b g b g b g Chapter 2 Wave Motion 2.1 One Dimensional Waves A wave : A self-sustaining disturbance of the medium Hecht;8/30/2010; 2-1

Similar documents
Lecture 5. Plane Wave Reflection and Transmission

Reflection and Refraction

Field due to a collection of N discrete point charges: r is in the direction from

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Note: Please use the actual date you accessed this material in your citation.

s = rθ Chapter 10: Rotation 10.1: What is physics?

Chapter 3: Vectors and Two-Dimensional Motion

Name of the Student:

New integrated programmable optical diffractive element

May 29, 2018, 8:45~10:15 IB011 Advanced Lecture on Semiconductor Electronics #7

MCTDH Approach to Strong Field Dynamics

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

2 shear strain / L for small angle

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Time-Dependent Density Functional Theory in Condensed Matter Physics

Chapter 4. The Properties of Light 4.1 Introduction Scattering Transmission, reflection, and refraction

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

Lecture 22 Electromagnetic Waves

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

The Feigel Process. The Momentum of Quantum Vacuum. Geert Rikken Vojislav Krstic. CNRS-France. Ariadne call A0/1-4532/03/NL/MV 04/1201

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

CHAPTER 10: LINEAR DISCRIMINATION

Chapter 7. Interference

r r q Coulomb s law: F =. Electric field created by a charge q: E = = enclosed Gauss s law (electric flux through a closed surface): E ds σ ε0

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

Scattering at an Interface: Oblique Incidence

1 Constant Real Rate C 1

Natural Lighting System Combined With a Prismatic Canopy

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Physics 201 Lecture 15

EMA5001 Lecture 3 Steady State & Nonsteady State Diffusion - Fick s 2 nd Law & Solutions

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

Muffin Tins, Green s Functions, and Nanoscale Transport [ ] Derek Stewart CNF Fall Workshop Cooking Lesson #1

Rotations.

8. HAMILTONIAN MECHANICS

Chapter Fifiteen. Surfaces Revisited

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

ajanuary't I11 F or,'.

Chapter Finite Difference Method for Ordinary Differential Equations

24-2: Electric Potential Energy. 24-1: What is physics

N 1. Time points are determined by the

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

r r r r r EE334 Electromagnetic Theory I Todd Kaiser

Electromagnetism Physics 15b

Chapters 2 Kinematics. Position, Distance, Displacement

Solution in semi infinite diffusion couples (error function analysis)


Mechanics Physics 151

p E p E d ( ) , we have: [ ] [ ] [ ] Using the law of iterated expectations, we have:

Time-Dependent Density Functional Theory in Optical Sciences

The Production of Polarization

Review: Electrostatics and Magnetostatics

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Motion of Wavepackets in Non-Hermitian. Quantum Mechanics

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Gauss s Law: Circuits

Physics Exam II Chapters 25-29

ESS 265 Spring Quarter 2005 Kinetic Simulations

4. Electrodynamic fields

II. Electric Field. II. Electric Field. A. Faraday Lines of Force. B. Electric Field. C. Gauss Law. 1. Sir Isaac Newton ( ) A.

II. Light is a Ray (Geometrical Optics)

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant

calculating electromagnetic

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Chapter 13 - Universal Gravitation

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09

Electromagnetic Waves

Chapter 31 Faraday s Law

Relative and Circular Motion

Gauss Law. Physics 231 Lecture 2-1

Faraday s Law (continued)

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

FARADAY'S LAW dt

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials

Review of Vector Algebra and Vector Calculus Operations

TUTORIAL 9. Static magnetic field

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

PHYS 1443 Section 001 Lecture #4

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y

Lecture 9: Dynamic Properties

4. Fundamental of A.C. Circuit

MIT Ray Tracing Ray Tracing

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

3. Magnetostatic fields

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

MAGNETIC FIELD INTRODUCTION

Transcription:

Chape Wave Moon Hech;8/30/010; -1.1 One Dmensonal Waves A wave : A self-susanng dsubance of he medum Waves n a spng A longudnal wave A ansvese wave : Medum dsplacemen // Decon of he wave : Medum dsplacemen Decon of he wave The dsubance advances, bu no he medum (Ths s why waves can popagae a gea speeds) b g A wave s gven by a funcon of poson and me: ψ=f x, The shape of he dsubance a a cean me The pofle of he wave ψ x, 0 = f x, 0 f x : Takng a phoogaph a = 0 b g b g b g A wave on a sng

Hech;8/30/010; - Popagaon of a pulse Movng efeence fame A new coodnae sysem, S, movng wh he wave ψ= fbx g : Indep. of me. The pofle s measued along x' In hs case x' = x v ψ x, = f x v : 1-D wavefuncon b g b g A a lae me + Δ f x v + Δ f x v change poson x x + vδ b g b g : Same pofle A wave n -x decon ψ= fbx + vg F + F x v v I HG K J b + Ohe expessons F x/ v g The Dffeenal Wave q. Sa wh ψ=f x v ψ x b g and x' = x v f x' f = = x' x x', ψ x = f x' Smlaly ψ f x' = = v f, x' x' ψ = v f x

Combnng he eqs. ψ 1 ψ = : 1-D dffeenal wave eq. x v Is soluon ψ= C f x v + C g x + v b g b g 1 Thee ae wo knds of 1-D wave(+ and waves) 1-D dffeenal wave eq. should be of second-ode. Hech;8/30/010; -3. Hamonc waves A wave wh sne o cosne pofle ψ ( x,0) = Acoskx = f ( x) k : popagaon numbe A : amplude A avelng wave by eplacng x by ( x v) ψ ( x, ) = Acos [ kx ( v) ] = f( x v) : Peodc n boh space and me The spaal peod : Wavelengh, λ [m] ψbx ± λ, g = ψbx, g cos[ k( x v)] cos k ( x ± λ) v cos[ k( x v) ± λk] [ ] poson change by ±λ phase, ϕ = π k = π / λ The elaon beween ϕ and x ψ = A cosϕ 3 5 7 ϕ = π 0 π π π π π 3 π π π ψ = Acos x λ x λ λ λ 3λ 5λ 3π 7π x = 0 λ 4 4 4 4 4 The empoal peod : Fequency, ν = 1/ τ [Hez] ψbx, ± τg = ψbx, g cos[ k( x v)] cos k [ x v( ± τ )] cos k {( x v ) vτ } me change by ±τ, = π /k τ = λ/v The empoal fequency : ν = 1/ τ Theefoe v =νλ Angula fequency : ω = πν

.3 Phase and Phase Velocy A hamonc wave ψ ( x, ) = Acos( kx ω+ ε) nal phase ϕ, phase The physcal meanng of ε Inal conbuon a he geneao Hech;8/30/010; -4 = ( ) ψ( x, ) = Acos ( kx ω+ π/) ψ( x, ) Acos kx ω π/ The ae of change of he phase wh me. Angula fequency ϕ = ω x Velocy of consan phase kx ω + ε = C kδx ωδ = 0 The ae of change of he phase wh dsance Popagaon numbe ϕ = k x x ω =± =± v : Phase velocy k ϕ.4 The Supeposon Pncple Two waves ψ1 and ψ boh sasfy he dffeenal wave eq. ψ1 1 ψ1 ψ 1 ψ =, = x v x v Add wo eqs. 1 ( ψ1 + ψ ) = ( ψ1 + ψ) x v ψ + ψ s also a soluon of he dff. wave eq. ( ) 1 Two waves can add algebacally n he ovelap egon. Ousde he ovelap egon, each popagaes unaffeced. Supeposon of wo waves, Fg..14 Waves, whch ae ou-of-phase, dmnsh each ohe Inefeence

.5 The Complex Repesenaon The complex numbe ~z = x + y : = 1 eal, magnay pas Hech;8/30/010; -5 In pola coods. x = cos θ, y = sn θ z~ = cos θ+ sn θ e θ ule fomula e θ = cos θ+ sn θ : magnude, modulus, absolue value θ : phase angle b g b g θ The complex conjugae : ~* * z = x + y = x y = e A hamonc wave s usually epesened by he eal pa of z ~ ψ ω ε x Ae kx b, g b g = ReL + N Acosbkx ω ε M O QP + g The wave funcon, n geneal ω ε ψ x Ae kx, = + b g b g.7 Plane Waves The suface of a consan phase fom a plane. The phase plane s pependcula o he popagaon decon. A plane wave ψ Ae k bg = A consan phase eques k = a consan Assume a = k o consan veco ( o ) k = 0 foms a plane ha s pependcula o k

The peodc naue of a plane wave ψ + λk = ψ k : un veco of k ( ) ( ) ( ) Ae k k +λ, Ae k Hech;8/30/010; -6 k = π λ k : Popagaon veco Sufaces jonng pons of equal phase wavefons [Fg.0] A plane wave wh me dependence ω Ae k, = ψ( ) The plane wave n Caesan cood. kx x ky y kz z ω b g d + + ψ xyz,,, = Ae x y z : k = k + k + k The phase velocy (Velocy of he wavefon) ψ + Δk, + Δ ψ, e e j b g k ( + Δ k ) ω( + Δ ) e k ω k Δ = ±ωδ d d ω =± =±v k Two plane waves wh he same wavelengh k1 = k = π/ λ k k z Wave 1 : Ae 1 ω 1 Ae 1 ω = 1, k k y z Wave : Ae ω bsn θ + cos θ g ω = Ae In geneal b g b g α β γ ω ψ xyz Ae k x + y +,,, = z whee k = k = kx + ky + kz α +β + γ = 1 : Decon cosnes Cosne of he angle subended by k and x (1)

.8 The Thee-Dmensonal Dffeenal Wave quaon Fom (1) ψ = α k ψ, x ψ ψ ψ + + = k ψ x y z ψ = β k ψ, y ψ z Hech;8/30/010; -7 = γ k ψ Smlaly ψ = ω ψ Combne he wo eqs. 1 ψ ψ = v whee = + + x y z : Thee dmensonal dffeenal wave eq. : Laplacan opeao One of he soluon s a plane wave k x x ky y kz z ω k αx βy γz v b g d + + b + + g ψ xyz,,, = Ae = Ae Noe ha he followng s also a soluon ψ x, y, z, C f k v C g k = + + v b g 1 e j e j.9 Sphecal Waves A sphecal wave s sphecally symmecal, ndependen of θ ψ ( ) = ψ (, θ, φ) = ψ ( ), The dffeenal wave eq. n hs case 1 bψg = bψg v The soluon b g b g ψ, = f v ψ, The hamonc sphecal wave ψ A e kb vg b, g = The wavefon s obaned fom k = consan Concenc sphees b g b g = 1 f v and φ

Hech;8/30/010; -8 The sphecal wave deceases n amplude as popagaes. A pa of a sphecal wave esembles a pa of a plane wave a fa dsance.10 Cylndcal Waves The cylndcal symmey eques bg b g bg ψ = ψ, θ, z = ψ The dffeenal wave eq. F I HG K J = 1 ψ 1 ψ v The soluon s gven by Bessel funcons. As A ψ, b g b g ek v

Chape 3. lecomagnec Theoy, Phoons, and Lgh Classcal lecodynamcs : negy ansfe by elecomagnec waves Quanum lecodynamcs : negy ansfe by massless pacles(phoons) 3.1 Basc Laws of lecomagnec Theoy lecc chages, me vayng magnec felds lecc feld lecc cuens, me vayng elecc felds Magnec feld The foce on a chage q F = q + qv B : Loenz foce A. Faaday s Inducon Law A me-vayng magnec flux hough a loop Induced lecomove Foce(emf) o volage d emf = Φ B d z dl. B ds C zz A d db z dl = B ds ds C dzz A zz : Faaday s law A d Hech;8/30/010; -9 (Wong decon of dl n he book) B. Gauss s Law-lecc lecc flux : Φ = DdS= D ds A A The oal elecc flux fom a closed suface = The oal enclosed chage D ds = ρdv A, V whee D = ε, ε = εε o, elecc pemvy Pemvy of fee space Relave pemvy, Delecc consan

A pon chage a he ogn D s consan ove a sphee, Φ = q q Coulomb s law, = πε 4 o Φ = 4π. D Hech;8/30/010; -10 C. Gauss s Law-Magnec No solaed magnec chage B ds = A zz 0 D. Ampee s Law A cuen peneang a closed loop nduces magnec feld aound he loop Usng cuen densy JA [ / m ] H dl = J ds : Ampee s law C A whee B = μh wh μ = μ μ o, pemeably Pemeably of fee space Relave pemeably A capaco (1) Cuen hough he suface A 1 0 Magnec feld along cuve C 0 Cuen hough he suface A = 0 Magnec feld along cuve C=0 (???) () Magnec feld aound he we 0. B 0 beween he plaes even f hee s no cuen. (They ae ndsngushable)

Hech;8/30/010; -11 Beween he capaco plaes Q = ε = ε A A J D, Dsplacemen cuen densy Dffeenae boh sdes The genealzed Ampee s law D H dl = J + ds C : Maxwell A. Maxwell s quaons In fee space : ε = ε, μ = μ, ρ = = 0 o o J B B dl = ds C = A D D H dl = ds C H = A B ds = 0 B = 0 A D ds = 0 D = 0 A Dffeenal fom (1) () (3) (4) 3. lecomagnec Waves Thee basc popees (1) Pependculay of he felds A me-vayng D geneaes H ha s pependcula o D [Fg. 3.1] B B [Fg. 3.5] Tansvese naue of and H () Inedependence of and H Tme vayng and B egeneae each ohe endlessly (3) Symmey of he equaons The popagaon decon wll be symmecal o boh and H

Dffeenal wave equaon Fom (1) = B e j e j Hech;8/30/010; -1 Usng () = εμ e j =0 o o = ε μ o o In Caesan cood. by sepaaon of vaables x x x x ε μ x + + = o o, : y z Wave equaon known long befoe Maxwell εμ wh v = 1/ o o Maxwell calculaed 1 1 8 v = = 3 10 m / s : ε oμ 1 7 o 8. 854 10 4π 10 Maxwell concluded ha lgh s an elecomagnec wave. Fzeau's measuemen, c=315,300 Km / s Tansvese Waves A plane wave popagang along x-axs xyz b,,, g xyz b,,, g = = 0 y z = x, ( x, ) x + ( x, ) y + ( x, ) z ( ) Fom dvegence eq. (4) = 0 x y z x x = 0 = ( xy, ) + ( xz, ) Assume = y y x, Fom (1) y x y z x y z 0 0 Only y y b g z B = + + = 0 y z x = 0, x = cons (no a avelng wave) = 0, = 0 x y z : Tansvese wave and B exs : Tansvese wave z z y x B y B x y = z Bz (5) x = 0, = 0, o mach z

Hech;8/30/010; -13 A plane hamonc wave x, = cos kx ω + ε y ( ) [ ] o The B- feld fom (5) y 1 Bz = d o cos [ kx ω +ε] x c y = cbz : and B ae n phase B // Beam popagaon decon 3.3 negy and Momenum A. The Poynng Veco The elecomagnec wave anspos enegy and momenum The enegy densy of an elecc feld : u ε = 1 o = 1 μ The enegy densy of a magnec feld : ub B o Fom he elaon = cb : u = u The oal enegy densy of an elecomagnec wave u = u + u B B

Hech;8/30/010; -14 The powe densy of an elecomagnec wave [W/m ] (enegy pe un me pe un aea) S = H : Poynng veco W / m A hamonc plane wave = o cosek ωj, B = B cos k ω o e j e j e j S = c ε B cos k ω (1) o o o Tme aveage of Hamonc Funcons 1 T + / () () cos ( ) [ 1 snc( T)cos( ) ] f T T f d T/ 1 1 ω = + ν ω () T T >> 1/ ν B. The Iadance The me aveage of powe densy Fom (1) and () 1 1 I S = c ε B c ε T o o o o o s moe effcen on a chage han B The Invese Squae Law A pon souce a he cene A sphecal wave Fom he enegy consevaon 4π I = 4π I, 1 bg bg 1 bg bg 1 o 1 = o = cons. lecc feld ~ 1/, Iadance ~ 1/ : Invese squae law s called opcal feld

Hech;8/30/010; -15 Chape 4. The Popees of Lgh 4.1 Inoducon Scaeng Tansmsson, eflecon, and efacon (mcoscopc) (macoscopc) 4. Raylegh Scaeng 4.3 Reflecon Huygens s Pncple - vey pon on a pmay wavefon behaves as a pon souce of sphecal seconday wavele. - The seconday waveles popagae wh he same speed and fequency wh he pmay wave. - The wavefon a a lae me s he envelope of hese waveles. Huygens-Fesnel Pncple The wavefon a a lae me s he supeposon of he seconday waveles. Rays A ay s a lne dawn n he decon of lgh popagaon. In mos cases, ay s sagh and pependcula o he wavefon A plane wave s epesened by a sngle ay. Law of eflecon (Pa II) : The ncden and efleced ays all le n he plane of ncdence The plane made by he ncden ay and he suface nomal A. The Law of Reflecon A plane wave no a fla medum ( λ>> aomc spacng) Sphecal waveles fom he aoms Consucve nefeence only n one decon λ<<aomc spacng Seveal eflecon (X-ay scaeng).

Devaon of he law Hech;8/30/010; -16 A =0, he wavefon s AB A = 1, he wavefon s CD Noe v 1 = BD = AD sn θ, v1 = AC = AD sn θ sn θ sn θ = v v Snce v θ = v = θ : Law of eflecon (Pa I) 4.4 Refacon The ncden ays ae ben a an neface Refacon A. The Law of Refacon A =0 he wavefon s AB A =Δ he wavefon s D vδ = BD = ADsn θ v Δ = A = AD sn θ Snce v n sn θ sn θ = v v = c n, v sn θ c = n = n sn θ : Law of efacon, Snell s law A weak elecc feld A lnea esponse of he aom A smple hamonc vbaon of he aom The fequences of he ncden, efleced and efaced waves ae equal. The ncden, efleced, and efaced ays all le n he plane of ncdence.

4.5 Fema s Pncple Heo poposed he pncple of shoes pah θ = θ S, P and B ae n he plane of ncdence Hech;8/30/010; -17 Fema poposed he pncple of leas me Lgh akes he pah ha akes he leas me Fema s pncple on efacon The me fom S o P SO OP h + x b + ( a x) = + + v v v v sn θ sn θ = v v : Snell s law d / dx = 0 Opcal Pah Lengh The ans me fom S o P : In an nhomogeneous medum OPL = P S ( ) n s ds m s 1 = v c m = 1 = 1 ns Opcal pah lengh (OPL) Rewe Fema s Pncple Lgh aveses he pah wh he smalles opcal pah lengh Moden Fema s Pncple The opcal pah lengh of he acual lgh pah s saonay wh espec o vaaons of he pah f ( x ) s saonay wh espec o x df dx = 0 Rays slghly devae fom he saonay pah The same OPL Consucve nefeence Fema s pncple s ndependen of ay decon Pncple of evesbly No allowed n he pncple of leas me

4.6 The lecomagnec Appoach Hech;8/30/010; -18 A. Waves a an Ineface An ncden plane wave = o cos ( k ω) The efleced and ansmed waves = o cos ( k ω + ε ) = o cos ( k ω + ε) ε, ε, ε ae phase consans The bounday condons: + = ( ) ( ) ( ) angenal angenal angenal u n u u n n Ths elaon should be sasfed egadless of and ω = ω = ω k = k + ε = k + ε (1) Fom he fs wo of (1) ( k k ) = ε : s on he neface plane ( k k) ( o) = 0 : o s a pon on he neface plane ( k k )// u : u n s he suface nomal n k θ k, k and u n fom a plane (Plane of ncdence) k sn θ = k sn θ θ = θ k = k k θ Fom he fs and las of (1) ( k k) = ε ( k k) ( o) = 0 ( k k) The neface plane k, k and u n fom he plane of ncdence k sn θ = k sn θ n sn θ = n sn θ k k θ θ k = nω / c

B. The Fesnel qs. Case 1. The plane of ncdence The elaon among, H, and k H // k ˆ k // H ( ) ˆ, ( ) Hech;8/30/010; -19 A he neface o + o = o (1) H + H = H ( o ) ( o ) ( o ) angenal angenal angenal H cos θ x H cos θ x H cos θ x o o o Snce H = / μ v 1 ( 1 ) cos cos μv θ = μv θ o o o () Fom (1) and () wh μ = μ = μ = μo, v = c / n o n cos θ n cos θ = : Amplude eflecon coeff. o n cos θ + n cos θ o n cosθ = o n cos θ + n cos θ : Amplude ansmsson coeff. The physcal meanng of π phase shf on he efleced wave when n > n 1 0. 0.8

Hech;8/30/010; -0 Case // The plane of ncdence angenal should be connuous acoss he neface + = ( o ) ( o ) ( o ) angenal angenal angenal cos θ x, cos θ x, cos θ x, : s such ha B pons ouwad o o H angenal should be connuous acoss he neface H + H = H ( o ) ( o ) ( o ) angenal angenal angenal 1 o μ v z 1 o μ v z 1 o μ v z o Fom (3) and (4) wh θ = θ, v = v, μ = μ = μ = μo, v = c / n o n cos θ n cos θ = // : Amplude eflecon coeff. o n cos θ + n cos θ // (3) (4) o n cosθ = n cos θ + n cos θ o // // : Amplude ansmsson coeff. Applyng Snell s law assumng θ 0, Fesnel qs. become sn = sn n sn θ = n sn θ ( θ θ) ( θ + θ ) snθ cosθ = sn // an = an ( θ θ) ( θ +θ) // ( θ + θ ) sn ( θ +θ) cos ( θ θ) = snθ cosθ

C. Inepeaon of he Fesnel qs. Amplude Coeffcens A nomal ncdence, θ = 0 n n = n, n + n = n + n n n // = n, // n + n = n + n ( ) 1 + = fo all θ // + // = 1 only fo θ = 0 Hech;8/30/010; -1 The exenal eflecon ( n > n ) Fo θ > 0 n > n θ > θ < 0 always. // cosses zeo fom + o - a ( ) 90 o θ + θ =. θ p, polazaon angle,,, vs. θ (xenal eflecon, n > n, n = 15. ) // // A poo suface wll be molke a glancng ncdence [page 116] ven x-ay eflecs a glancng ncdence x-ay elescope The nenal eflecon ( n > n ) θ > θ > 0 always I becomes 1 a he ccal angle θ c : (n sn θ = n sn θ n sn θ = n ) c // cosses zeo fom - o + a ( θ + θ ) = 90 o ( θ p and θ p ae complemens of each ohe) θ p, polazaon angle

Hech;8/30/010; - n > n, n = 15. Phase Shfs Fo n > n, < 0 always π ou of phase beween and Fo n < n, > 0 always n he egon 0 < θ < θ In phase beween and Noe ha, // > 0 always Reflecance and Tansmance The powe pe un aea : S = b e, poynng veco 1 * S = H In phaso fom : ( ) The adan flux densy ( W / m ) : Iadance 1 c I = S = εoε o : Aveage enegy pe un me pe un aea n c

Hech;8/30/010; -3 The coss seconal aea of he ncden beam = A cos θ efleced beam = A cos θ ansmed beam = A cos θ The eflecance I A I R Refleced powe cos θ o Incden powe IAcos θ I The ansmance Tansmed powe IA cos θ o n cos θ n cos θ T = Incden powe IA cos θ o n cos θ n cos θ The addonal faco comes fom (1) dffeen ndces of efacon () dffeen coss-seconal aeas of he ncden and efaced beams. negy consevaon IAcos θ = IAcos θ + IAcos θ o o o n cos θ = n cos θ + n cos θ o o cos θ o o cos θ o n 1 = + n = R =T 4.7 Toal Inenal eflecon Assume n > n The Snell s law n sn θ = sn θ : θ < θ n A he ccal angle θ = θc, θ becomes 90 o n sn θ c = n Fo θ > θc All he ncomng enegy s efleced back no he ncden medum Toal Inenal Reflecon Inenal eflecon and TIR: Tanson fom (a) o (e) whou dsconnuy. (Reflecon nceases whle ansmsson deceases) TIR n psms: The ccal angle a a-glass neface : 4 o

A. The vanescen Wave Hech;8/30/010; -4 Usng Snell s law we ewe Fesnel q. as // n cos θ n cos θ = n cos θ + n cos θ n cos θ n cos θ = n cos θ + n cos θ, // ( n n ) / sn θ cosθ ( n n ) become complex when θ > θ * = // // = R = 1 * / sn θ + cosθ ( n n ) ( n n ) / sn θ / cosθ ( n n ) ( n n ) / sn θ + / cosθ c The ansmed wave: k = k x + k y whee x y k k k n x = sn θ n sn θ k o = e ( ω ) n y = cos θ ± 1 sn θ n k k k Snell s law n ± k θ sn 1 n =β θ > θ c z y 0 x k k cos θ θ θ θ k k sn θ k The ansmed wave: = e o n k snθx βy ω n, vanescen wave I advances n x-decon bu exponenal decay along y-axs Consan phase (yz-plane) Consan amplude (xz-plane), Inhomogeneous wave The ne enegy flow acoss he neface = 0 Fusaed Toal Inenal Reflecon (FTIR) Dense medum Rae medum Dense medum (negy ansfe) TIR vanescen wave [Fg. 4.55] FTIR [Fg. 4.56] Beamsple usng FTIR 4.9 The Ineacon of Lgh and Mae Reflecon of all vsble fequency Whe colo 70%~80% eflecon Shny gay of meal Thomas Young : Colos can be geneaed by mxng hee beams of lgh well sepaaed n fequency Thee pmay colos combne o poduce whe lgh No unque se

The common pmay colos : R, G, B Hech;8/30/010; -5 Two complemenay colos combne o poduce whe colo M + G = W, C + R = W, Y + B = W A sauaed colo conans no whe lgh and heefoe s deep and nense. An example of an unsauaed colo M + Y = R + B + R + G = W + R : Pnk ( ) ( ) The chaacesc colos of mos subsances come fom selecve absopon xample: (1) Yellow saned glass Whe lgh Resonance n blue Yellow s seen a he oppose sde Red + Geen Song absopon n blue

Hech;8/30/010; -6 () H O has esonance n IR and ed No ed a ~30m undewae (3) Blue nk looks blue n ehe eflecon o ansmsson Ded blue nk on a glass slde I looks ed. Vey song absopon of ed. Song absobe s a song efleco due o lage n I. Resonance of maeals Mos aoms and molecules. Resonances n UV and IR Pgmen molecules. Resonances n VIS Oganc dye molecules have Resonance n VIS moble elecons (p elecons) Some aoms have ncomplee Low-enegy excaon shells (Gold.) Subacve coloaon Blue lgh Yellow fle Black a he ohe sde I emoves blue