Spin orbit interaction in semiconductors

Similar documents
Spin orbit interaction in semiconductors

Spin-Orbit Interactions in Semiconductor Nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Non-Abelian Berry phase and topological spin-currents

POEM: Physics of Emergent Materials

Minimal Update of Solid State Physics

Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry

Quantum Condensed Matter Physics Lecture 4

Topological Insulators

Electrons in a periodic potential

Plane wave solutions of the Dirac equation

Group. Benzene D 6h z B B. E ( x y, xy) ( x, y) A B B C 2

Topological Physics in Band Insulators II

Lecture notes on topological insulators

PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 8: Solutions. Topics covered: hydrogen fine structure

Electron spins in nonmagnetic semiconductors

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2

Tight-Binding Approximation. Faculty of Physics UW

Lecture 2. Unit Cells and Miller Indexes. Reading: (Cont d) Anderson 2 1.8,

Physics of Semiconductors (Problems for report)

Dirac semimetal in three dimensions

Basic cell design. Si cell

Calculating Band Structure

Three Most Important Topics (MIT) Today

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Supporting Online Material for

Luttinger Liquid at the Edge of a Graphene Vacuum

Lok С. Lew Yan Voon Morten Willatzen. The k-p Method. Electronic Properties of Semiconductors. Springer

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Lecture notes on topological insulators

Spin orbit interaction in graphene monolayers & carbon nanotubes

The Quantum Spin Hall Effect

Berry s phase in Hall Effects and Topological Insulators

Electrons in Crystals. Chris J. Pickard

Physics 211B : Problem Set #0

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling

Semiconductor Physics and Devices Chapter 3.

Modelowanie Nanostruktur

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

G : Quantum Mechanics II

Topological Phases in One Dimension

PROJECT C: ELECTRONIC BAND STRUCTURE IN A MODEL SEMICONDUCTOR

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM. M.N.A. Halif & S.N. Sabki

Lecture 4: Basic elements of band theory

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

Two-dimensional electron gases in heterostructures

1.1 Atoms. 1.1 Atoms

Kronig-Penney model. 2m dx. Solutions can be found in region I and region II Match boundary conditions

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC

Topological Photonics with Heavy-Photon Bands

arxiv:cond-mat/ v1 5 Jul 1994

2.3 Band structure and lattice symmetries: example of diamond

Lecture 6 - Bonding in Crystals

Optical Properties of Solid from DFT

EPL213 Problem sheet 1

Theoretical Concepts of Spin-Orbit Splitting

Little Orthogonality Theorem (LOT)

Spin Filtering: how to write and read quantum information on mobile qubits

Energy bands in solids. Some pictures are taken from Ashcroft and Mermin from Kittel from Mizutani and from several sources on the web.

Calculation on the Band Structure of GaAs using k p -theory FFF042

Topological Kondo Insulators!

3: Many electrons. Orbital symmetries. l =2 1. m l

ELECTRONS AND HOLES Lecture 21

Electronic Structure of Crystalline Solids

POEM: Physics of Emergent Materials

Semiconductor Physics

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

ELEMENTARY BAND THEORY

Band Structure Calculations; Electronic and Optical Properties

1.4 Crystal structure

Modern Theory of Solids

Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium

ELEC311( 물리전자, Physical Electronics) Course Outlines:

6. Auxiliary field continuous time quantum Monte Carlo

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

MAGNETO-OPTICAL PROPERTIES OF NARROW-GAP SEMICONDUCTOR HETEROSTRUCTURES


Topological Physics in Band Insulators IV

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

1 Time reversal. 1.1 Without spin. Time-dependent Schrödinger equation: 2m + V (r) ψ (r, t) (7) Local time-reversal transformation, T :

Introduction to topological insulators. Jennifer Cano

From graphene to graphite: Electronic structure around the K point

Spin-orbit coupling: Dirac equation

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS

We have arrived to the question: how do molecular bonds determine the band gap? We have discussed that the silicon atom has four outer electrons.

ĝ r = {R v} r = R r + v.

Spin-polarization in quantum wires: Influence of Dresselhaus spin-orbit interaction and crosssection

Pressure and Temperature Dependence of Threshold Current in Semiconductor Lasers Based on InGaAs/GaAs Quantum-Well Systems

Density of states for electrons and holes. Distribution function. Conduction and valence bands

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Supplementary Materials for

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

6.730 Real Semiconductor Project GaAs. Part 3. Janice Lee Juan Montoya Bhuwan Singh Corina Tanasa

Project Report: Band Structure of GaAs using k.p-theory

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

Transcription:

UNIVERSIDADE DE SÃO AULO Instituto de Física de São Carlos Spin orbit interaction in semiconductors J. Carlos Egues Instituto de Física de São Carlos Universidade de São aulo egues@ifsc.usp.br International School of hysics Enrico Fermi: Quantum Spintronics and Related henomena Varenna, June 9

Lectures,3 From Dirac to Bloch electrons (folding down) Where it all comes from: the.p approach Kane model: bul and heterostructures Effective models: from 3D to D (& D) - single-band Rashba model - two-band model: interband coupling - Band inversion and edge states ( TI ) - Zitterbewegung, SHE, Carlos Egues, Varenna

Carlos Egues, Varenna Important point from last lecture: Single vs two-subband Rashba model One Dirac cone Two Dirac cones

Carlos Egues, Varenna Usual Rashba model Exact solution: H H p p p p m s x y x y y x R ( sr ) s( ) s R, s m m -dependent spinor! ir e ( ) y, e i i ( ) A se i x R m R m (, ) s x y

[] Carlos Egues, Varenna Spin expectation values: i ( ) x e cos ( ) i ( ) e y sin ( ) z x Spins on the xy plane! y y x (, x y ) F F araboloids F x y [] x (, ) s x y

Carlos Egues, Varenna Two-subband Rashba model H i i i i i i i i Not a quantum wire! H px py orb spin z spin m c p p p p p p orb x y y x z x y y x x x y y x

Carlos Egues, Varenna Two-subband Rashba model H i i i i i i i i,, x y orb spin z spin m c H p p p p p p p p orb x y y x z x y y x x x y y x Not a quantum wire!

Carlos Egues, Varenna Ref. [] Eigenvectors, Eigenvalues

Carlos Egues, Varenna Ref. [] Crossings Dirac cones Eigenvectors, Eigenvalues

Carlos Egues, Varenna Ref. [] Anticrossings Dirac cones Eigenvectors, Eigenvalues

Folding down Carlos Egues, Varenna

Carlos Egues, Varenna Folding down ) Eigenvalue problem: H ) Split the Hamiltonian into blocs: ( & Q subspaces) H H Q H HQQ H H H H Q Q Q Q Q Q Q Q (I) (II) (II): H ( ) ( ) Q I HQ Q Q I HQ HQ (III) (I): H H ( I H ) H Effective Hamiltonian Q Q Q H, H H H I H H Q Q Q (not a Schroedinger Equation) Motion in : particle in an effective potential due to coupling to Q Veff

Carlos Egues, Varenna Renormalization of H, H H H I H H Q Q Q Note that subspaces and Q are not completely decoupled because but hence d r 3 3 Q Q ( I H ) H Q Q Q d r 3 H Q( I H Q) ( I H Q) H d r Q 3 I HQ( I HQ) ( I HQ) H Q d r

Carlos Egues, Varenna Renormalization of 3 I HQ( HQ) ( HQ) H Q d r ( ) ( ) 3 I ( ) ( ) d r I ) ( I ( ) ( ) ( ) 3 dr 3 dr ( ) renormalization ( ) I ( ) ( ) ( )

Carlos Egues, Varenna Full decoupling ( ) Substituting into : H H ( ) ( ) ( ) H ( ) ( ) ( ) H ( ) [ I ( )] Summarizing: H H Q HQ H Q Q Q H ( ) ( ) [ ( )] H I Q H H H H H Q Q independent of energy to nd order H ( ) I ( ) ( ) ( ( H ) H ) Q Q

An example: auli from Dirac Carlos Egues, Varenna

Carlos Egues, Varenna Dirac equation Dirac equation (spin /) + arbitrary potential (coulomb, crystal pot.) c p m c V() r The 4x4 Dirac matrices obey A particular ( standard ) representation: i j j i I ij, i i I i, i I i i Identity matrix i x, y, z, I i Hence mc I V ( r) I c p c p mc I V ( r) I Q Q

Carlos Egues, Varenna From Dirac to auli mc I V ( r) I c p c p mc I V ( r) I Q Q ( 4 Free particle (i.e., V = ) eigenenergies: c p m c ) mc Let us redefine the origin of energy: (now ) V ( r) cpz c( px ipy ) V ( r) c( px ipy ) cpz cpz c( px ipy ) mc I V ( ) r Q Q c( p ip ) cp m c I V ( r) x y z Q Q mc

Carlos Egues, Varenna From Dirac to auli mc I V ( r) I c p c p mc I V ( r) I Q Q ( 4 Free particle (i.e., V = ) eigenenergies: c p m c ) mc Let us redefine the origin of energy: (now ) V ( r) I c p c p mc I V ( r) I Q Q H H Q H V ( r) HQ c p HQ HQ H Q Q Q H m c I V ( r) I Q mc

Carlos Egues, Varenna From Dirac to auli (cont.) Folding down recipe: H H Q HQ H Q Q Q H independent ( ) ( of energy HQ) to H nd order Q H H I ( ) ( ) [ ( )] Q H H H H H Q Q ( ) I ( ) ( ) ( ( H ) H ) Q Q H I V( r ) I c p c m c V( r) p I ( ) I c p c [ m c V( )] p r ( ) I c ( ) I c p 8mc 4 p 4mc 4

Carlos Egues, Varenna From Dirac to auli (cont.) p I p p H I c V ( r) I c p c p I c c 4 4 4 8m c mc V ( r) 8m c 8m c After some manipulations (exercise/notes), we find the auli equation H 4 p V( ) V m r p 4mc 4m c p 8mc usual K + V mass correction Spin orbit int. Darwin term ( energy independent!) H V Interestingly, Taylor expanding the classical relativistic electron energy 4 mc m c m c cp m c m 4 c p c p p p c 4 h.o.t 4 mc 3 mc 8 mc m 8 mc

Carlos Egues, Varenna Effective Hamiltonians Spin orbit interactions via the Kane model (Kane 57)

Carlos Egues, Varenna Bloch electrons Solids ( crystal ): crystalline lattice ( ions ) + electrons R naxˆ Equivalent form: n=3 n= n= For each a periodic potential: a H pu ( r) u ( r), m m ( pˆ i) Find solutions in the unit cell! ( u ( r ) is periodic in R ) n ( r), n, u (non-interacting) V( r) V( r R) ˆ p H V ( r) m Bloch s theorem H i R ( r R) e ( r) i r ( r) e u ( r), u( r) u( R r) there are several solutions n=3 n= n= n: band index (Bloch function) (periodic part of the Bloch function) eriodicity Bloch s theorem Energy bands (continuum) ( r) e n, n, ir u n, ( r) Non parabolic in general

Carlos Egues, Varenna.p approach: bul Single-particle Schrödinger s equation: no spin-orbit case Inserting ( r ) e u ( r) ir n, n, (Bloch s theorem) in the above: H pu ( r ) u ( r ), n n u n m m H H H ( ) Hu V r m u ( r ) a ( ) ( ) n l u r l n ( r) u ( R r) n u n n n ( pˆ i) (Assumed nown!) ) Expand: ( mixing of bands, complete set, finite in practice) l u ( r ) u ( ) m m r ( bra-et notation) ) Multiply Schrödinger s equation from the left by and integrate: l H, pˆ H V( r ), V( r ) V( R r ) m bare electron mass : crystalline periodic potential ( ) u ( ), m H ul um pul al u n m ul al m m l l l lm um p ul al ( ) l m m Matrix equation: (still exact!) Energy bands wavefunctions

Carlos Egues, Varenna Matrix equation ( H V), H l l l (Assumed nown) c, c l l l l l l l l ( H V ) cl l cl l l l m c ( ) cv l l l m l l l l ( l ) ml Vml cl, Vml m V l l V V N c V c V3 V N V c N VN N N Ac Solutions: det A 3 3 N c, c, c,, c,,,, N

Carlos Egues, Varenna The correct starting point Crystalline periodic potential H p V( r) p 4 m 4mc 4m c 8 V p m c V H p V( ) V m r 4mc p p V( r) V p Still periodic! m 4m c

Carlos Egues, Varenna Spin orbit Add the term H so 4m c V p 4m c V p V dv r 4m c r p (Dirac) to the Hamiltonian: dv L s L s r dr Matrix equation (still exact!) (e.g. central potential:, usual coupling) dr r mc Straightforwardly l l lm um p u l al ( ) l m V m 4mc Bare inetic energy: wrong curvature (i.e., mass ) for valence bands. Note that now Hu, n nu n contains s-o effects -dependent spin-orbit terms: neglected in the 8x8 Kane model (zero for the conduction band ) [no cubic Dresselhaus or cubic Rashba; (Krich & Halperin RL/7)]. H H V ( r ) Vp m 4mc Spin-orbit interaction only here!

Carlos Egues, Varenna Truncating the = set 8x8 Kane model : u, u, u3, u4, u5, u6, u7, u8 u p u u p u u p u 3 8 m m m m a( ) u p u u p u u p u a ( ) 3 8 m m m m a3( ) u p u u p u u p u a ( ) a5( ) a6( ) a7( ) a8( ) u8 p u u8 p u u8 p u3 8 8 m m m m 3 3 3 3 3 8 m m m m 4, a ( ) n, n ( r ) e u ( r ) ( ) ( ) ( ) ir u r a n l u r l n, n, l

Carlos Egues, Varenna ictorically u u, n, s states Conduction band Hu u n n n E g hh u u u u 3, 4, 5, 6 3 4 5 6 p x,p y,p z lh u u 7, 8 7 8 split-off Valence bands, a ( ) n, n ( r ) e u ( r ) ( ) ( ) ( ) ir u r a n l u r l n, n, l

Carlos Egues, Varenna Tight binding view: choosing u n Atoms Solids n=3 n= n= n=3 n= n= Narrow bands higher DOS F ( ) density of states (DOS) a gaps periodic potential: V( r) V( r R) energy bands

Carlos Egues, Varenna Diamond structure Unit cell : C, Si, & Ge

Carlos Egues, Varenna Diamond structure Unit cell : C, Si, & Ge Tetrahedral bonding

Carlos Egues, Varenna Zincblend structure Unit cell cation sub lattice (FCC) Anion sub lattice (FCC) (also tetrahedral bonding) Mn: Zn: Se: e.g.: ZnSe, GaAs (II-VI, III-V) e.g.: Zn x Mn -x Se

rimitive Cell (Wigner Seitz) Carlos Egues, Varenna

Carlos Egues, Varenna Truncated basis set: 8 = functions E g Band structure ( point) s states p x,p y,p z J=L+s : Known solutions : spin orbit coupling 3i 4m c X V x p hh lh split-off y V y p x Y u ( r ) is( r) S u ( r ) is( r) S u 3( r ) X i Y u 4( r ) X i Y Z 6 3 u 5( r ) X i Y Z 6 3 u 6( r ) X i Y u 7( r ) X i Y Z 3 3 u 8( r ) X i Y Z 3 3 X Y Z xf ( r) yf ( r) zf ( r) p x p y p z

8x8 Kane model (bul) S S 3/, 3 / 3/, / 3/,- / 3/, 3/ /, / /,- / A z z i m z 3 6 3 Eg Eg z 3 3 z 3 3 z (Kane parameter) ˆ x X S p 3 6 3 3 z z 6 3 3 3 Eg Eg Eg Eg Use of crystal symmetry! x i y / m Bands: det(a)= Carlos Egues, Varenna

Carlos Egues, Varenna Exact diagonalization (bul) S S /, / /,- / 3/, 3 / 3/, / 3/,- / 3/, 3/ z z 3 3 3 6 z z 3 3 6 3 z Eg 3 3 z Eg 3 3 A Eg z Eg 3 z Eg 6 3 Eg Note that C and D commute!

Carlos Egues, Varenna A useful theorem A B M C D If the matrices C and D commute (CD = DC), then det( M ) det( AD BC ) Silvester, Math Gazette, 46-467 ()

Carlos Egues, Varenna Bul effective masses det( M ) det( AD BC ) Doubly degenerate ( hh ) characteristic polynomial: six bands remaining bands: e, lh, split-off 3 E g Eg Eg For small we find (Kane): c( c 3 E g g ( ) E m hh g hh m m 3 3( Eg) ) ( ), m E m m m 3 E E! lh m 3 Eg mlh mlh m 3 Eg 4 c c g g Wrong sign for the hh mass! (8x8 Kane model) ( ) ( ) 4 lh, 4 so( ) ( ), m 3 so E g mso mso m 3 Eg Evan O. Kane, hys. Chem. Solids,, 49 (957) E g

Actual numerical solution Carlos Egues, Varenna

Energy (ev) I. Vurgaftman et al., AR 89, () Evan O. Kane, hys. Chem. Solids,, 49 (957) InSb m e /m m hh /m m lh /m m so /m Exp..35 -.63 -.5 -. Kane model.34. -.3 -.555 Bul energy bands: 8x8 Kane model E g =.35 ev =.8 ev (/nm) Carlos Egues, Varenna

Energy (ev) I. Vurgaftman et al., AR 89, () Evan O. Kane, hys. Chem. Solids,, 49 (957) GaAs Bul energy bands: 8x8 Kane model m e /m m hh /m m lh /m m so /m Exp..67 -.3496 -.9 -.79 Kane model.53. -.88 -.43 E g =.59 ev =.34 ev (/nm) Carlos Egues, Varenna

Energy (ev) Evan O. Kane, hys. Chem. Solids,, 49 (957) E. G. Novi et al., RB 7, 53 (5) CdTe Bul energy bands: 8x8 Kane model Exp. ~.96 m e /m m hh /m m lh /m m so /m Kane model.88. -.3446 -.678 E g =.66 ev =.9 ev (/nm) Carlos Egues, Varenna

Energy (ev) E. G. Novi et al., RB 7, 53 (5) Evan O. Kane, hys. Chem. Solids,, 49 (957) Note band inversion! Bul energy bands: 8x8 Kane model HgTe m e /m m hh /m m lh /m m so /m Exp. -- -- Kane model.46. -.3 -.45 =.8 ev E g = -.33 ev * m lh m 3 E g * me m 3 Eg E g (/nm) Carlos Egues, Varenna

Energy (ev) Carlos Egues, Varenna Band inversion & edge states: TI CdTe HgTe CdTe Metallic surface (or edge if D) Gap closes at interface HgTe Gapless edge/surf. states: localized at interface robust (TR protected, if single Kramers pair) (/nm) Crucial ingredient: Spin orbit interaction (.p) anratov et al. 85 (/nm)

Carlos Egues, Varenna Summary Lec Folding down: From Dirac to auli (s-o from the Dirac eq.) Bloch electrons & spin orbit (periodic pot.) Where it all comes from: the.p approach Kane model for bul & examples Inverted band structures & edge states (anratov et al. 85)