvalue of A 2. Therefore, every eigenvalue of A is also an eigenvalue of A 1 or A 2. Since both A 1 and A 2 are stable, then so is A, and every result used for this conclusion is obtained in polynomial time. Part 3: If the instance of Problem 2 is true, then the instance of Problem 1 is true. That is, if there is a stable matrix in the interval family, A, then there exists a solution, {t i } i=1;:::;l, that satises Eq. 1. Let A contain a stable matrix and let x; ỹ [ 1; 1] l be the two vector parameters of that stable matrix, so that A x; ỹ, as given by 5, has all of its eigenvalues inside the unit circle. Consider the parameterized family of matrices: B= Il l + aa T ỹ x T 1 ; where [; 1]. The behavior of the eigenvalues of B is studied as varies. When =, B = Il l + aa T T 1 : Since, the matrix I l l + aa T is negative denite, so all of its eigenvalues are in the left-half plane. Also, since = 5 4, the last term on the diagonal, which also indicates the last, simple eigenvalue, is in the right-half plane. When =1, Il l + aa T ỹ B1 = x T 1 = I l+1 l+1 + A : But, all eigenvalues of A are strictly inside the unit circle, because of its stability. So, I + A has all of its eigenvalues in the left-half plane.

264 A. Mercado, K.J.R. Liu / Systems & Control Letters 42 21 261 265 Now, the eigenvalues of B are symmetric with respect to the real axis, and they are continuous with respect to. So, when varies from to 1, we move from a conguration of a simple eigenvalue alone on the right-half plane to all eigenvalues on the left-half plane. This means that for some ; 1, B has a zero eigenvalue. Lemma 3 states that this zero eigenvalue implies that 2 x I T a T a +1 aat z = 1; where z = ỹ. Now, since ; 1, then x T a T a +1 aat z 1 2 : 8 The matrix =a T a + 1aa T is symmetric and positive denite, which maes the left side of the inequality a convex function with respect to x and z. Therefore, the maximum expression of the left-hand side over all possible vectors, x; z [ 1; 1] l is reached when x = z. The maximum of a convex function over a bounded polyhedron is attained at an extremum, therefore, the maximum is attained when the elements of x are at the boundaries of the unit interval: max x T x;z [ 1;1] l = max x T x [ 1;1] l = max x T x { 1;1} l a T a +1 aat z a T a +1 aat a T a +1 aat x x =l a T min x T a 2 : 9 a +1 x { 1;1} l Combining 8 and 9 results in l a T min x T a 2 1 a +1x { 1;1} l 2 l 1 a T a +1 2 min x T a 2 : x { 1;1} l With the constraint on, the left side of the inequality is less than 1, but the right side is a non-negative integer. Thus min x T a 2 =: x { 1;1} l Assume that the maximum of 9 is obtained for x T =x 1 ;:::;x l ; a set {t i } i=1;:::;l, that satises 1, is obtained by setting t i = x i for i =1;:::;l. 3. Corollaries that stem from SMIUIF Automatic power control is becoming increasingly prevalent in wireless systems. In such a system, the successful attainment of an optimal set of transmission powers depends on the spectral radius of the system gain matrix, which depends on pathgains, SINR levels, and antenna array weights. The system designer wishes to provide the highest allowable SINR level to each user. The constraint is the spectral radius of the system gain matrix, which should have a norm less than 1. This problem leads to the question of modifying the SINR constraints for users in order to comply with this requirement, which equates to perturbing the original matrix by adding a linear combination of ran-one matrices to it [6]: Let ; l be positive integers, A a real, l +1 l + 1 matrix with rational entries, and {A i } i=1;:::; real, l+1 l+1 matrices with rational entries and ran 1. Does there exist a set of scalars, {t i } i=1;:::;, from the unit interval such that the sum A = A + t i A i 1 i=1 has all eigenvalues inside the unit circle? Recall we denoted this problem as Power-P. With the result of Theorem 1, we can use the same arguments as in [1] to show that problem SMIUIF can be reduced to Power-P, for the discrete-time case. Therefore, Power-P is NP-hard. Theorem 1 can also be used to prove the discrete-time version of other NP-hard problems such as Stable Matrix in Interval Family. This problem consists of two sets of rational numbers {a i;j} 16i;j6n and {a i;j } 16i;j6n, and the question is: Does there exist a stable matrix Ai; j =a i;j with {a i;j} 16i;j6n 6a i;j 6{a i;j } 16i;j6n? [1]. 4. Discussion In this paper, we have shown that the stable matrix in unit interval family problem is NP-hard for discrete-time stability. We have also discussed how this problem is closely related to some problems in wireless communications, such as automatic power control. We have also noted that SMIUIF can be used to prove NP-hardness for another problem, Stable Matrix in Interval Family.

A. Mercado, K.J.R. Liu / Systems & Control Letters 42 21 261 265 265 References [1] V. Blondel, J. Tsitsilis, NP-hardness of some linear control design problems, SIAM J. Control Optim. 35 6 1997 2118 2127. [2] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New Yor, 1979. [3] D. Hristu, Stabilization of LTI systems with communications constraints, Proceedings of the American Control Conference, June 2, pp. 2342 2346. [4] D. Hristu, K. Morgansen, Limited communication control, Systems Control Lett. 37 4 July 1999 193 25. [5] K. Mehlhorn, Graph Algorithms and NP-Completeness, Springer, Berlin, 1984. [6] A. Mercado, K.J.R. Liu, Adaptive QoS for mobile multimedia applications using power control and smart antennas, Proceedings of the IEEE International Conference on Communications 2, New Orleans, June 2. [7] A. Nemerovsii, Several NP-hard problems arising in robust stability analysis, Math. Control Signals Systems 6 2 1993 99 15. [8] F. Rashid-Farrohi, L. Tassiulas, K.J.R. Liu, Joint optimal power control and beamforming in wireless networs using antenna arrays, IEEE Trans. Commun. 46 1 1998 1313 1323. [9] W. Rugh, Linear System Theory, Prentice-Hall, Englewood Clis, NJ, 1996. [1] G. Stewart, J. Sun, Matrix Perturbation Theory, Academic Press, London, 199.