Property Prediction in Reactive Solutions

Similar documents
COSMO-RS Theory. The Basics

Dr. Christoph Loschen & Dr. Andreas Klamt, COSMOlogic GmbH & Co. KG, Leverkusen, Germany

DISTILLATION SIMULATION WITH COSMO-RS

Calculation of Reduction/Oxidation Potentials with COSMOtherm

MODELING OF PHASE EQUILIBRIA FOR BINARY AND TERNARY MIXTURES OF CARBON DIOXIDE, HYDROGEN AND METHANOL

Comparison of the a Priori COSMO-RS Models and Group Contribution Methods: Original UNIFAC, Modified UNIFAC(Do), and Modified UNIFAC(Do) Consortium

Extraction of Phenol from Industrial Water Using Different Solvents

Polymerization Modeling

DEVELOPMENT OF A NEW DISTILLATION BASED PROCESS FOR TRIOXANE PRODUCTION

Liquid liquid equilibria of aqueous mixtures containing selected dibasic esters and/or methanol

Prediction of phase equilibria in waterralcoholralkane systems

The successes and limitations of this thermodynamic model in predicting the solubility of organic solutes in pure solvents

Chemical and Engineering Thermodynamics

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION

Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

Chemistry 2000 Lecture 11: Chemical equilibrium

CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions

Size exclusion chromatography of branched polymers: Star and comb polymers

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules

6 Hydrophobic interactions

The lattice model of polymer solutions

Phase Transitions in Multicomponent Systems

Prediction of Vapor/Liquid Equilibrium Behavior from Quantum Mechanical Data

Big Idea 1: Structure of Matter Learning Objective Check List

Table of Contents Preface PART I. MATHEMATICS

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Diisononyl phthalate Organics Interactions: A Phase Equilibrium Study Using Modified UNIFAC Models

Some comments on the double retrograde vaporization

CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria. Dr. M. Subramanian

The Reaction module. Table of Contents

Chem 3719 Klein Chapter Practice Problems

Volumetric, Viscometric and Refractive Indices Properties of Binary Mixtures of Acetyl Acetone with 1-Butanol at Different Temperatures

Chem 1310 I Answers for Assignment VI Due September 27, 2004

Introduction (1) where ij denotes the interaction energy due to attractive force between i and j molecules and given by; (2)

CHAPTER 9: LIQUIDS AND SOLIDS

Ultrasonic studies of molecular interactions in binary mixtures of n-butanol with water at different temperatures (308K, 318K and 328K)

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46

Isobaric Vapor-Liquid Equilibria of Mesitylene + 1- Heptanol and Mesitylene +1-Octanol at 97.3 kpa

EQUATION OF STATE DEVELOPMENT

The simultaneous prediction of vapor-liquid equilibrium and excess enthalpy. Kwon, Jung Hun. Thermodynamics and properties lab.

ORGANIC - BROWN 8E CH.4 - ACIDS AND BASES.

Mixtures. Partial Molar Quantities

Publication V. Reprinted with permission from Elsevier Elsevier Science

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

Some properties of water

Measurement and Calculation of Physico-Chemical Properties of Binary Mixtures Containing Xylene and 1- Alkanol

Useful Information Provided on Exam 1. Sections Covered on Exam , 10.2, 10.8,

5.) One mole of an ideal gas expands isothermally against a constant pressure of 1 atmosphere. Which of the following inequalities is true?

Ruthenium redox equilibria 1. Thermodynamic stability of Ru(III) and Ru(IV) hydroxides

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points

A theoretical study of Gemini surfactant phase behavior

PRACTICAL DATA CORRELATION OF FLASHPOINTS OF BINARY MIXTURES BY A RECIPROCAL FUNCTION: THE CONCEPT AND NUMERICAL EXAMPLES

CALCULATION OF THE COMPRESSIBILITY FACTOR AND FUGACITY IN OIL-GAS SYSTEMS USING CUBIC EQUATIONS OF STATE

Final Exam Review-Honors Name Period

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry

10 Chemical reactions in aqueous solutions

Supporting Information. Binding of solvent molecules to a protein surface in binary mixtures follows a competitive Langmuir model

Outline of the Course

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

General Entropy Trends

REMOVE THIS PAGE PRIOR TO STARTING EXAM.

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Name 2/14 Bonding Page 1

Lecture 2. The framework to build materials and understand properties

Vapor liquid equilibria for the binary system 2,2 dimethylbutane + 1,1 dimethylpropyl methyl ether (TAME) at , , and 338.

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the

The Chemical Potential of Components of Solutions

Exercise 2: Solvating the Structure Before you continue, follow these steps: Setting up Periodic Boundary Conditions

Chapter 12. Liquids: Condensation, Evaporation, and Dynamic Equilibrium

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

Computational and spectroscopic investigation of 7-azaindole: Solvation and intermolecular interactions

ORGANIC - CLUTCH CH. 3 - ACIDS AND BASES.

Chapter 13. Ions in aqueous Solutions And Colligative Properties

Vapour Liquid Equilibrium in Asymmetric Mixtures of n-alkanes with Ethane

LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES

Chapter 10 Liquids, Solids, and Intermolecular Forces

Reaction Monitoring in Chemical Engineering with Quantitative Online NMR Spectroscopy

Flash Point Calculation by UNIFAC

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol)

2. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture partition function.

A modification of Wong-Sandler mixing rule for the prediction of vapor-liquid equilibria in binary asymmetric systems

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19

HW #4: 4.34, 4.36, 4.38, 4.40, 4.46, 4.50, 4.56, 4.60, 4.62, 4.64, 4.70, 4.72, 4.76, 4.80, 4.88, 4.96, 4.106

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Modeling of the solubility of Naproxen and Trimethoprim in different solvents at different temperature

Ch. 10 in- Class Exercise

PLEASE DO NOT MARK ON THE EXAM. ALL ANSWERS SHOULD BE INDICATED ON THE ANSWER SHEET. c) SeF 4

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

THE UNIVERSITY OF THE SOUTH PACIFIC SEMESTER 1 EXAMINATION 2009 CHP02 PRELIMINARY CHEMISTRY A

Chemical Reaction Equilibrium. Stoichiometry and Extent of Reaction (Reaction Coordinate)

Gestão de Sistemas Energéticos 2017/2018

We can see from the gas phase form of the equilibrium constant that pressure of species depend on pressure. For the general gas phase reaction,

Status and results of group contribution methods

Some Basic Concepts of Chemistry

Accounting for Solvation in Quantum Chemistry. Comp chem spring school 2014 CSC, Finland

Basic Organic Nomenclature Packet Chemistry Level II

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case

Transcription:

Property Prediction in Reactive Solutions Karin Wichmann*,1 1 COSMOlogic GmbH & Co. KG, Leverkusen, Germany In reactive solutions, reaction educts and products are coexistent and their concentrations are unknown. Macroscopic property prediction however requires a well defined system composition. Thus, physical interactions in the liquid phase as well as the chemical equilibrium between the reacting species have to be taken into account in such systems. With standard COSMO-RS, interactions between molecules are described with statistical thermodynamics of interacting surface segments. Thereby, all spatial information is neglected. Concerted multiple contacts of molecules, like in compound dimers, or transformation to covalently bound species, like polymerization, are not captured with COSMO-RS. In this study COSMO-RS-DARE, an extension of COSMO-RS for reactive solutions, is evaluated for the binary liquid-liquid equilibrium system of formaldehyde + water + 1-butanol. After fitting the COSMO-RS-DARE parameters to experimental data for the phase compositions, the liquid-liquid equilibrium is calculated at several temperatures. The procedure is explained in detail. Introduction Property prediction of mixtures is complicated when reactions between solute and solvent or solute and solute occur and the chemical equilibrium is concentration dependent. Examples for such reactions are the concentration dependent dimerization of small organic acids (solutesolute reaction) or reversible polymerization. In experimental property measurements, the influence of such a reaction on the measured property is usually not separated from other effects. For computational prediction methods however, it is important to take into account that For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 1

(1) in addition to the original solute(s) and solvent(s), reaction products are also present in the mixture and (2) as a result, the original phase composition is changed. Therefore, a reliable prediction method has to consider physical interactions in the liquid phase as well as the chemical equilibrium between the reacting species. Formaldehyde reacts with water and alcohols to form oligomers. In aqueous solution, formaldehyde is mostly present as methylene glycol and poly(oxymethylene) glycols. In solution with alcohols, formaldehyde reacts similarly and forms hemiformal and poly(oxymethylene) hemiformals with the alcoholic species present. In a ternary mixture of formaldehyde, water, and alcohol, these reactions take place simultaneously, and the equilibrium concentration of monomeric formaldehyde is usually very small. CH2O + H2O Ý HO(CH2O)H (I) HO(CH2O)n-1H + HO(CH2O)H Ý HO(CH2O)nH + H2O (II) CH2O + ROH Ý HO(CH2O)R (III) HO(CH2O)n-1R + HO(CH2O)R Ý HO(CH2O)nR + ROH (IV) If the alcohol in the mixture is 1-butanol (or a monohydric alcohol with a longer aliphatic chain), the system will form two liquid phases I and II. The condition for the liquid-liquid phase equilibrium is i I + RT ln xi I = i II + RT ln xi II for all compounds i. For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 2

I FA + W Ý MG 1 MG 1 + MG n-1 Ý MG n + W FA + 1B Ý HF1 HF 1 + HF n-1 Ý HF n + 1B FA W MG 1 MG n 1B HF 1 HF n FA W MG 1 MG n 1B HF 1 HF n II FA + W Ý MG 1 MG 1 + MG n-1 Ý MG n + W FA + 1B Ý HF1 HF 1 + HF n-1 Ý HF n + 1B Figure 1: The two-phase liquid-liquid equilibrium system of formaldehyde + water + 1- butanol Peschla et al. 1 reported experimental results for the chemical equilibrium in the binary formaldehyde 1-butanol system and the ternary formaldehyde water 1-butanol system at temperatures from 278 to 348 K. Liquid-liquid phase equilibrium data are reported for temperatures of 298, 313, and333 K. Computational Methods COSMO-RS (COnductor like Screening MOdel for Real Solvents) is a universal theory to predict the thermodynamic equilibrium properties of liquids. 2 COSMO-RS thermodynamics is based on the statistical physics of interacting molecular surface segments. The polar and hydrogen bond interaction energies are quantified based on the surface screening charge densities, which result from a quantum chemical continuum solvation calculation. For details we refer the reader to the literature. 2,3 Due to its ability to treat mixtures at variable temperatures and to compute accurate solvation energies based on first-principles, it has become a much used method in chemical engineering and in different areas of chemistry. For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 3

COSMO-RS DARE 4 (Dimerization, Aggregation, and Reaction Extension) is an extension of COSMO-RS which equilibrates molecular species with the corresponding entities in the reaction products (or dimer or aggregate, respectively). Molecular conformers and the corresponding parts of the reaction product are treated in an artificial conformer equilibrium. The contacts between reaction product entities are described using artificial surface segments. Only predefined contacts are allowed for such surface segments. For details, we refer the reader to the corresponding publication. 4 COSMO-RS DARE is implemented in COSMOtherm using so-called Interaction Energy Indices (IEI numbers). The reacting compounds are treated as pseudo-conformers in the compound input of COSMOtherm. To describe the reaction product, an interaction energy is assigned to two interacting confomers. To illustrate this procedure, we will describe it in more detail for an equilibrium reaction A + B A-B. First we have to provide the interacting species: The first conformer of compound A is the free compound A, and the second conformer is a COSMO metafile of the reaction product A-B. In the reaction product all atoms of the reaction partner B are set to zero by atomic weights (refer to the COSMOtherm Reference Manual for details). Thus the second conformer describes compound A after the reaction, or, more accurately, the A entity in the reaction product. Compound B is constructed similarly: one conformer is pure compound B and a second conformer is a meta-file of A-B with all atomic weights of A set to zero. The conformers described by the COSMO meta-file have to be identified by a unique interaction energy index (IEI number). This is done with the IEI=i command in the same line where the conformer is given. Then we have to describe the interaction between the species in the reaction: The interaction energy has to be assigned in the mixture part of the COSMOtherm input file. This is done with the en_iei={i1 i2 c_h c_s} option, where i1 and i2 are the IEI numbers of the reacting compound as given in the compound input section. For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 4

c_h and c_s are parameters for the enthalpic and entropic contribution to the interaction energy of the two IEI numbered compounds. c_h and c_s are [kcal/mol] and [kcal/mol K], respectively. The interaction Gibbs free energy between the two IEI compounds i1 and i2 is calculated from G (i1, i2) = -2 0 + c_h - T c_s where 0 is the energy difference between the first conformer (e.g. A) and the metafile conformer. The value of 0 is calculated by COSMOtherm. It is possible to give several en_iei entries in one mixture input line (for the treatment of several different reactions). It is important to notice that the conformers described by the meta-files, i.e. the A and B entities in the reaction product, cannot be treated in the ususal way for conformer equilibrium. This is not possible because the quantum chemical COSMO energy of a COSMO metafile is not known. In this study, we have to take into account the following species: Formaldehyde and 1-butanol form hemiformal HF1 and different poly(oxymethylene) hemiformals HFn. With water, formaldehyde forms methylene glycol MG1 and poly(oxymethylene) glycols MGn. Thus, we require the following pseudo-conformers in COSMOtherm: for formaldehyde: monomeric formaldehyde the formaldehyde entity from the hemiformal HF1 ( CH3(CH2)3OCH2OH ) a central formaldehyde entity from a poly(oxymethylene) hemiformal. We use the poly(oxymethylene) hemiformal with three formaldehyde units, HF3 ( CH3(CH2)3O(CH2O)3H ). For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 5

the formaldehyde entity from the methylene glycol MG1 ( HOCH2OH ) a central formaldehyde entity from a poly(oxymethylene) glycol. We use the poly(oxymethylene) glycol with three formaldehyde units, MG3 ( HO(CH2O)3H ). for 1-butanol: pure 1-butanol the 1-butanol entity from the hemiformal HF1. This fragment is also used to model the 1-butanol entity from the poly(oxymethylene) hemiformal. for water: pure water the water entity from the methylene glycol MG1. This fragment is also used to model the water entity from the poly(oxymethylene) glycol. Since the 1-butanol and water entities are terminal fragments, we can reasonably assume that the corresponding fragments from hemiformal or methylene glycol and the higher oligomers poly(oxymethylene) hemiformal or poly(oxymethylene) glycol, respectively, are equivalent. We won t use the same approximation for the formaldehyde fragments, however, because the two formaldehyde fragments have different next neighbors. Figure 2 shows the DARE conformers used in this study. The COSMO surfaces were obtained from quantum chemical geometry optimizations on the BP/TZVP level, using TURBOMOLE 7.0 5. The corresponding BP_TZVP_C30_1501 parameterization was used in the COSMOtherm calculations. 6 For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 6

FA1 FA2 FA3 CH2O from HF1 CH2O from MG1 central CH2O from HF3 IEI=1 IEI=2 IEI=3 FA4 BuOH1 H2O1 central CH2O from MG3 BuOH from HF1 H2O from MG1 IEI=4 IEI=5 IEI=6 Figure 2: DARE conformers used to model the chemical equilibrium and the liquid-liquid equilibrium. Parameter Fitting The interaction energy parameters c_h and c_s for the oligomerization reactions of formaldehyde with 1-butanol and water are not known. Therefore, we will fit them to the experimental data for the chemical equilibrium of the different formaldehyde species in the binary formaldehyde 1-butanol and ternary formaldehyde 1-butanol water systems, starting with the binary system. Additional interaction energy parameters for the ternary system are fitted in a second step of the procedure. Breaking down the optimization procedure into two steps reduces the complexity of the process. For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 7

The interaction energy parameters for the contacts between the reaction product entities were fitted on a grid such that the deviation between the calculated and the experimental mole fractions are minimized. It is of course possible to use other optimization methods. Table 1 shows the 10 parameter sets with the lowest sum of MAD (mean absolute deviation) for the mole fraction which were selected for the next step. An exemplary input file for the COSMOtherm calculation is shown in Figure 3. Table 1: Parameter sets and MAD sum for the binary formaldehyde 1-butanol system. set H_13 S_13 H_15 S_15 MAD sum G_13 G_15 at 313.15 K 1-3.6 0.007-3.1 0.003 27.015-5.79-4.04 2-4.2 0.005-3.1 0.003 27.023-5.77-4.04 3-3.8 0.006-3.1 0.003 27.038-5.68-4.04 4-4.6 0.003-3.3 0.002 27.066-5.54-3.93 5-3.2 0.008-3.1 0.003 27.080-5.71-4.04 6-4 0.005-3.3 0.002 27.088-5.57-3.93 7-3.4 0.007-3.3 0.002 27.110-5.59-3.93 8-3.4 0.008-2.9 0.004 27.119-5.91-4.15-5.75-4.03 average 9-3.2 0.009-2.9 0.004 27.120-6.02-4.15 0.13 0.06 mean abs dev 10-3.4 0.008-3.1 0.003 27.136-5.91-4.04 0.026 0.0070 s2 For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 8

ctd=bp_tzvp_c30_1501.ctd cdir=/software/cosmotherm-c30-1501/ctdata-files fdir=../results_of_job_bp-tzvp-cosmo wconf wcmn!! [ f =formaldehyde_c0.cosmo comp=fa f =FA-hemiformal.mcos IEI=1 f =FA-polyoxymethylenehemiformal-3.mcos ] IEI=3 [ f =1-butanol_c0.cosmo comp=1b f =1-butanol_c1.cosmo f =1B-hemiformal.mcos ] IEI=5 tk=278.15 x={0.5446 0.4554} EN_IEI={1 3 <H_13> <S_13>} EN_IEI={1 5 <H_15> <S_15>} Figure 3: Compound section and exemplary mixture input for a COSMOtherm calculation using DARE pseudo-conformers and interaction energy indices for the binary system formaldehyde 1-butanol. For fitting the parameters H_13, S_13, H_15, and S_15 vary in this input type. In Figure 4 experimental and calculated mole fractions of formaldehyde units are plotted at various temperatures, using the final set of parameters (set 7). Visual differences to mole fraction calculated with parameter set 1 (not shown) are negligible. When comparing to UNIFAC results published by Peschla et al. 1 it is important to keep in mind that COSMO-RS- DARE requires 4 parameters for the binary formaldehyde 1-butanol system in addition to the standard COSMO-RS parameterization, while UNIFAC requires much more parameter fitting: 10 binary interaction parameters and 10 group parameters. For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 9

278 K 298 K 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0 0.2 0.4 0.6 0.0 0 0.2 0.4 0.6 323 K 348 K 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0 0.2 0.4 0.6 0.0 0 0.2 0.4 0.6 Figure 4: Experimental and calculated mole fractions of formaldehyde units in hemiformal HF1 and poly(oxymethylene) hemiformal HF3 at 278 K, 298 K, 323 K, and 348 K. Blue dots: exp mole fraction of HF1, blue lines: calc mole fraction of HF1 (dashed: UNIFAC, solid: COSMOtherm), orange dots: exp mole fraction of HF3 units, orange lines: calc mole fraction of HF3 units (dashed: UNIFAC, solid: COSMOtherm). UNIFAC results taken from ref. 1. In the second step the IEI parameters for the reactions of formaldehyde and water to methylene glyclol and poly(oxymethylene) glycols were optimized. The interaction energy parameters for the contacts between the reaction product entities were fitted on a grid, using the fitted IEI parameter sets for formaldehyde and 1-butanol fragments and keeping them fixed. An example input file is shown in Figure 5. As in the first step, the deviation between calculated and experimental mole fractions are minimized on a grid. This procedure results in ~ 500 parameters sets with a MAD sum of less than 40. Figure 6 shows the experimental and For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 10

calculated mole fractions of formaldehyde units at various temperatures, using the final set of parameters. ctd=bp_tzvp_c30_1501.ctd cdir=/software/cosmotherm-c30-1501/ctdata-files fdir=../results_of_job_bp-tzvp-cosmo wconf wcmn!! [ f =formaldehyde_c0.cosmo comp=fa f =FA-hemiformal.mcos IEI=1 f =FA-metyleneglycol.mcos IEI=2 f =FA-polyoxymethylenehemiformal-3.mcos IEI=3 f =FA-polyoxymetyleneglycol-3.mcos ] IEI=4 [ f =1-butanol_c0.cosmo comp=1b f =1-butanol_c1.cosmo f =1B-hemiformal.mcos ] IEI=5 [ f =h2o_c0.cosmo comp=w f =W-metyleneglycol.mcos ] IEI=6 tk=278.15 x={0.29 0.26 0.45} EN_IEI={1 3-3.6 0.007} EN_IEI={1 5-3.1 0.003} EN_IEI={2 4 <H_24> <S_24>} EN_IEI={2 6 <H_26> <S_26>} Figure 5: Compound section and exemplary mixture input for a COSMOtherm calculation using DARE pseudo-conformers and interaction energy indices for the ternary system formaldehyde 1-butanol water. The parameters H_24, S_24, H_26, and S_26 vary in this input type. All ~500 sets of optimized IEI parameters were used to calculate the Liquid-Liquid Equilibrium (LLE) of the ternary system formaldehyde 1-butanol water at different temperatures. Best agreement with experimental data was obtained with the following parameters: H_13=-3.4, S_13=0.007, H_15=-3.3, S_15=0.002, H_24=-2.8, S_24=0.005, H_26=-0.1, S_26=0.001. This is our final parameter set for the modeling of the ternary system formaldehyde 1-butanol water. For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 11

278 K 298 K 0.25 0.20 0.20 0.15 0.15 0.10 0.05 0.10 0.05 0.00 0 0.1 0.2 0.3 0.4 0.5 0.00 0 0.1 0.2 0.3 0.4 0.5 323 K 348 K 0.25 0.25 0.20 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 0 0.1 0.2 0.3 0.4 0.5 0.00 0 0.1 0.2 0.3 0.4 0.5 Figure 6: Experimental and calculated mole fractions of formaldehyde units in hemiformal HF1, poly(oxymethylene) hemiformal HF3, methylene glycol MG1, and poly(oxymethylene) glycol MG3 at 278 K, 298 K, 323 K, and 348 K. Blue dots: exp. mole fraction of HF1, blue lines: calc. mole fraction of HF1 (dashed: UNIFAC, solid: COSMOtherm), orange dots: exp. mole fraction of HF3 units, orange lines: calc. mole fraction of HF3 units (dashed: UNIFAC, solid: COSMOtherm), grey dots: exp. mole fraction of MG1, grey lines: calc. mole fraction of MG1 (dashed: UNIFAC, solid: COSMOtherm), yellow dots: exp. mole fraction of MG3 units, yellow lines: calc. mole fraction of HF3 units (dashed: UNIFAC, solid: COSMOtherm). UNIFAC results taken from ref. 1 As shown in Fig. 7, the LLE predicted with COSMO-RS-DARE is in much better agreement with the experimental results than the LLE predicted with pure COSMO-RS. Differences are particularly apparent for the water-rich phase. The largest deviations from experimental results For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 12

occur for the system without formaldehyde. It should be noted that in this case, which corresponds to the binary 1-butanol water system, the COSMO-RS-DARE approach has no effect on the system, and the deviations correspond to the COSMO-RS error. For higher formaldehyde concentrations the difference between COSMO-RS and COSMO-RS-DARE becomes larger and the COSMO-RS-DARE predictions are much closer to experimental results than the COSMO-RS predictions. FA FA FA 298 K 313 K 333 K 0.4 0.6 0.8 1 0.4 0.6 0.8 1 0.4 0.6 0.8 1 W 1B W 1B W 1B Figure 7: Liquid-liquid phase equilibrium of the ternary system formaldehyde (FA) 1- butanol (1B) water (W) at 298 K, 313 K, and 333 K. Blue diamonds: experimental results, grey squares: UNIFAC predictions [1], full orange circles: COSMO-RS-DARE predictions, open orange circles: COSMO-RS predictions. UNIFAC results taken from ref. 1. When comparing with UNIFAC results it should be taken into account that, while the UNIFAC results are overall closer to experimental results, much more parameter fitting is involved. The simplified UNIFAC model used by Peschla et al. requires 32 fitted group interaction parameters and 14 group size and surface parameters. Furthermore, it relies on experimental data for chemical reaction equilibrium constants and vapor pressure, which implies additional lab work has to be done. Conclusion In this study, COSMO-RS-DARE parameters were fitted to the reactions occurring in the ternary system formaldehyde 1-butanol water at various temperatures. We were able to show For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 13

that for such a complex reactive system, the COSMO-RS-DARE approach works well and leads to better predictions for the ternary LLE of the system, especially for higher formaldehyde concentrations. COSMO-RS-DARE requires fitting of 2 parameters for each reaction occurring in a system; for systems under isothermal conditions the parameters can be combined to one parameter, thus simplifying the fitting procedure. For the temperature dependent reactions considered in this study, 8 energy interaction parameters were fitted in total. The corresponding UNIFAC study 1 required 46 interaction and group parameters, some of which were taken from a previous study of the binary formaldehyde water system. 7 1 Chemical Equilibrium and Liquid-Liquid Equilibrium in Aqueous Solutions of Formadelhyde and 1-Butanol, Peschla, R.; Coto Garcia, B.; Albert, M.; Kreiter C.; Maurer G.; Ind. Eng. Chem. Res. 2003, 42, 1508-1516. 2 Klamt, A.; The COSMO and COSMO-RS solvation models Wiley Interdisciplinary Reviews: Computational Molecular Science, John Wiley & Sons, Inc., 2011. 3 Klamt A.; COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier Science Ltd., Amsterdam, The Netherlands, 2005. 4 Consideration of dimerization for property prediction with COSMO-RS-DARE Sachsenhauser, T.; Rehfeld, S.; Klamt, A.; Eckert, F., Fluid Phase Equilibria 2014, 382, 89-99. doi: http://dx.doi.org/10.1016/j.fluid.2014.08.030 5 TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com. 6 COSMOtherm, Version (e.g. C3.0, release 1501), COSMOlogic GmbH & Co KG, www.cosmologic.de. 7 Vapor-Liquid Equilibria for Aqueous Solutions of Formaldehyde and Methanol, Albert, M.; Coto Garcia, B.; Kuhnert, Ch.; Peschla, R.; Maurer, G., AIChE J. 2000, 46, 1676-1687. For Internal Use Only. (c) COSMOlogic GmbH & Co. KG 03/2016 - Page 14