pre Proposal in response to the 2010 call for a medium-size mission opportunity in ESA s science programme for a launch in 2022.

Similar documents
1 Structure of the coronal magnetic field

The Solar Chromosphere

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars

Modern observational techniques for coronal studies

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University

New insights from. observation. Hinode-VTT He Andreas Lagg (MPS) Saku Tsuneta (NAOJ) Ryohko Ishikawa (NAOJ/Univ. Tokyo)

UV spectro-polarimetry with CLASP & CLASP2 sounding rocket experiments

y [Mm] y [arcsec] brightness temperature at λ = 1.0 mm [103 K] x [arcsec]

Introduction to Daytime Astronomical Polarimetry

Solar UV Spectroscopy and Coronagraphy

Vector Magnetic Field Diagnostics using Hanle Effect

2 The solar atmosphere

What do we see on the face of the Sun? Lecture 3: The solar atmosphere

Solar Astrophysics with ALMA. Sujin Kim KASI/EA-ARC

The Solar Chromosphere

Advances in measuring the chromospheric magnetic field using the He triplet

The Sun s Dynamic Atmosphere

Measuring the Magnetic Vector with the Hei Å Line: A Rich New World

Coronal Magnetometry Jean Arnaud, Marianne Faurobert, Gérad Grec et Jean-Claude Vial. Jean Arnaud Marianne Faurobert Gérard Grec et Jean-Claude Vial

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Results from Chromospheric Magnetic Field Measurements

Visible Spectro-Polarimeter (ViSP) Instrument Science Requirement

Supporting Calculations for NASA s IRIS Mission. I. Overview

Intensity Oscillations and coronal heating: ADITYA-1 Mission. Jagdev Singh, Indian Institute of Astrophysics, Bengaluru

9/13/18. ASTR 1040: Stars & Galaxies. Topics for Today and Tues. Nonvisible Light X-ray, UV, IR, Radio. SPITZER Infrared Telescope

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson

Photospheric and chromospheric polarimetry of solar flares

Post CME events: cool jets and current sheet evolution

Why Go To Space? Leon Golub, SAO BACC, 27 March 2006

ILWS Italian SpaceAgency (ASI) Contribution

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!!

Exploring the Solar Wind with Ultraviolet Light

Zeeman Paschen-Back effects

The Interior Structure of the Sun

Solar Orbiter. T.Appourchaux, L.Gizon and the SO / PHI team derived from M.Velli's and P.Kletzkine's presentations

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned.

ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission

Advances in Solar Coronagraphy. The First Coronagraph

Next Generation UV Coronagraph Instrumentation for Solar Cycle-24

Magnetic Fields in the Atmospheres of the Sun and Stars

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller

Results from Chromospheric Magnetic Field Measurements

An eclipse experiment to study the solar chromosphere and spicules

On 1 September 1859, a small white light flare erupted on the Solar surface

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8

Solar Physics & Space Plasma Research Centre (SP 2 RC) Living with a Star. Robertus Erdélyi

The importance of ground-based observations of the solar corona

The Structure of the Sun. CESAR s Booklet

2 Solar models: structure, neutrinos and helioseismological properties 8 J.N. Bahcall, S. Basu and M.H. Pinsonneault

X-ray observations of Solar Flares. Marina Battaglia Fachhochschule Nordwestschweiz (FHNW)

Using This Flip Chart

Feasibility Study. SolmeX. Concurrent Engineering Study Report. Institute of Space Systems System Analysis Space Segment

A Large Coronagraph for Solar Coronal Magnetic Field Measurements

Measuring magnetic free energy in the solar atmosphere

The Solar-C; Current status

ATST Science Requirements Document

Observing Molecular Hydrogen with IRIS

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere.

IRIS views on how the low solar atmosphere is energized

Search for photospheric footpoints of quiet Sun transition region loops

REFERENCE: The Blue Planet An Introduction to Earth System Science. Brian J. Skinner and Barbara W. Murck (2011) Third Edition. John Wiley and Sons

Polarization Measurements at the Daniel K. Inouye Solar Telescope (formerly ATST) Valentin Martinez Pillet David Elmore

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Stellar coronae and the Sun

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT

A STUDY OF TRANSITION REGION AND CORONAL DOPPLER SHIFTS IN A SOLAR CORONAL HOLE. M. D. Popescu 1,2 and J. G. Doyle 1

Temperature Reconstruction from SDO:AIA Filter Images

Observational programs at Istituto Ricerche Solari Locarno (IRSOL)

Investigating Molecular Hydrogen in Active Regions with IRIS

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

1. Solar Atmosphere Surface Features and Magnetic Fields

Solar EUV Spectral Irradiance: Measurements. Frank Eparvier

On the nature of Ellermanbombs and microflaresas observed with the 1.5m GREGOR telescope

Common questions when planning observations with DKIST Jan 30, 2018

Overview of observational methods and instruments: spectrographs. Sergei Shestov

Name: Date: 2. The temperature of the Sun's photosphere is A) close to 1 million K. B) about 10,000 K. C) 5800 K. D) 4300 K.

IMAGING THE EUV CORONA EXTREME ULTRAVIOLET IMAGER WITH THE PRECURSOR OBSERVATIONS FROM THE HECOR SOUNDING ROCKET EXPERIMENT

arxiv:astro-ph/ v1 26 Sep 2003

Solar Optical Telescope onboard HINODE for Diagnosing the Solar Magnetic Fields

Solar Flares - Hinode Perspec.ve -

Cryogenic Near-IR Spectro-Polarimeter (Cryo-NIRSP) Instrument Science Requirement Document

Observable consequences

Helios in Greek and Sol in Roman

Solar InfraRed COronal Magnetograph (SIRCOM) Proposal for a space based coronagraph for vector magnetic field measurements

Solar Observation using ALMA

The solar atmosphere

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

METIS- ESA Solar Orbiter Mission: internal straylight analysis

School and Conference on Analytical and Computational Astrophysics November, Coronal Loop Seismology - State-of-the-art Models

Non-spot magnetic fields

On the 3D structure of the magnetic eld in regions of emerging ux

Photospheric magnetism

1.3j describe how astronomers observe the Sun at different wavelengths

First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch

Near Infrared Spectro-Polarimeter Use Case

Logistics 2/13/18. Topics for Today and Thur+ Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008

Solar Orbiter/SPICE: composition studies

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares

Transcription:

Solar magnetism explorer (SolmeX) Exploring the magnetic field in the upper atmosphere of our closest star preprint at arxiv 1108.5304 (Exp.Astron.) or search for solmex in ADS Hardi Peter & SolmeX team pre Proposal in response to the 2010 call for a medium-size mission opportunity in ESA s science programme for a launch in 2022.

Solar magnetism explorer SolmeX

Spectro-polarimetry of the upper solar atmosphere The missing piece of the puzzle photons carry 4 types of information: photon flux angular distribution energy distribution polarization irradiance imaging spectroscopy polarimetry SOHO & Hinode & Solar C TRACE & SDO IRIS SolmeX [UVSP / SMM] spatial structures and their temporal evolution plasma diagnostics: density, temperature, etc diagnostics of the magnetic field pivotal to understand interaction of plasma and magnetic field

What is SolmeX? very sloppily: Remote-sensing SOHO with increased spatial & temporal resolution plus full polarimetric capability SOHO + polarimetry SolmeX UVCS + linear slit EUV CUSP LASCO + full Stokes Fabry-Perot IR VIRCOR EIT + linear broad band EUV EIP SUMER /CDS MDI + full Stokes slit FUV SUSP + full Stokes (Chromosphere) Fabry-Perot UV ChroME

SolmeX science goals What is the magnetic structure of the outer solar atmosphere? What is the nature of the changes of the magnetic field over the solar cycle? What drives large-scale coronal disruptions such as flares and coronal mass ejections? How do magnetic processes drive the dynamics and heating of the outer solar atmosphere? How does the magnetic field couple the whole solar atmosphere from the photosphere to the outer corona? Measurement objective: provide the first comprehensive measurement of the magnetic field in the upper atmosphere of the Sun, i.e. in the chromosphere, transition region and corona

SolmeX: five instruments on-disk: EIP (EUV imaging polarimeter) SUSP (Scanning UV spectro-polarimeter) ChroME (Chromospheric magnetic explorer) off-limb: CUSP (Coronal UV spectro-polarimeter) IRCOR (Visible light and IR coronagraph) CUSP slit instrument 512 x 1024 pixel 5 / pixel 1.5 x 2.5 R Sun raster FOV VIRCOR IR channel 1024 x 1024 pixel 2.3 / pixel 2.5 x 2.5 R Sun VIRCOR K-corona channel 4096 x 4096 pixel 1.2 / pixel 5 x 5 R Sun

Large-scale corona above the limb linear polarization off-limb due to anisotropic illumination from the disk Hanle-effect modifies this polarization EIT 284 Å (Fe XV) UVCS O VI (1032 Å) Lasco C2 / SOHO

Coronal UV spectro-polarimeter CUSP Entrance aperture (in the shadow of the occulter spacecraft) rotating Brewster angle 4-reflection polarizer UV detector Telescope mirror (off-axis parabolic) Toric varied line-spaced (TVLS) grating Overall dimension: 180 cm spectrograph entrance slit polarizer and slit unit aperture 25x30 cm 2 envelope 180x60x30 cm 3 mass 70 kg power 30 W detector 512 x 1024 sampling 5 9 arcsec pm data rate 150 kbit/s acquisition time [ s ] 10 4 10 2 1 1 Ly- O VI 1.5 distance from disk centre [ R Sun ] Ly- Ly- 2

Off-limb corona above active regions IR line emission L-corona (Fe XIII): circular and linear polarization: Zeeman effect plus Hanle signature EIT / SOHO 14 Oct 1999 Fe IX/X (17.1 nm) Stokes V/I [10 3 ] 2 0 2 1074.0 1074.5 1075.0 wavelength [nm] Lin et al (2000) ApJ 541, L83 K-corona high-resolution imaging temperature & density diagnostics Druckmüller et al. Tomczyk et al (2008) Sol.Phys 247, 411

Visible and infrared coronagraph VIRCOR aperture 20 cm envelope 180x50x25 cm 3 mass 60 kg power 50 W detector 1 k / 4 k sampling 2 / 1 0.2 arcsec nm data rate 300 kbit/s continuum ~400 nm 4096 x 4096 pxl Fe XIII 1074.7 nm Fe XIII 1079.8 nm He I 1083 nm 1024 x 1024 pxl

Magnetic field direction in coronal loops anisotropic IR pumping of EUV emission lines linear polarization Hanle effect (in saturation regime) modifies polarization only direction TRACE 17.1 nm Stokes Q / I [ % ] 10.000 1.000 0.100 10-3 0.010 surface (h=0) h / R Sun =0.2 0.1 0.05 4 10 8 cm -3 0.001 10 6 10 7 10 8 10 9 electron density N e [ cm 3 ] Manso Sainz & Trujillo Bueno (2009)

EUV imaging polarimeter EIP Secondary mirror Primary mirror Rotating Rotating FPA / Polarizer Polarizer mirror Radiator 400 mm 80 mm Detector 1042 mm s-pol. average p-pol. EIT aperture 28 cm envelope 100x30x30 cm 3 mass 40 kg power 50 W detector 4096 x 4096 sampling 0.5 FWHM 0.35 arcsec nm data rate 550 kbit/s rotating FPA

Ly-: Hanle effect in 90 scattering and forward scattering (Trujillo Bueno 2010) Magnetic field in the transition region Q / I [ % ] C IV (1548): Zeeman-effect 0.0-0.1-0.2-0.3-0.4-0.5 close to B [ G ] B [ G ] limb (μ=0.1) -0.3 1215.2 1215.6 1216.0 wavelength [ Å ] VI 10 3 10 3-0.1 0.0-0.2 V 1215.2 1215.6 1216.0 wavelength [ Å ] disk center hp et al. (2011)

Scanning UV spectro-polarimeter SUSP SUMER/SOHO Si iv (1403 Å) aperture 15 x 10 cm 2 envelope 160x50x40 cm 3 mass 68 kg power 25 W detector 3x 2048 x2048 sampling 0.5 6 arcsec pm data rate 300 kbit/s

Zeeman effect Mg II H @ 2795 Å Hanle effect Magnetic fields in the chromosphere circular pol. V/I linear polarization Q/I [%] wavelength [Å] Trujillo Bueno et al. Lagg et al. 65 x65 Ca II K What is the magnetic field structure in the chromosphere? And how is it rooted to the photosphere? Anna Pietarila Judge & Carlsson (2010) ApJ 719, 469 wavelength [Å]

Chromospheric magnetic explorer ChroME 1024x1024 2048x2048 aperture 25 cm envelope 150x45x50 cm 3 mass 52 kg power 55 W detector 2k / 1k sampling 0.15 / 0.3 5 arcsec pm data rate 700 kbit/s

Spacecraft science configuration

Launch configuration fits into Soyuz-Fregat central s/c tube fits on launch adapter ring total mass: 2075 kg 1.9 m 2.2 m 3.1 m

Solar magnetism explorer (SolmeX) Modern solar physics started with the first surface magnetic field measurement in sunspots by Hale in 1908. SolmeX could complete these achievements by providing the first comprehensive measurements of the magnetic field in the outer atmosphere of our Sun.

spare slides

Instrument spacecraft

umbra on coronagraphs CUSP Occulter disk and umbra shape of occulting disk (200 m distance) ~220 cm ~30 cm 25 cm x 30 cm ~60 cm ~95 cm ~250 cm 20 cm VIRCOR

Occulted area and FOV of coronagraphs VIRCOR IR channel: imaging spectro-polarimetry 1024 x 1024 pixel 2.3 / pixel 2.5 x 2.5 R Sun CUSP slit instrument spectro-polarimetry 512 x 1024 pixel 5 / pixel 1.5 x 2.5 R Sun raster FOV VIRCOR K-corona channel broad-band imaging 4096 x 4096 pixel 1.2 / pixel 5 x 5 R Sun

Spatial resolution and occulter distance SOHO/LASCO C1: 5.6 / pxl STEREO COR1: 7.5 / pxl [ 2pxl binning; 3.75 / pxl possible but basically not used ] SolmeX/VIRCOR: 1.2 / pxl [ in visible / K-corona channel ] distance to external occulter spatial resolution [ arcsec/pxl ] radial distance [ R Sun ]

Magnetic coupling through the atmosphere corona transition region hot plasma ~1.5 Mm ~1 Mm 0.5 Mm 0 Mm c s = c A photosphere chromosphere classical temperature minimum τ = 1 500 convection zone spicule II C network Alfvén waves canopy domain D f i b r i l current sheets granulation E sub-canopy domain fluctosphere weak fields small-scale canopies / HIFs B reversed granulation p-modes / g-modes internetwork f i b r i l shock waves spicule I network A canopy domain F sub-canopy domain fluctosphere network }supergranulation Wedemeyer-Bohm et al. (2009) SSR 144, 317

Magnetic structure of active regions? AIA 171 Å / SDO

Magnetic driving of small-scale structures Anna Pietarila Judge & Carlsson (2010) ApJ 719, 469