Free and convectively coupled equatorial waves diagnosis using 3-D Normal Modes

Similar documents
Identifying the MJO Skeleton in Observational Data

Geophysical Research Letters

Large-Scale Dynamical Fields Associated with Convectively Coupled Equatorial Waves

Modal view of atmospheric predictability

Growth of forecast uncertainties in global prediction systems and IG wave dynamics

convectively coupled equatorial waves; wavelet analysis; non-traditional Coriolis terms

Lecture #2 Planetary Wave Models. Charles McLandress (Banff Summer School 7-13 May 2005)

The Quasi-Biennial Oscillation Analysis of the Resolved Wave Forcing

Dynamics of the Atmosphere

observational data analysis (Supplementary Material)

Equatorially Trapped Waves in Shallow Water

Assignment. Find connections between your own research and intraseasonal variability in the tropics

Impact of Madden-Julian Oscillation (MJO) on global distribution of total water vapor and column ozone

Modulation of the Semiannual Oscillation Induced by Sudden Stratospheric Warming Events

Analysis of Ultra-fast Kelvin Waves Simulated by the Kyushu University GCM

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017

The Equatorial Response to Higher-Latitude Forcing

Kelvin and Rossby gravity wave packets in the lower stratosphere of CMIP5 models

Waves in Planetary Atmospheres R. L. Walterscheid

Multivariate analysis of Kelvin wave seasonal variability in ECMWF L91 analyses

Fourier Analysis. 19th October 2015

ROSSBY WAVE PROPAGATION

Impact of ENSO on seasonal variations of Kelvin Waves and mixed Rossby-Gravity Waves

Characteristics of Kelvin waves and Mixed Rossby-Gravity waves in opposite QBO phases

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States

Introduction to Climate ~ Part I ~

ABSTRACT 2 DATA 1 INTRODUCTION

El Niño, South American Monsoon, and Atlantic Niño links as detected by a. TOPEX/Jason Observations

(after Stephens et al. 2012)

Steady Flow: rad conv. where. E c T gz L q 2. p v 2 V. Integrate from surface to top of atmosphere: rad TOA rad conv surface

What is the Madden-Julian Oscillation (MJO)?

Seasonal variation of equatorial wave momentum fluxes at Gadanki (13.5 N, 79.2 E)

Testing the Hypothesis that the MJO is a Mixed Rossby Gravity Wave Packet

Vertical Moist Thermodynamic Structure of the MJO in AIRS Observations: An Update and A Comparison to ECMWF Interim Reanalysis

2006/12/29. MISMO workshop Yokohama, 25 November, 2008

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves

ENSO Outlook by JMA. Hiroyuki Sugimoto. El Niño Monitoring and Prediction Group Climate Prediction Division Japan Meteorological Agency

On the Wave Spectrum Generated by Tropical Heating

CONVECTIVELY COUPLED EQUATORIAL WAVES

Impact of the 2002 stratospheric warming in the southern hemisphere on the tropical cirrus clouds and convective activity

The feature of atmospheric circulation in the extremely warm winter 2006/2007

Dynamical connection between tropospheric blockings and stratospheric polar vortex

Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation

Dynamics and Kinematics

ATSR SST Observations of the Tropical Pacific Compared with TOPEX/Poseidon Sea Level Anomaly

A Simple Dynamical Model Capturing the Key Features of Central Pacific El Niño (Supporting Information Appendix)

Geophysics Fluid Dynamics (ESS228)

Analysis of Convectively Coupled Kelvin Waves in the Indian Ocean MJO

Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Introduction to tropical meteorology and deep convection

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

Atmospheric circulation analysis for seasonal forecasting

The Arctic Energy Budget

Assessing the impact of gravity waves on the tropical middle atmosphere in a General Circulation Model

WRF MODEL STUDY OF TROPICAL INERTIA GRAVITY WAVES WITH COMPARISONS TO OBSERVATIONS. Stephanie Evan, Joan Alexander and Jimy Dudhia.

Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space-time spectra

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change

Factors for the Simulation of Convectively Coupled Kelvin Waves

Steven Feldstein. The link between tropical convection and the Arctic warming on intraseaonal and interdecadal time scales

The momentum budget of the QBO in WACCM. Rolando Garcia and Yaga Richter National Center for Atmospheric Research Boulder, CO

The Scientific Value of Stratospheric Wind Measurements

Normal-mode function representation of global 3-D data sets: open-access software for the atmospheric research community

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation

Dynamics of the Atmosphere. Large-scale flow with rotation and stratification

EPP contribution to (stratospheric and) tropospheric variations. Annika Seppälä Finnish Meteorological Institute Academy of Finland

Global Kelvin waves in the upper atmosphere excited by tropospheric forcing at midlatitudes

African Easterly Waves and Convection: A Potential Vorticity Perspective. James Russell & Anantha Aiyyer North Carolina State University

A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble

Understanding the local and global impacts of model physics changes

Climate System Monitoring

Part-8c Circulation (Cont)

Tropical Cyclogenesis within an Equatorial Rossby Wave Packet

The Eady problem of baroclinic instability described in section 19a was shown to

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR

EVALUATION OF BROAD SCALE VERTICAL CIRCULATION AND THERMAL INDICES IN RELATION TO THE ONSET OF INDIAN SUMMER MONSOON

ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves

Isentropic flows and monsoonal circulations

INFLUENCE OF LARGE-SCALE ATMOSPHERIC MOISTURE FLUXES ON THE INTERANNUAL TO MULTIDECADAL RAINFALL VARIABILITY OF THE WEST AFRICAN MONSOON

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 25 February 2013

Introduction to tropical meteorology and deep convection

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 11 November 2013

Wave activity in the tropical tropopause layer in seven reanalysis and four chemistry climate model data sets

Introduction of products for Climate System Monitoring

The Excitation of Equatorial Waves by Deep Convection in the NCAR Community Climate Model (CCM3)

Triggered Convection, Gravity Waves, and the MJO: A Shallow-Water Model

Composite hurricanes affecting Puerto Rico, Hispaniola & Cuba

In two-dimensional barotropic flow, there is an exact relationship between mass

NOTES AND CORRESPONDENCE. On the Vertical Scale of Gravity Waves Excited by Localized Thermal Forcing

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan

Moisture modes, cloud-radiative feedbacks and the MJO

Thermospheric Winds. Astrid Maute. High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA

Anticorrelated intensity change of the quasi-biweekly and day oscillations over the South China Sea

Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability

Eliassen-Palm Theory

Wave mo(on in the tropics. Shayne McGregor Lecturer (Climate), EAE, Monash Associate Inves(gator (ARC CSS)

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must

Dynamics of the Atmosphere. General circulation of the atmosphere

Mountain Torques Caused by Normal-Mode Global Rossby Waves, and the Impact on Atmospheric Angular Momentum

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012

Transcription:

Free and convectively coupled equatorial waves diagnosis using 3-D Normal Modes Carlos A. F. Marques and J.M. Castanheira CESAM & Department of Physics University of Aveiro Portugal MODES Workshop - Boulder 26-28 Aug. 215

Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. (215) DOI:1.12/qj.2563 Convectively coupled equatorial-wave diagnosis using three-dimensional normal modes José M. Castanheira* and Carlos A. F. Marques CESAM & Department of Physics, University of Aveiro, Portugal *Correspondence to: J. M. Castanheira, CESAM & Department of Physics, University of Aveiro, Campus de Santiago, 381-193 Aveiro, Portugal. E-mail: jcast@ua.pt A new methodology for the diagnosis of convectively coupled equatorial waves (CCEWs) is presented. It is based on a pre-filtering of the geopotential and horizontal wind, using three-dimensional (3D) normal mode functions of the adiabatic linearized equations of a resting atmosphere, followed by a space time spectral analysis to identify the spectral regions of coherence. The methodology permits a direct detection of various types of equatorial wave, compares the dispersion characteristics of the coupled waves with the theoretical dispersion curves and allows an identification of which vertical modes are more involved in the convection. Moreover, the proposed methodology is able to show the existence of free dry waves and moist coupled waves with a common vertical structure, which is in conformity with the

Outline Observation of Convectively Coupled Equatorial Waves (CCEW) Theory of equatorial waves Data and Method Results Coherence spectra Vertical decomposition Power spectra Separating stratosphere and troposphere QBO effects on the vertical propagation of equatorial waves Conclusions

CCEW Sep 1 Daily OLR from NOAA, [1 o S to 2.5 o N], 1992 1993 29 28 Oct 1 27 26 25 Nov 1 24 23 22 21 Dec 1 2 Wm 2 19 18 Jan 1 17 16 15 14 Feb 1 13 12 11 Mar 1 6 E 12 E 18 12 W 6 W Longitude

Equatorial waves Linearized primitive equations: u t f v + 1 φ a cos θ λ = (1) v t + f u + 1 φ a θ = (2) V + 1 ρ z (ρ w) = (3) ( ) 1 φ + wn 2 ρ t z = (4)

Equatorial waves Linearized primitive equations: u t f v + 1 φ a cos θ λ = (1) v t + f u + 1 φ a θ = (2) V + 1 ρ z (ρ w) = (3) ( ) 1 φ + wn 2 ρ t z = (4) Assuming N constant and combining (3) and (4) to eliminate w:

Equatorial waves Linearized primitive equations: u t f v + 1 φ a cos θ λ = (5) v t + f u + 1 φ a θ = (6) [ ( )] 1 φ ρ N 2 V t ρ z z = (7)

Equatorial waves Linearized primitive equations: u t f v + 1 φ a cos θ λ = (5) v t + f u + 1 φ a θ = (6) [ ( )] 1 φ ρ N 2 V t ρ z z = (7) Considering solutions with separable vertical structure: [ ] [u, v, φ] = G(z) ũ(t, θ, λ), ṽ(t, θ, λ), φ(t, θ, λ)

Equatorial waves Linearized primitive equations: u t f v + 1 φ a cos θ λ = (5) v t + f u + 1 φ a θ = (6) [ ( )] 1 φ ρ N 2 V t ρ z z = (7) Considering solutions with separable vertical structure: [ ] [u, v, φ] = G(z) ũ(t, θ, λ), ṽ(t, θ, λ), φ(t, θ, λ) Like in a wave [u, v, φ] = [ ] û(θ), ˆv(θ), ˆφ(θ) e z/2h e imz e i(kλ+ωt)

Equatorial waves One obtains the horizontal structure equations: ũ t f ṽ + 1 φ a cos θ λ = (8) ṽ t + f ũ + 1 φ a θ = (9) φ t + gh e Ṽ = (1)

Equatorial waves One obtains the horizontal structure equations: ũ t f ṽ + 1 φ a cos θ λ = (8) ṽ t + f ũ + 1 φ a θ = (9) φ t + gh e Ṽ = (1) and the vertical structure equation: ( ) 1 G ρ + N2 G = (11) ρ z z gh e where 1/gh e is the separation constant.

Equatorial waves For a wave with vertical wave number m: [ ] [u, v, φ] = û(θ), ˆv(θ), ˆφ(θ) e z/2h e imz e i(kλ+ωt)

Equatorial waves For a wave with vertical wave number m: [ ] [u, v, φ] = û(θ), ˆv(θ), ˆφ(θ) e z/2h e imz e i(kλ+ωt) the equivalent depth is given by h e = N 2 g ( m 2 + 1 4H 2 ) (12)

Equatorial waves Using the equatorial β-plane approximation: ũ t βy ṽ + φ x ṽ t + βy ũ + φ y ( φ u t + gh e x + v ) y = (13) = (14) = (15)

Equatorial waves Using the equatorial β-plane approximation: ũ t βy ṽ + φ x ṽ t + βy ũ + φ y ( φ u t + gh e x + v ) y = (13) = (14) = (15) A complete set of zonal propagating wave solutions of these system of shallow water equations was found by Matsuno (1966).

3-D normal mode basis We solved the equations over the sphere in isobaric coordinates, with the vertical structure equation given by: ( ) 1 G + 1 G = p S p gh e

3-D normal mode basis We solved the equations over the sphere in isobaric coordinates, with the vertical structure equation given by: ( ) 1 G + 1 G = p S p gh e The VSE was solved numerically with a spectral method as in Kasahara (1984) and Castanheira et al. (1999).

1 m= m=1 m=2 Vertical Structure Functions 5 1 45 4 m=3 m=4 m=5 5 45 4 Pressure (hpa) 1 1 1 2 5 hpa 15 hpa 35 3 25 2 15 1 1 1 2 5 hpa 15 hpa 35 3 25 2 15 Altitude (km) 1 5 hpa 5 1 3 85 hpa 6 3 3 6 1 5 hpa 5 1 3 85 hpa 6 3 3 6 1 m=6 m=7 m=8 5 45 4 1 m=9 m=1 m=11 5 45 4 Pressure (hpa) 1 1 1 2 5 hpa 15 hpa 35 3 25 2 15 1 1 1 2 5 hpa 15 hpa 35 3 25 2 15 Altitude (km) 1 5 hpa 5 1 3 85 hpa 6 3 3 6 1 5 hpa 5 1 3 85 hpa 6 3 3 6

3-D normal mode basis The horizontal structure equations over the sphere ũ t f ṽ + 1 φ a cos θ λ = (16) ṽ t + f ũ + 1 φ a θ = (17) φ t + gh e Ṽ = (18) were solved using the methodology of Swarztrauber and Kasahara (1985).

Shallow water waves over the sphere (h 1 = 5591 m) 9 a) Kelvin b) Equatorial Rossby (n r = 1) 6 3 Latitude 3 6 9 6 E 12 E 18 12 W 6 W 6 E 12 E 18 12 W 6 W 9 c) Mixed Rossby-Gravity d) Eastward Inertio-Gravity (n e = ) 6 3 Latitude 3 6 9 6 E 12 E 18 12 W 6 W 6 E 12 E 18 12 W 6 W Longitude Longitude

Shallow water waves over the sphere (h 4 = 474 m) 9 a) Kelvin b) Equatorial Rossby (n r = 1) 6 3 Latitude 3 6 9 6 E 12 E 18 12 W 6 W 6 E 12 E 18 12 W 6 W 9 c) Mixed Rossby-Gravity d) Eastward Inertio-Gravity (n e = ) 6 3 Latitude 3 6 9 6 E 12 E 18 12 W 6 W 6 E 12 E 18 12 W 6 W Longitude Longitude

.8 Dispersion curves for equatorial waves 1.25.75 1.33.7 1.42.65 1.54.6 1.67.55 WIG 2 1.82.5 2..45.4.35.3 WIG 1 EIG 2.5 1 m.25 34 m 22 m 14 m 4..2 53 m 5..15 MRG 96 m KELVIN.1 1. ER.5 2.

Data Outgoing Longwave Radiation (OLR) from the National Oceanic and Atmospheric Administration (NOAA) for the period 1979-212. Horizontal wind (u, v) and geopotencial (φ) from the ERA-Interim reanalysis (1979-212).

Method: filtering the dynamical fields Projection of the horizontal wind (u, v) and geopotential (φ) onto the normal modes of the linearized primitive equations on the sphere. u v φ = m,k,n w mkn (t) G m (p) e ikλ C m U(θ) iv (θ) Z(θ) mkn

Method: filtering the dynamical fields Projection of the horizontal wind (u, v) and geopotential (φ) onto the normal modes of the linearized primitive equations on the sphere. u v φ = m,k,n w mkn (t) G m (p) e ikλ C m U(θ) iv (θ) Z(θ) mkn Reconstitution of the horizontal wind (u, v) and geopotential (φ) with a given subset of modes (filtering): u n v n φ n = m,k w mkn (t) G m (p) e ikλ C m U(θ) iv (θ) Z(θ) mkn

Method: space-time cross-spectral analysis (Hayashi, 1982) Considering a space-time series Y (λ, t) = k [C k (t) cos(kλ) + S k (t) sin(kλ)]

Method: space-time cross-spectral analysis (Hayashi, 1982) Considering a space-time series Y (λ, t) = k [C k (t) cos(kλ) + S k (t) sin(kλ)] The space-time power spectra is given by 4 P k,±ω (Y ) = P ω (C k ) + P ω (S k ) ± 2 Q ω (C k, S k ), where P ω and Q ω are the time power and quadrature spectra, respectively.

Method: space-time cross-spectral analysis (Hayashi, 1982) Spectral coherence and phase difference between two fields Y (λ, t) and Y (λ, t) are given by Coh 2 k,±ω (Y, Y ) = K 2 k,±ω (Y, Y ) + Q 2 k,±ω (Y, Y ) P k,±ω (Y )P k,±ω (Y ) and Ph k,±ω (Y, Y ) = tan 1 [ Q k,±ω (Y, Y )/K k,±ω (Y, Y ) ] where

Method: space-time cross-spectral analysis (Hayashi, 1982) where 4 K k,±ω (Y, Y ) = K ω (C k, C k ) + K ω (S k, S k ) ±Q ω (C k, S k ) Q ω (S k, C k ) and 4 Q k,±ω (Y, Y ) = ±Q ω (C k, C k ) ± Q ω (S k, S k ) K ω (C k, S k ) + K ω (S k, C k ) are cospectra and quadrature spectra, respectively.

Testing the methodology Reconstructing the circulation field u v φ = m,k,n w mkn (t) G m (p) e ikλ C m U(θ) iv (θ) Z(θ) mkn Symmetric and antisymmetric components of a variable Y Y S (θ) = Y A (θ) = Y (θ) + Y ( θ) 2 Y (θ) Y ( θ) 2

Squared coherence between symmetric components of zonal wind and OLR.5 a) Original u (15 hpa) 96 m b) Reconstructed u (15 hpa) 2..45 53 m.4 34 m 2.5.35 22 m.5.3.25.2 KELVIN 14 m 1 m 4. 5..4.15.1 96 m ER 1..5 2..3.5 c) Original u (85 hpa) d) Reconstructed u (85 hpa) 2..45.4 2.5.2.35.3.25.2 4. 5..1.15.1 1..5 2.

.5.45.4 Squared coherence between anti symmetric components of zonal wind and OLR a) Original u (15 hpa) 34 m b) Reconstructed u (15 hpa) 53 m 22 m 96 m EIG 14 m 1 m 2. 2.5.35.5.3.25.2 4. 5..4.15 MRG.1 1..5 2..3.5 c) Original u (85 hpa) d) Reconstructed u (85 hpa) 2..45.4 2.5.2.35.3.25.2 4. 5..1.15.1 1..5 2.

Selecting waves Fixing a given pair of zonal, k and meridional n indices, waves of a given type are selected u kn v kn φ kn = m w mkn (t) G m (p) e ikλ C m U(θ) iv (θ) Z(θ) mkn

Results Space-time coherence spectra for eastward inertio-gravity (EIG), mixed Rossby-gravity (MRG), Kelvin (Kel) and Equatorial Rossby (ER) waves.

Squared coherence between u EIG and anti symmetric OLR.5.45 a) 5 hpa 34 m 53 m 22 m 96 m EIG 14 m b) 15 hpa 2..4 1 m 2.5.35.5.3.25.2 4. 5..4.15 MRG.1 1..5 2..3.5 c) 5 hpa d) 85 hpa 2..45.4 2.5.2.35.3.25.2 4. 5..1.15.1 1..5 2.

Squared coherence between u MRG and anti symmetric OLR.5.45 a) 5 hpa 34 m 53 m 22 m 96 m EIG 14 m b) 15 hpa 2..4 1 m 2.5.35.5.3.25.2 4. 5..4.15 MRG.1 1..5 2..3.5 c) 5 hpa d) 85 hpa 2..45.4 2.5.2.35.3.25.2 4. 5..1.15.1 1..5 2.

Squared coherence between u KEL and symmetric OLR.5 a) 5 hpa 96 m b) 15 hpa 2..45 53 m.4 34 m 2.5.35 22 m.5.3.25.2 KELVIN 14 m 1 m 4. 5..4.15.1 96 m ER 1..5 2..3.5 c) 5 hpa d) 85 hpa 2..45.4 2.5.2.35.3.25.2 4. 5..1.15.1 1..5 2.

Squared coherence between u ER and symmetric OLR.5 a) 5 hpa 96 m b) 15 hpa 2..45 53 m.4 34 m 2.5.35 22 m.5.3.25.2 988 m KELVIN 14 m 1 m 4. 5..4.15.1 96 m ER 1..5 2..3.5 c) 5 hpa d) 85 hpa 2..45.4 2.5.2.35.3.25.2 4. 5..1.15.1 1..5 2.

Vertical mode decomposition of waves Fixing the vertical, zonal,and meridional indices, mkn, respectively, we obtain a vertical modal decomposition of the waves u mkn v mkn φ mkn = w mkn (t) G m (p) e ikλ C U(θ) iv (θ) Z(θ) mkn

Vertical mode decomposition of waves Fixing the vertical, zonal,and meridional indices, mkn, respectively, we obtain a vertical modal decomposition of the waves u mkn v mkn φ mkn = w mkn (t) G m (p) e ikλ C U(θ) iv (θ) Z(θ) Now for, the cosine and sine coefficients are given by mkn Ck mn R [w mkn (t)] Sk mn I [w mkn (t)]

Vertical mode decomposition of waves Fixing the vertical, zonal,and meridional indices, mkn, respectively, we obtain a vertical modal decomposition of the waves u mkn v mkn φ mkn = w mkn (t) G m (p) e ikλ C U(θ) iv (θ) Z(θ) Now for, the cosine and sine coefficients are given by mkn Ck mn R [w mkn (t)] Sk mn I [w mkn (t)] and we may analyze the coherence of the 3-D waves with the OLR and interpret their power spectra as the total (Kinetic + Available Potential) energy spectra.

Squared coherence between the Kelvin baroclinic modes and symmetric OLR.5.45.4 a) Kelvin (m=1) 5591 m b) Kelvin (m=2) 2241 m c) Kelvin (m=3) 937 m 2. 2.5.35.3.25.2.15 5591 m KELVIN 2241 m 937 m 4. 5..1.5 ER 1. 2..5.45.4 d) Kelvin (m=4) 474 m e) Kelvin (m=5) 279 m f) Kelvin (m=6) 17 m 2. 2.5.35.3.25.2.15.1.5 474 m 279 m 17 m 4. 5. 1. 2..1.2.3.4.5

Squared coherence between the Kelvin baroclinic modes and symmetric OLR.5.45.4 a) Kelvin (m=7) 116 m b) Kelvin (m=8) 78 m c) Kelvin (m=9) 2. 2.5.35.3.25.2.15 ER KELVIN 4. 5..1.5 116 m 78 m 1. 2..5.45.4 d) Kelvin (m=1) 37 m e) Kelvin (m=11) 26 m f) Kelvin (m=12) 2. 2.5.35.3.25.2.15 4. 5..1.5 1. 2..1.2.3.4.5

1 2 m= m=1 m=2 Vertical Structure Functions 1 2 16 m=3 m=4 15 hpa 14 m=5 15 hpa 16 14 12 12 Pressure (hpa) 5 hpa 1 8 6 5 hpa 1 8 6 Altitude (km) 4 4 2 85 hpa 1 3 3 1.5 1.5 3 2 85 hpa 1 3 3 1.5 1.5 3 1 2 m=6 m=7 m=8 15 hpa 16 14 1 2 m=9 m=1 m=11 15 hpa 16 14 12 12 Pressure (hpa) 5 hpa 1 8 6 5 hpa 1 8 6 Altitude (km) 4 4 2 85 hpa 1 3 3 1.5 1.5 3 2 85 hpa 1 3 3 1.5 1.5 3

Squared coherence between the MRG baroclinic modes and anti symmetric OLR.5.45 a) MRG (m=1) 5591 m b) MRG (m=2) 2241 m c) MRG (m=3) 937 m 2..4 EIG 2.5.35.3.25.2.15 MRG 4. 5..1.5 1. 2..5.45 d) MRG (m=4) 474 m e) MRG (m=5) 279 m f) MRG (m=6) 17 m 2..4 2.5.35.3.25.2.15 4. 5..1.5 1. 2..1.2.3.4.5

Squared coherence between the MRG baroclinic modes and anti symmetric OLR.5.45 a) MRG (m=7) 116 m b) MRG (m=8) 78 m c) MRG (m=9) 2..4 EIG 2.5.35.3.25.2.15 MRG 4. 5..1.5 1. 2..5.45.4 d) MRG (m=1) 37 m e) MRG (m=11) 26 m f) MRG (m=12) 2. 2.5.35.3.25.2.15 4. 5..1.5 1. 2..1.2.3.4.5

Squared coherence between the EIG baroclinic modes and anti symmetric OLR.5.45 a) EIG (m=1) 5591 m b) EIG (m=2) 2241 m c) EIG (m=3) 937 m 2..4 EIG 2.5.35.3.25.2.15 MRG 4. 5..1.5 1. 2..5.45 d) EIG (m=4) 474 m e) EIG (m=5) 279 m f) EIG (m=6) 17 m 2..4 2.5.35.3.25.2.15 4. 5..1.5 1. 2..1.2.3.4.5

Squared coherence between the EIG baroclinic modes and anti symmetric OLR.5.45 a) EIG (m=7) 116 m b) EIG (m=8) 78 m c) EIG (m=9) 2..4 EIG 2.5.35.3.25.2.15 MRG 4. 5..1.5 1. 2..5.45.4 d) EIG (m=1) 37 m e) EIG (m=11) 26 m f) EIG (m=12) 2. 2.5.35.3.25.2.15 4. 5..1.5 1. 2..1.2.3.4.5

Squared coherence between the ER baroclinic modes and symmetric OLR.5.45.4 a) ER (m=1) 5591 m b) ER (m=2) 2241 m c) ER (m=3) 937 m 2. 2.5.35.3.25.2.15 5591 m KELVIN 2241 m 937 m 4. 5..1.5 ER 1. 2..5.45.4 d) ER (m=4) 474 m e) ER (m=5) 279 m f) ER (m=6) 17 m 2. 2.5.35.3.25.2.15.1.5 474 m 279 m 17 m 4. 5. 1. 2..1.2.3.4.5

Squared coherence between the ER baroclinic modes and symmetric OLR.5.45.4 a) ER (m=7) 116 m b) ER (m=8) 78 m c) ER (m=9) 2. 2.5.35.3.25.2.15 ER KELVIN 4. 5..1.5 116 m 78 m 1. 2..5.45.4 d) ER (m=1) 37 m e) ER (m=11) 26 m f) ER (m=12) 2. 2.5.35.3.25.2.15 4. 5..1.5 1. 2..1.2.3.4.5

Normal Mode energy spectrum divided by the background red noise.5.45.4 a) Kelvin (m=1) 5591 m b) Kelvin (m=2) c) Kelvin (m=3) 2241 m 937 m 2. 2.5.35.3.25.2.15 5591 m KELVIN 2241 m 937 m 4. 5..1.5 ER 1. 2..5.45.4 d) Kelvin (m=4) 474 m e) Kelvin (m=5) 279 m f) Kelvin (m=6) 17 m 2. 2.5.35.3.25.2.15.1.5 474 m 279 m 17 m 4. 5. 1. 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

Normal Mode energy spectrum divided by the background red noise.5.45.4 a) Kelvin (m=7) 116 m b) Kelvin (m=8) 78 m c) Kelvin (m=9) 2. 2.5.35.3.25.2.15 ER KELVIN 4. 5..1.5 116 m 78 m 1. 2..5.45.4 d) Kelvin (m=1) 37 m e) Kelvin (m=11) 26 m f) Kelvin (m=12) 2. 2.5.35.3.25.2.15 4. 5..1.5 1. 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

Normal Mode energy spectrum divided by the background red noise.5.45 a) MRG (m=1) 5591 m b) MRG (m=2) 2241 m c) MRG (m=3) 937 m 2..4 EIG 2.5.35.3.25.2.15 MRG 4. 5..1 1..5 2..5.45 d) MRG (m=4) 474 m e) MRG (m=5) 279 m f) MRG (m=6) 17 m 2..4 2.5.35.3.25.2.15 4. 5..1 1..5 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

Normal Mode energy spectrum divided by the background red noise.5.45 a) MRG (m=7) 116 m b) MRG (m=8) 78 m c) MRG (m=9) 2..4 EIG 2.5.35.3.25.2.15.1.5 MRG 4. 5. 1. 2..5.45.4 d) MRG (m=1) 37 m e) MRG (m=11) 26 m f) MRG (m=12) 2. 2.5.35.3.25.2.15 4. 5..1 1..5 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

Normal Mode energy spectrum divided by the background red noise.5.45 a) EIG (m=1) 5591 m b) EIG (m=2) 2241 m c) EIG (m=3) 937 m 2..4 EIG 2.5.35.3.25.2.15 MRG 4. 5..1 1..5 2..5.45 d) EIG (m=4) 474 m e) EIG (m=5) 279 m f) EIG (m=6) 17 m 2..4 2.5.35.3.25.2.15 4. 5..1 1..5 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

Normal Mode energy spectrum divided by the background red noise.5.45 a) EIG (m=7) 116 m b) EIG (m=8) 78 m c) EIG (m=9) 2..4 EIG 2.5.35.3.25.2.15.1.5 MRG 4. 5. 1. 2..5.45.4 d) EIG (m=1) 37 m e) EIG (m=11) 26 m f) EIG (m=12) 2. 2.5.35.3.25.2.15 4. 5..1 1..5 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

Normal Mode energy spectrum divided by the background red noise.5.45.4 a) ER (m=1) 5591 m b) ER (m=2) c) ER (m=3) 2241 m 937 m 2. 2.5.35.3.25.2.15 5591 m KELVIN 2241 m 937 m 4. 5..1.5 ER 1. 2..5.45.4 d) ER (m=4) 474 m e) ER (m=5) 279 m f) ER (m=6) 17 m 2. 2.5.35.3.25.2.15.1.5 474 m 279 m 17 m 4. 5. 1. 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

Normal Mode energy spectrum divided by the background red noise.5.45.4 a) ER (m=7) 116 m b) ER (m=8) 78 m c) ER (m=9) 2. 2.5.35.3.25.2.15 ER KELVIN 4. 5..1.5 116 m 78 m 1. 2..5.45.4 d) ER (m=1) 37 m e) ER (m=11) 26 m f) ER (m=12) 2. 2.5.35.3.25.2.15 4. 5..1.5 1. 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

Normal Mode energy spectrum divided by the background red noise.5.45.4 a) Kelvin (m=1) 5591 m b) Kelvin (m=2) c) Kelvin (m=3) 2241 m 937 m 2. 2.5.35.3.25.2.15 5591 m KELVIN 2241 m 937 m 4. 5..1.5 ER 1. 2..5.45.4 d) Kelvin (m=4) 474 m e) Kelvin (m=5) 279 m f) Kelvin (m=6) 17 m 2. 2.5.35.3.25.2.15.1.5 474 m 279 m 17 m 4. 5. 1. 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

Stratosphere : Normal Mode energy spectrum divided by the background red noise.5.45.4 a) Kelvin (m=1) 5591 m b) Kelvin (m=2) c) Kelvin (m=3) 2241 m 937 m 2. 2.5.35.3.25.2.15 5591 m KELVIN 2241 m 937 m 4. 5..1.5 ER 1. 2..5.45.4 d) Kelvin (m=4) 474 m e) Kelvin (m=5) 279 m f) Kelvin (m=6) 17 m 2. 2.5.35.3.25.2.15.1.5 474 m 279 m 17 m 4. 5. 1. 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

Troposphere : Normal Mode energy spectrum divided by the background red noise.5.45.4 a) Kelvin (m=1) 5591 m b) Kelvin (m=2) c) Kelvin (m=3) 2241 m 937 m 2. 2.5.35.3.25.2.15 5591 m KELVIN 2241 m 937 m 4. 5..1.5 ER 1. 2..5.45.4 d) Kelvin (m=4) 474 m e) Kelvin (m=5) 279 m f) Kelvin (m=6) 17 m 2. 2.5.35.3.25.2.15.1.5 474 m 279 m 17 m 4. 5. 1. 2. 1 1.5 2 2.5 3 3.5 4 4.5 5

QBO effects The vertical propagation of equatorial waves was analysed for the two phases of the QBO. Considering the daily zonal mean 3-hPa zonal wind at the equator the QBO phases were defined as follows u( N, 3 hpa) > 5 m s 1 Westerly phase u( N, 3 hpa) < 5 m s 1 Easterly phase

QBO effects The vertical propagation of equatorial waves was analysed for the two phases of the QBO. Considering the daily zonal mean 3-hPa zonal wind at the equator the QBO phases were defined as follows u( N, 3 hpa) > 5 m s 1 Westerly phase u( N, 3 hpa) < 5 m s 1 Easterly phase From the linear theory and using the slow-variation WKBJ approximation (Andrews et al., 1987), waves with zonal phase velocity c can propagate vertically only if the zonal winds satisfy c u(z) > for Kelvin waves β/k 2 < c u(z) < for MRG waves

OCTOBER 212 Y A N G E T A L. 2965

The ratios between the power spectra calculated for each QBO phase are represented in the next Figures F = PE QBO P W QBO

Ratio between the Normal Mode Power spectra for the two QBO phases (Easterly/Westerly).5.45.4 a) Kelvin (m=1) 5591 m b) Kelvin (m=2) 2241 m c) Kelvin (m=3) 937 m 2. 2.5.35.3.25.2.15 5591 m KELVIN 2241 m 937 m 4. 5..1.5 ER 1. 2..5.45.4 d) Kelvin (m=4) 474 m e) Kelvin (m=5) 279 m f) Kelvin (m=6) 17 m 2. 2.5.35.3.25.2.15.1.5 474 m 279 m 17 m 4. 5. 1. 2..3.5.7.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

Ratio between the Normal Mode Power spectra for the two QBO phases (Easterly/Westerly).5.45.4 a) Kelvin (m=7) 116 m b) Kelvin (m=8) 78 m c) Kelvin (m=9) 2. 2.5.35.3.25.2.15 ER KELVIN 4. 5..1.5 116 m 78 m 1. 2..5.45.4 d) Kelvin (m=1) 37 m e) Kelvin (m=11) 26 m f) Kelvin (m=12) 2. 2.5.35.3.25.2.15 4. 5..1.5 1. 2..3.5.7.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

Stratosphere : Ratio between the Normal Mode Power spectra for the two QBO phases (Easterly/Westerly).5 2. a) Kelvin (m=1) 5591 m b) Kelvin (m=2) c) Kelvin (m=3).45 2241 m 937 m.4 2.5.35.3.25 KELVIN 4. 5591 m.2 5. 2241 m 937 m.15.1.5 ER 1. 2..5.45.4 d) Kelvin (m=4) 474 m e) Kelvin (m=5) 279 m f) Kelvin (m=6) 17 m 2. 2.5.35.3.25.2.15.1.5 474 m 279 m 17 m 4. 5. 1. 2..3.5.7.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

Stratosphere : Ratio between the Normal Mode Power spectra for the two QBO phases (Easterly/Westerly).5 2. a) Kelvin (m=7) b) Kelvin (m=8) c) Kelvin (m=9).45 116 m 78 m.4 2.5.35.3.25 KELVIN 4..2 5..15 ER.1.5 116 m 78 m 1. 2..5.45.4 d) Kelvin (m=1) 37 m e) Kelvin (m=11) 26 m f) Kelvin (m=12) 2. 2.5.35.3.25.2.15 4. 5..1.5 1. 2..3.5.7.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

The vertical wavenumber of Kelvin waves is given by m(z) = N c u

The vertical wavenumber of Kelvin waves is given by m(z) = N c u Therefore the westerly QBO phase is associated with smaller vertical wavelengths.

Stratosphere : Ratio between the Normal Mode Power spectra for the two QBO phases (Easterly/Westerly).5 2. a) Kelvin (m=1) 5591 m b) Kelvin (m=2) c) Kelvin (m=3).45 2241 m 937 m.4 2.5.35.3.25 KELVIN 4. 5591 m.2 5. 2241 m 937 m.15.1.5 ER 1. 2..5.45.4 d) Kelvin (m=4) 474 m e) Kelvin (m=5) 279 m f) Kelvin (m=6) 17 m 2. 2.5.35.3.25.2.15.1.5 474 m 279 m 17 m 4. 5. 1. 2..3.5.7.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

2 E QBO W QBO Stratospheric Kelvin waves 1.5 Energy (1 kj m 2 ) 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 vertical mode

2 E QBO W QBO Stratospheric Kelvin waves 1.5 Energy (1 kj m 2 ) 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 vertical mode Using typical values for the variables in the theoretical relationship h e = N 2 g ( m 2 + 1 4H 2 )

2 E QBO W QBO Stratospheric Kelvin waves 1.5 Energy (1 kj m 2 ) 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 vertical mode Using typical values for the variables in the theoretical relationship one obtains h e = N 2 g ( m 2 + 1 4H 2 ) h 7 = 116 m L z = 9.7 km h 9 = L z = 6.5 km

1 m= m=1 m=2 Vertical Structure Functions 5 1 45 m=3 m=4 m=5 5 45 4 4 Pressure (hpa) 1 1 35 3 1 1 35 3 Altitude (km) 5 hpa 25 5 hpa 25 2 1 2 6 3 3 6 15 hpa 2 1 2 6 3 3 6 15 hpa 1 m=6 m=7 m=8 5 hpa 5 45 1 m=9 m=1 5 hpa m=11 5 45 85 hpa 4 85 hpa 4 Pressure (hpa) 1 1 35 3 1 1 35 3 Altitude (km) 5 hpa 25 5 hpa 25 2 2 1 2 6 3 3 15 hpa 6 1 2 6 3 3 15 hpa 6

Stratosphere : Ratio between the Normal Mode Power spectra for the two QBO phases (Easterly/Westerly).5 a) MRG (m=1) b) MRG (m=2) c) MRG (m=3) 2241 m 937 m.45 5591 m 2..4 EIG 2.5.35.3.25.2.15 MRG 4. 5..1 1..5 2..5.45 d) MRG (m=4) 474 m e) MRG (m=5) 279 m f) MRG (m=6) 17 m 2..4 2.5.35.3.25.2.15 4. 5..1 1..5 2..3.5.7.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

Stratosphere : Ratio between the Normal Mode Power spectra for the two QBO phases (Easterly/Westerly).5 a) MRG (m=7) 116 m b) MRG (m=8) c) MRG (m=9).45 78 m.4 EIG 2. 2.5.35.3.25.2.15.1.5 MRG 4. 5. 1. 2..5.45.4 d) MRG (m=1) 37 m e) MRG (m=11) 26 m f) MRG (m=12) 2. 2.5.35.3.25.2.15 4. 5..1 1..5 2..3.5.7.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

Conclusions 3-D normal modes over the sphere are a useful tool for the study of equatorial waves:

Conclusions 3-D normal modes over the sphere are a useful tool for the study of equatorial waves: free and convectively coupled equatorial waves of different types are clearly identified;

Conclusions 3-D normal modes over the sphere are a useful tool for the study of equatorial waves: free and convectively coupled equatorial waves of different types are clearly identified; Doppler shifts and other wave propagation features predicted by the theory are clearly shown.

Conclusions 3-D normal modes over the sphere are a useful tool for the study of equatorial waves: free and convectively coupled equatorial waves of different types are clearly identified; Doppler shifts and other wave propagation features predicted by the theory are clearly shown. Suggestion:The methodology can be made less constraining as in Yang et al. (23) or Gehne and Kleeman (212) but using the Hough vectors instead of parabolic cylinder functions.

Conclusions 3-D normal modes over the sphere are a useful tool for the study of equatorial waves: free and convectively coupled equatorial waves of different types are clearly identified; Doppler shifts and other wave propagation features predicted by the theory are clearly shown. Suggestion:The methodology can be made less constraining as in Yang et al. (23) or Gehne and Kleeman (212) but using the Hough vectors instead of parabolic cylinder functions. Thank you!