Birkhoff type decompositions and the Baker Campbell Hausdorff recursion

Similar documents
Matrix Representation of Renormalization in Perturbative Quantum Field Theory

Birkhoff type decompositions and the Baker Campbell Hausdorff recursion

Hopf algebras in renormalisation for Encyclopædia of Mathematics

On the renormalization problem of multiple zeta values

3-Lie algebras and triangular matrices

Hopf algebra approach to Feynman diagram calculations

Integrable Renormalization II: the general case

Rota-Baxter Algebra I

The Hopf algebra structure of renormalizable quantum field theory

ROTA BAXTER ALGEBRAS, SINGULAR HYPERSURFACES, AND RENORMALIZATION ON KAUSZ COMPACTIFICATIONS

arxiv:math/ v3 [math.ra] 31 May 2007

q-multiple Zeta Values I: from Double Shuffle to Regularisation

arxiv: v1 [math.ra] 3 Apr 2013

What is a Quantum Equation of Motion?

Dynkin operators and renormalization group actions in pqft.

Combinatorial Dyson-Schwinger equations and systems I Feynma. Feynman graphs, rooted trees and combinatorial Dyson-Schwinger equations

Rota Baxter Algebras in Renormalization of Perturbative Quantum Field Theory arxiv:hep-th/ v2 30 Aug 2006

Some constructions and applications of Rota-Baxter algebras I

COMBINATORIAL HOPF ALGEBRAS IN (NONCOMMUTATIVE) QUANTUM FIELD THEORY

AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE

Loday-type Algebras and the Rota-Baxter Relation

Renormalization and Euler-Maclaurin Formula on Cones

arxiv: v1 [math.ra] 11 Apr 2016

ALGEBRO-GEOMETRIC FEYNMAN RULES

Dyson Schwinger equations in the theory of computation

Combinatorial Hopf algebras in particle physics I

ON BIALGEBRAS AND HOPF ALGEBRAS OF ORIENTED GRAPHS

Transcendental Numbers and Hopf Algebras

INCIDENCE CATEGORIES

Information Algebras and their Applications. Matilde Marcolli

arxiv: v1 [math.nt] 16 Jan 2018

Introduction to Tree Algebras in Quantum Field Theory

Ringel-Hall Algebras II

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration

COLLEEN DELANEY AND MATILDE MARCOLLI

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration

Transverse geometry. consisting of finite sums of monomials of the form

Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

Dyson-Schwinger equations and Renormalization Hopf algebras

Hopf algebra structures in particle physics

FEYNMAN MOTIVES AND DELETION-CONTRACTION RELATIONS

LAX PAIR EQUATIONS AND CONNES-KREIMER RENORMALIZATION

Understanding the log expansions in quantum field theory combinatorially

arxiv:hep-th/ v1 13 Dec 1999

A Note on Poisson Symmetric Spaces

Transformations Preserving the Hankel Transform

Lecture Notes Introduction to Cluster Algebra

Feynman motives and deletion-contraction relations

Quantizations and classical non-commutative non-associative algebras

A polynomial realization of the Hopf algebra of uniform block permutations.

Renormalizability in (noncommutative) field theories

Hopf Algebras and Related Topics Conference

The Terwilliger Algebras of Group Association Schemes

Lax Pair Equations and Connes-Kreimer Renormalization

A brief introduction to pre-lie algebras

arxiv: v2 [math.ra] 23 Oct 2015

FROM THE FORMALITY THEOREM OF KONTSEVICH AND CONNES-KREIMER ALGEBRAIC RENORMALIZATION TO A THEORY OF PATH INTEGRALS

arxiv:hep-th/ v1 21 Mar 2000

arxiv: v1 [math.na] 18 Dec 2017

7. Baker-Campbell-Hausdorff formula

The Campbell-Hausdor theorem

Representations of quivers

New Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups and 3-groups

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that

Lecture 19 - Clifford and Spin Representations

New identities in dendriform algebras

Automorphisms and twisted forms of Lie conformal superalgebras

An Application of the Artin-Hasse Exponential to Finite Algebra Groups

ENTROPY ALGEBRAS AND BIRKHOFF FACTORIZATION

TEST CODE: MMA (Objective type) 2015 SYLLABUS

Classical Yang-Baxter Equation and Its Extensions

Exercises on chapter 4

arxiv:q-alg/ v1 9 Aug 1997

arxiv: v1 [math.ra] 19 Dec 2013

Epstein-Glaser Renormalization and Dimensional Regularization

QFT PS1: Bosonic Annihilation and Creation Operators (11/10/17) 1

Math/CS 466/666: Homework Solutions for Chapter 3

From Rota-Baxter Algebras to Pre-Lie Algebras

SYMPLECTIC LEAVES AND DEFORMATION QUANTIZATION

Paradigms of Probabilistic Modelling

The Hopf algebraic structure of stochastic expansions and efficient simulation

A short survey on pre-lie algebras

RENORMALIZATION AS A FUNCTOR ON BIALGEBRAS

Math 240 Calculus III

Clifford Algebras and Spin Groups

A matrix over a field F is a rectangular array of elements from F. The symbol

Algebraic Theory of Entanglement

Alexander Lundervold

Categorical techniques for NC geometry and gravity

E ring spectra and Hopf invariant one elements

Hopf subalgebras of the Hopf algebra of rooted trees coming from Dyson-Schwinger equations and Lie algebras of Fa di Bruno type

Math 210B:Algebra, Homework 2

Lecture 11: Clifford algebras

Adjoint Representations of the Symmetric Group

Almost periodic functionals

Groupoids and Faà di Bruno Formulae for Green Functions

What is a quantum symmetry?

arxiv: v3 [math.ra] 19 Jan 2014

Differential Type Operators, Rewriting Systems and Gröbner-Shirshov Bases

Quantum Theory and Group Representations

Transcription:

Birkhoff type decompositions and the Baker Campbell Hausdorff recursion Kurusch Ebrahimi-Fard Institut des Hautes Études Scientifiques e-mail: kurusch@ihes.fr Vanderbilt, NCGOA May 14, 2006 D. Kreimer, L. Guo, J. M. Gracia-Bondía, J. Várilly and D. Manchon.

abstarct The algebraic-combinatorial structure of renormalization in perturbative quantum field theory has found a concise formulation in terms of Hopf algebras of Feynman graphs. The process of renormalization is captured by an algebraic Birkhoff decomposition of regularized Feynman characters discovered by Connes and Kreimer. Associative Rota Baxter algebras naturally provide a suitable general underpinning for such factorizations in terms of Atkinson s theorem and Spitzer s identity. This approach gives a different perspective on the original result due to Connes and Kreimer in the context of other renormalization schemes. It enabled us to establish a simple matrix calculus for renormalization. However, a general characterization of the algebraic structure underlying the notion of renormalization schemes needs to be explored in future work. We should underline that our results presented here go beyond the particular application in the context of perturbative renormalization as we presented a general factorization theorem for filtered algebras in terms of a recursion defined using the Baker Campbell Hausdorff formula for which we found a closed formula under suitable circumstances. Moreover, we showed its natural link to a classical result of Magnus known from matrix differential equations. references: KEF, L. Guo and D. Manchon, Birkhoff type decompositions and the Baker Campbell Hausdorff recursion, accepted for publication in Comm. in Math. Phys. [arxiv:math-ph/0602004] KEF and D. Kreimer, Hopf algebra approach to Feynman diagram calculations, J. Phys. A: Math. Gen., 38, R385-R406, 2005. [arxiv:hep-th/0510202]

Motivation Hopf algebra of Feynman graphs: Γ) = Γ 1 + 1 Γ + γ Γ γ Γ/γ is a unital, associative, commutative, coassociative, non-cocommutative, connected, graded Hopf algebra, H F = K n>0 H n).

Renormalization process Factorization problem Bogoliubov s preparation map: φ G A, A comm. unital algebra Γ φγ) := φγ) + φ γ)φγ/γ) γ Γ Counterterm and renormalized character: T : A A, φ Γ) = T φγ) ) φ + Γ) = id A T) φγ) ) φ ± Γ Γ ) = φ ± Γ )φ ± Γ ) Tx)Ty) + Txy) = T xty) + Tx)y ) Birkhoff decomposition in G A : unique for T 2 = T φγ) = φ 1 φ +Γ) φ = expz φ ) = exp T Z φ ) + id T )Z φ ) ) = exp T?) ) exp id T )?) )

Rota Baxter Algebras Recall: A Rota Baxter algebra, A, R), of weight θ K is a K- algebra with a K-linear map R : A A, that fulfills the weight θ Rota Baxter relation Rx)Ry) + θrxy) = R Rx)y + xry) ) for all x, y A. R := θid A R is Rota Baxter map of weight θ. RA) and RA) are subalgebras in A. double Rota Baxter product a R b := Ra)b + arb) θab R a R b ) = Ra)Rb)

Integration-by-parts I : A A, A commutative unital algebra I[f] I[g] = I [ I[f] g ] + I [ f I[g] ] f = 1 A + I[af] f = 1 A + n=0 I [ I[ I[I[a]a]a ]a ] = expi[a]) }{{} n-times I[a]) n =n! I [ I[ I[I[a]a]a a] ] }{{} n-times

If we weight the Integration-by-parts rule with θ K: Rx)Ry) = R Rx)y + xry) ) θr xy ) Y = 1 + RY a) Frank Spitzer: [1956] Spitzer s classical identity exp R log1 A θa) θ ) ) = 1 A + n>0 R R RRa)a)a )a ) }{{} n-times In the limit θ 0 we get back the former case since 1 θ log1 θa) = n>0 θ n 1an n θ 0 a

Multiple-zeta-values f s x) := 1/x s Sf s )c) := i=1 1/i + c) s The map S is a Rota Baxter operator of weight θ = 1. ζs 1,, s n ) := n 1 >n 2 > >n k 1 1 n s 1 1 n s k k = S f s1 S f s2 Sf sn ) )) 0) S log1 + f k t) ) 0) = i=1 1) i 1 t i ζki) i exp i=1 1) i 1 ζik)t i = 1 + i = 1 + n>0 n>0 t i S ) S SSf k )f k )f k )f k 0) }{{} n-times t i ζk,, k) }{{} n times

Non-commutative setting Y = AY, Y 0) = 1, Y = 1 + I[AY ] Y = 1 + n=1 I [ A I[A I[A I[A]] ] }{{} n-times expi[a]) Wilhelm Magnus: Magnus expansion for matrix diff. equation. Y = exp ΩA) ) ΩA) = m 0 B m m! [ Ω,[Ω, [Ω, A]] ], Ω0) = 0. }{{} m-times Generalization to non-commutative Rota Baxter algebra: I?? R Y = 1 + n=1 R a Ra Ra Ra)) ) }{{} n-times = exp R??))

Let A be a complete filtered associative algebra. Then the functions exp : A 1 1 A + A 1, expa) := n=0 a n log : 1 A + A 1 A 1, are well-defined and inverse of each other. n!, log1 A + a) := n=1 a) n n Example: Let A be a commutative algebra. M l n A) n n lower triangular matrices carries a natural decreasing filtration in terms of the number of zero lower subdiagonals. M l n A) 1: ideal of lower triangular matrices with zero main diagonal. M l n A) k>1: ideal of strictly lower triangular matrices with zero main diagonal and zero on the first k 1 subdiagonals. M l na) M l na) 1 M l na) k 1 M l na) k, k < n, M l n A) k M l n A) m M l n A) k+m. M n A) = 1 + M l n A) 1: group of unipotent triangular matrices

expx)expy) = exp x+y+bchx, y) ), Cx, y) := x+y+bchx, y) BCHx, y) = 1 1 [x, y]+ 2 12 [x,[x, y]] 1 12 [y,[x, y]] 1 [x,[y,[x, y]]]+ 24 Now let P : A A be any linear map preserving the filtration of A, PA n ) A n. We define P to be id A P. For a A 1, define χ : A 1 A 1 χa) = a BCH Pχa)), Pχa)) ) Theorem: Let A be a complete filtered associative or Lie) algebra with a linear, filtration preserving map P : A A. For any a A 1, we have expa) = exp Pχa)) ) exp Pχa)) ) Let P : A A be an idempotent linear filtration preserving map. Let A := PA) and A + := PA). Define A 1, := PA 1 ) and A 1,+ := PA 1 ). Then for any η 1 A + A 1 there are unique η exp ) A 1, η + exp ) A 1,+ such that η = η η +

χat) = t k 0 χ k) a)t k. For k = 0,1,2 we find χ 0) a) = a χ 1) a) = 1 2 [Pa), Pa)] = 1 [Pa), a] 2 χ 2) a) = 1 2 [Pχ1) a)), Pa)] 1 2 [Pa), Pχ 1) a))] 1 [Pa),[Pa), ] a] [ Pa),[Pa), a] ]) 12 = + 1 [ P[Pa), a]), Pa) ] + 1 Pa), P[Pa), a]) 4 4[ ] 1 [Pa),[Pa), ] a] [ Pa),[Pa), a] ]) 12 = 1 [ ] 1 [Pa),[Pa), ] [ ] ) P[Pa), a]), a + a] [Pa), a], a. 4 12 The factorization gives rise to a simpler recursion for the map χ, without the appearance of P. χu) := u + BCH Pχu)), u ).

Example: Let H be a connected graded Hopf algebra. Let A = HomH, K),, ǫ) denote its complete filtered associative algebra of linear maps containing the group G of characters respectively its corresponding Lie algebra g of derivations. H = H H +, π : H H. We have for all φ = expz) G, Z g the unique characters φ 1 := exp πχz)) ) and φ + := exp ) id H π) χz)) such that φ = expz) = exp π Z) + π + Z) ) }{{} =:π + = exp π χz)) ) exp π + χz)) ) = φ 1 φ +. From the factorization we derive a closed form for the BCH-recursion χz) = Z + BCH π Z) 1 2 BCH Z, Z 2π Z) ), Z )

Atkinson s factorization theorem Theorem: [Atkinson 1963] Let A be an associative, unital Rota Baxter algebra. Assume a A fix and X and Y to be solutions of the recursive equations X = 1 A RX a) Y = 1 A Ra Y ) } X1 A + θa)y = 1 A XY = 1 A RX a) Ra Y ) + RX a) Ra Y ) = 1 A RX a) Ra Y ) + R Xa Ra Y ) ) + R RX a) ay ) = 1 A R Xa 1 A Ra Y )) ) R 1 A RX a)) ay ) ) = 1 A RXaY ) RXaY ) = 1 A θxay Canonical Rota Baxter Factorization: 1 A + θa) = X 1 Y 1

Let A be a complete filtered algebra, P a linear filtration preserving map, s.t. P + P = θid A. Let u A 1 χ θ u) = u 1 θ BCH P χ θ u) ), P χ θ u) )). χ θ u) = u + 1 θ BCH P χ θ u) ) ), θu. Such that for all expθu) 1 A + θa 1 =, u A 1 expθu) = exp Pχ θ u)) ) exp Pχ θ u)) ) We call χ θ the BCH-recursion of weight θ K, or θ-bch-recursion. A, R) complete filtered Rota Baxter algebra. exp R χ θ log1a + θa) θ ))) = exp Rχ θ u)) ) = 1 A + R exp R χθ u) ) 1 A ) = 1 A R exp Rχ θ u))a ) = 1 A + n=1 1) n R R Ra)a)... a ) } {{ } n times χ θ id A for commutative algebras: Spitzer s classical identity.

Generalized Spitzer identity: A, R) Rota Baxter algebra. ))) log1a + θa) X = exp R χ θ X = 1 A RXa) θ Y = exp log1a + θa) R χ θ θ ))) Y = 1 A RaY ) X 1 Y 1 = 1 A + θa Ca, b) = a + b + BCHa, b) = n 0 H n a, b), H n a, b): homogenous of degree n with respect to b, H 0 a, b) = a. For n = 1 we have H 1 a, b) = ad a 1 A e ad ab). In the limit θ 0: χ θ a) = a + 1 θ BCH R χ θ a) ), θa ) χ 0 a) = adr χ 0 a) ) 1 A e adrχ 0a)) a) = 1 A + B n [adr χ 0 a) )] n ) a) n>0

Magnus: Y t) = 1 + I[aY ]t) Y t) = exp Ω[a]t) ) d dt Ω[a]t) = adω[a] e adω[a] 1 a)t). exp R )) θ 0 non com. exp R χ 0 a) Magnus com. ))) χ log1a +θa) θ θ θ 0, non com. com. θ 0 θ 0 com. θ 0 exp Ra) ) θ=0, com. exp R )) log1a +θa) θ cl. Spitzer

A matrix representation of the combinatorics of renormalization in pqft Let A, R) be a commutative Rota Baxter algebra with idempotent Rota Baxter map. H is the Hopf algebra of Feynman graphs. Theorem: HomH, A),, R) is a complete filtered Rota Baxter algebra with Rota Baxter operator Rφ) := R φ and filtration from H. We denote its unit by e A := η A ǫ. For an A-valued character φ = exp Z φ ) G A we have: 1. φ G A and φ 1 + G A are solutions to φ = e A R φ φ e A ) ) such that φ = φ 1 φ + φ 1 + = e A R φ e A ) φ 1 ) + 2. φ and φ + are algebra morphisms, i.e., A-valued characters in G A := e A + RA 1 ) and G + A := e A + RA 1 ), respectively, and φ = exp R χlog φ)) )) resp. φ + = exp R χlog φ)) )).

Coproduct matrix Let H be the Hopf algebra of Feynman graphs. Recall Γ) = Γ 1 + 1 Γ + γ Γ γ Γ/γ F H F Fix a list of graphs J F such that J is a right coideal. In fact, the elements in J are indexed by I = N or I = {1,, m} and ordered according to the grading in H The coproduct matrix with respect to J is the I I matrix MJ) with entries in H defined by : γ i ) = j I MJ) ij γ j. MJ) ij H is a lower triangular matrix with unit diagonal. For the cograph we have degγ j ) < γ i.

Reduced list of 1PI graphs: take the following simple set of electron self-energy graphs borrowed from QED J := { Γ 1 := 1, Γ 2 :=, Γ 3 :=, Γ 4 :=, Γ 5 :=, } 1 Γ 2 Γ 3 Γ 4 Γ 5 = MJ) ij ) Γ 1. Γ 5 = 1 0 0 0 0 Γ 2 1 0 0 0 Γ 3 Γ 2 1 0 0 Γ 4 Γ 3 Γ 2 1 0 Γ 5 Γ 2 Γ 2 2Γ 2 0 1 1 Γ 2 Γ 3 Γ 4 Γ 5, MJ) ij : Γ j Γ i /MJ) ij ) = 1 + + 2 + 1 Let f HomH, A) a linear map f := f MJ) ) = fmj) ij ) ) 1 j i J Ml J A) with f 1i = fγ i ) for all graphs Γ i, i = 1,..., J possibly infinite). The matrix f is in the algebra of lower triangular matrices of size J with entries in the commutative Rota Baxter algebra A.

Feynman rules character φ G A : Feynman rules matrix φ = 1 A 0 0 0 0 φγ 2 ) 1 A 0 0 0 φγ 3 ) φγ 2 ) 1 A 0 0 φγ 4 ) φγ 3 ) φγ 2 ) 1 A 0 φγ 5 ) φγ 2 )φγ 2 ) 2φΓ 2 ) 0 1 A Lie group ĜA := 1 + M l J A) 1 M l J A). For the Lie algebra L A of infinitesimal characters we see that Z L A applied to MJ) maps the unit diagonal and non-linear entries to zero Ẑ = 0 0 0 0 0 ZΓ 2 ) 0 0 0 0 ZΓ 3 ) ZΓ 2 ) 0 0 0 ZΓ 4 ) ZΓ 3 ) ZΓ 2 ) 0 0 ZΓ 5 ) 0 2ZΓ 2 ) 0 0

Rota Baxter structure on M l n A): Rα) := Rα ij ) ) 1 j i J. Representation: Rota Baxter homomorphism Ψ A,J : HomH, A), R ) M l J A),R), Ψ A,J [f] = f Ψ[f] : A J id A A H J id A f id J A A J m A id J A J Ψ[f]Γ i ) = f id J Γ) = Ψ[f g] = Ψ[f] Ψ[g] = f ĝ, i j=1 fγ ij ) Γ j A J. Ψ[Rf)] = RΨ[f]) = R f) M ij ) = J k=0 M ik M kj. Ψ J [f g]γ j ) = i = i f g)m ij ) γ i k fm ik )gm kj ) γ i = Ψ J [f]ψ J [g]γ j ),

Factorization of ĜA M l J A) into the subgroups: and Ĝ A 1 + R M l J A)1) M l J A) Ĝ + A 1 + R M l J A)1) M l J A), that is, for each φ := Ψ[φ] ĜA, φ G A there exist unique φ Ĝ A and φ + Ĝ+ A, such that: φ = φ 1 φ +. The factors are unique solutions of the equations φ = 1 R φ + = 1 R φ φ 1) ) φ + φ 1 1) The matrix entries can be calculated from: α := φ φ ) ij = Rα ij ) j i k=2 j i φ+ ) ij = Rα 1 ) ij ) i>l 1 >l 2 > >l k 1 >j k=2 i>l 1 >l 2 > >l k 1 >j, 1) k+1 R ) R Rα il1 )α l1 l 2 ) α lk 1 j ) 1) k+1 R R ) Rα 1 ) il1 )α 1 ) l1 l 2 ) α 1 ) lk 1 j

Bogoliubov s preparation map φ = exp RχẐφ) ) φ + = exp RχẐφ) ) Now observe φ + = 1 + R φ φ ) 1) φ = 1 R φ φ ) 1) We may therefore define the matrix φ := φ φ 1) such that we get Bogoliubov s matrix formulae for the counter term and renormalized Feynman rules matrix ) φ = 1 R φ and φ ) + = 1 + R φ

Recalling the double Rota Baxter product in this context a R b := arb) + Ra)b ab and the fact that Ra R b) = Ra)Rb) gives exp ))) R χ Ẑ φ = 1 + R exp R χẑφ) )) Remember that R is idempotent i.e. R1) = 0). This leads to the following matrix representation of Bogoliubov s preparation map φ := Ψ J [ φ] = Ψ J [φ φ e A )] = Ψ J [exp R χzφ ) ) ] = exp ) R χẑφ) THANK YOU!!