Properties of many-body localized phase

Similar documents
Ashvin Vishwanath UC Berkeley

Many-body localization characterized by entanglement and occupations of natural orbitals

Many-Body Localization. Geoffrey Ji

(De)-localization in mean-field quantum glasses

Many-Body Localized Phases and Phase Transitions

Real-Space RG for dynamics of random spin chains and many-body localization

Entanglement spectrum as a tool for onedimensional

MBL THROUGH MPS. Bryan Clark and David Pekker. arxiv: Perimeter - Urbana. Friday, October 31, 14

Ehud Altman. Weizmann Institute and Visiting Miller Prof. UC Berkeley

Aditi Mitra New York University

Coherent backscattering in Fock space. ultracold bosonic atoms

Interferometric probes of quantum many-body systems of ultracold atoms

arxiv: v4 [cond-mat.stat-mech] 25 Jun 2015

General quantum quenches in the transverse field Ising chain

Efficient time evolution of one-dimensional quantum systems

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

A criterion for many-body localization-delocalization phase transition

Many-body localization characterized from a one-particle perspective

Many-body open quantum systems: transport and localization

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

Out of Equilibrium Analogues of Symmetry Protected Topological Phases of Matter

Entanglement spectra in the NRG

Newton s Method and Localization

arxiv: v2 [cond-mat.str-el] 30 Dec 2016

Quantum quenches in 2D with chain array matrix product states

Quasi-Many-Body Localization in Translation-Invariant Systems

Dephasing, relaxation and thermalization in one-dimensional quantum systems

3 Symmetry Protected Topological Phase

Lecture 3: Tensor Product Ansatz

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Thermalization in Quantum Systems

Matrix product states for the fractional quantum Hall effect

!!! # % & ( &) ( +,., /,,!, 0 & 0( !, 0 0 0

Topological Phases in Floquet Systems

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases

Quantum correlations and entanglement in far-from-equilibrium spin systems

NON-EQUILIBRIUM DYNAMICS IN

Aditi Mitra New York University

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

From unitary dynamics to statistical mechanics in isolated quantum systems

Quantum many-body systems and tensor networks: simulation methods and applications

Dynamical thermalization in isolated quantum dots and black holes

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto.

arxiv: v3 [cond-mat.dis-nn] 31 Aug 2017

Impurities and disorder in systems of ultracold atoms

Goldstone mode stochastization in a quantum Hall ferromagnet

Topological Phases of Matter Out of Equilibrium

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

MPS formulation of quasi-particle wave functions

arxiv: v2 [cond-mat.dis-nn] 25 Nov 2018

Entanglement spectrum of the 2D Bose-Hubbard model

Universal Post-quench Dynamics at a Quantum Critical Point

Entanglement spectrum and Matrix Product States

Storage of Quantum Information in Topological Systems with Majorana Fermions

Matrix product approximations to multipoint functions in two-dimensional conformal field theory

Quantum spin systems - models and computational methods

Typical quantum states at finite temperature

Local currents in a two-dimensional topological insulator

Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini

4 Matrix product states

Entanglement Entropy in Extended Quantum Systems

The Quantum Hall Effects

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Ground State Projector QMC in the valence-bond basis

Quantum Mechanics C (130C) Winter 2014 Assignment 7

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

The density matrix renormalization group and tensor network methods

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

Topological Defects inside a Topological Band Insulator

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Dimerized & frustrated spin chains. Application to copper-germanate

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Spinons in Spatially Anisotropic Frustrated Antiferromagnets

Introductory lecture on topological insulators. Reza Asgari

Quantum Convolutional Neural Networks

Time Evolving Block Decimation Algorithm

Matrix Product States

Persistent spin current in a spin ring

quasi-particle pictures from continuous unitary transformations

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Wiring Topological Phases

Quantum phase transitions and entanglement in (quasi)1d spin and electron models

Exploring Topological Phases With Quantum Walks

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Spinon magnetic resonance. Oleg Starykh, University of Utah

The Postulates of Quantum Mechanics

disordered topological matter time line

Time-dependent DMRG:

arxiv:quant-ph/ v2 24 Dec 2003

Thermalization and Revivals after a Quantum Quench in a Finite System

Electronic Squeezing by Optically Pumped Phonons: Transient Superconductivity in K 3 C 60. With: Eli Wilner Dante Kennes Andrew Millis

Topological insulator (TI)

Quantum Transport in Disordered Topological Insulators

What is thermal equilibrium and how do we get there?

arxiv: v1 [hep-th] 26 Sep 2017

The glass transition as a spin glass problem

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Transcription:

Properties of many-body localized phase Maksym Serbyn UC Berkeley IST Austria QMATH13 Atlanta, 2016

Motivation: MBL as a new universality class Classical systems: Ergodic ergodicity from chaos Quantum systems: Thermalizing ETH mechanism Integrable stable to weak perturbations [Kolmogorov-Arnold-Moser theorem] Many-body localized emergent integrability stable to weak perturbations <O> E

Thermalizing systems: ETH Thermalization: e -iht time subsystem in thermal state Mechanism: Eigenstate Thermalization Hypothesis: property of eigenstates λ>= [Deutsch 91] [Srednicki 94] [Rigol,Dunjko,Olshanii 08] thermal density matrix ρ λ =e -H/T Works in many cases Many open questions: timescale, other mechanisms?..

Many-body localized phase MBL = localized phase with interactions Ei t V Perturbative arguments for existence of MBL phase: Numerical evidence for MBL: [Basko,Aleiner,Altshuler 05][Gornyi,Polyakov,Mirlin 05] [Oganesyan,Huse 08] [Pal,Huse 10] [Znidaric,Prosen 08] [Monthus, Garel 10][Bardarson,Pollman,Moore 12] [MS, Papic, Abanin 13, 14] [Kjall et al 14] Non-thermalizing MBL phase exists! Properties of MBL phase? Why thermalization breaks down?

Universal Hamiltonian of MBL phase If model is in MBL phase, rotate basis X H = ~S i ~S i+1 + h i Si z i hi J Jz New spins: τ i = U Si U are quasi-local; form complete set τi z τj z H ij / exp( i j / ) S j S i Consequences: no transport, ETH breakdown, universal dynamics [MS, Papic, Abanin, PRL 13] [Huse, Oganesyan, PRB 14] [Imbrie, arxiv:1403.7837]

Properties of MBL phase Transport: Diffusion Entanglement light cone?? Matrix elements: Eigenstate properties: Thermalizing phase MBL phase disorder W

Dynamics in MBL phase H ij / Je i j / Dephasing dynamics time ( + )( + )( + )( + )( + ) Phases randomize on distance x(t): th ij = tj exp( x/ ) 1 x(t) = log(jt) Explains logarithmic growth of entanglement [MS, Dynamics of local observables? ( + )( + )( + )( + )( + ) Papic, Abanin, PRL 13] distance

Local observables in a quench e -iht measure <S x >or <S z > <τz (t)>= const <τx (t)>= "# (t) Decay of oscillations of <τx (t)>: x(t) / ln(t) = [sum of N(t) = 2 x(t) oscillating terms] h x k (t)i / 1 p N(t) = 1 (tj) a hô(t)i memory of initial state ho(1)i 1 t a [MS, Papic, Abanin, PRB 14] S x S z t W=5

Properties of MBL phase Transport: Diffusion Entanglement lightcone No transport Log-growth of entanglement Matrix elements ETH ansatz, typicality?? Thermalizing phase MBL phase disorder W

Structure of many-body wave function Single-particle localization: ψ(x) Many-body wave function: ψ>= Alternative: wave function created by V P Problems: basis-dependent, not related to observables =",# 1 2... 1 2...i V V nm H ni = E n ni n (m) =hm V ni

Matrix elements of local operators local perturbation V ETH ansatz R Local integrals of motion hi S z ji = e S(E,R)/2 f(e i,e j )R ij [Srednicki 99] narrow distribution: hi S z ji 1/ p 2 R S z = X { } ˆ { } ˆB { } [ z ] hi S z ji broad distribution: hi S z ji exp( apple 0 R) Thermalizing phase MBL phase disorder W

Fractal analysis of matrix elements Fractal dimensions from scaling of q q = q 1 Ergodic phase MBL phase q>qc =0 P q = X m h V nm 2q i/ 1 D q q Frozen fractal spectrum in MBL: hln V nm i/ applel

Energy structure of matrix elements Spectral function f 2 (!) =e S(E) h V nm 2 (! (E m E n ))i Related to dynamics: h V (t)v (0) i c Z 1 1 d! e i!t f 2 (!) Thermalizing phase: ln f 2 (!) E Th 1! E Th / ln! h V (t)v (0) i c / 1 1 L 1/(1 ) more details: [arxiv:1610.02389] t 1

Numerical results for spectral function: ) f 2 (!) f 2 (!) )!/!/ MBL phase: Thouless energy < level spacing Breakdown of typicality: loghv nm i6= hlog V nm i Thermalizing phase MBL phase disorder W

Properties of MBL phase Transport: Diffusion Entanglement lightcone Matrix elements: Eigenstate properties: ETH ansatz, typicality volume-law entanglement flat entanglement spectrum Thermalizing phase No transport Log-growth of entanglement broad distribution strong fractality?? MBL phase disorder W

Beyond entanglement Gapped ground states: area-law Sent(L) ~ const in 1d Excited eigenstates: volume-law Sent(L) ~ L in 1d MBL: area-law entanglement Q: Difference with gapped ground states? E Ground state Entanglement spectrum {λ i} Flat in ergodic states: ln k S ent = P i i log i [Marchenko&Pastur'67] [Yang,Chamon,Hamma&Muciolo 15]

Entanglement spectrum: probes boundary Quantum Hall wave function: ky to organize ES [Li & Haldane] ky kx MBL phase: conserved quantities label ES """"i = c 0 " ""i ""i + + e 4apple e apple " "#i ""i r=1 ##i ##i r=4 + e 2apple " "#i #"i + r=2 +.. Coefficients decay as C "..."##"""# {z } r "..." / e appler

Power-law entanglement spectrum Hierarchical structure of h (r) (r) i/e 2appler L = P L r=0 (r) ih (r) but non-orthogonal Orthogonalize perturbatively (r) / e 4appler multiplicity is 2 r (0) (1) (1) (2) (2) (2) (2) Power-law entanglement spectrum k / 1 k 4apple ln 2

Numerics for XXZ spin chain Numerical studies for XXZ spin chain, J =J z =1 H = X i (h i S z i + J?S + i S i+1 + h.c.) + X i J z S z i S z i+1 Power law entanglement spectrum: disorder W = 5 k / k 1 more details in: [arxiv:1605.05737]

Estimates for the bond dimension Large γ MPS error / 1/ 1 can be small Implementation of DMRG for highly excited states: disorder W = 5 more details: [arxiv:1605.05737] also: [Yu et al arxiv:1509.01244] [Lim&Sheng arxiv:1510.08145] [Pollmann et al arxiv:1509.00483] [Kennes&Karrasch arxiv:1511.02205]

Properties of MBL phase Transport: Diffusion Entanglement lightcone Matrix elements: Eigenstate properties: ETH ansatz, typicality volume-law entanglement flat entanglement spectrum Thermalizing phase No transport Log-growth of entanglement broad distribution strong fractality area-law entanglement power-law entanglement spectrum MBL phase?? disorder W

Summary and outlook MBL: new universality class of non-thermalizing systems Properties: dynamics, matrix elements, entanglement hô(t)i Questions: MBL in d>1, symmetries, MPS/MPO description breakdown of MBL, mobility edge ho(1)i 1 t a hi S z ji exp( apple 0 R) PRL 110, 260601 (2013) PRL 111, 127201 (2013) PRL 113, 147204 (2014) PRB 90, 174302 (2014) PRX 5, 041047 (2015) PRB 93, 041424 (2016) arxiv:1605.05737 arxiv:1610.02389

Acknowledgments Alexios Michailidis Nottingham Zlatko Papic Leeds Dima Abanin Univ. of Geneva Joel Moore UC Berkeley

Summary and outlook MBL: new universality class of non-thermalizing systems Properties: dynamics, matrix elements, entanglement hô(t)i Questions: MBL in d>1, symmetries, MPS/MPO description breakdown of MBL, mobility edge ho(1)i 1 t a hi S z ji exp( apple 0 R) PRL 110, 260601 (2013) PRL 111, 127201 (2013) PRL 113, 147204 (2014) PRB 90, 174302 (2014) PRX 5, 041047 (2015) PRB 93, 041424 (2016) arxiv:1605.05737 arxiv:1610.02389