Conformal Extensions of the Standard Model

Similar documents
Conformal Electroweak Symmetry Breaking and Implications for Neutrinos and Dark matter

Neutrino Masses and Conformal Electro-Weak Symmetry Breaking

Neutrinoless Double Beta Decay and Lepton Number Violation

Aspects of Classical Scale Invariance and Electroweak Symmetry Breaking

Right-Handed Neutrinos as the Origin of the Electroweak Scale

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

Sterile Neutrinos as Dark Matter. Manfred Lindner

Aspects of Classical Scale Invariance and Electroweak Symmetry Breaking

GAUGE HIERARCHY PROBLEM: SCALE INVARIANCE AND POINCARE PROTECTION

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Little Higgs Models Theory & Phenomenology

Scale invariance and the electroweak symmetry breaking

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

Radiative Generation of the Higgs Potential

E 6 Spectra at the TeV Scale

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

The Yang and Yin of Neutrinos

G.F. Giudice. Theoretical Implications of the Higgs Discovery. DaMeSyFla Meeting Padua, 11 April 2013

ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL

Particle Physics Today, Tomorrow and Beyond. John Ellis

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Scale invariance and the electroweak symmetry breaking

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Vacuum Energy and the cosmological constant puzzle

SUSY Phenomenology & Experimental searches

Conformal Standard Model

The mass of the Higgs boson

Non-Abelian SU(2) H and Two-Higgs Doublets

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Schmöckwitz, 28 August Hermann Nicolai MPI für Gravitationsphysik, Potsdam (Albert Einstein Institut)

Foundations of Physics III Quantum and Particle Physics Lecture 13

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

arxiv: v2 [hep-ph] 14 Aug 2017

Implica(on of 126 GeV Higgs boson for Planck scale physics. - naturalness and stability of SM - Satoshi Iso (KEK & Sokendai)

Neutrino masses respecting string constraints

125 GeV Higgs Boson and Gauge Higgs Unification

Supersymmetry Breaking

The Standard Model and Beyond

Hunting New Physics in the Higgs Sector

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

The cosmological constant puzzle

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

The Super-little Higgs

Introduction to particle physics Lecture 13: The Standard Model

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

The Standard Model of particle physics and beyond

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Implications of the Higgs mass results

What can we learn from the 126 GeV Higgs boson for the Planck scale physics? - Hierarchy problem and the stability of the vacuum -

The Standard Model and beyond

Theoretical Particle Physics Yonsei Univ.

Beyond the Standard Model

solving the hierarchy problem Joseph Lykken Fermilab/U. Chicago

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Origin of Mass of the Higgs Boson

Introduction to Supersymmetry

Neutrino Mass in Strings

Scenarios with Composite Higgs Bosons

A Derivation of the Standard Model. ``String Phenomenology 2015, Madrid, June 12, 2015 Based on Nucl.Phys. B883 (2014) with B.

Vacuum Energy and. Cosmological constant puzzle:

Scale symmetry a link from quantum gravity to cosmology

Outlook Post-Higgs. Fermilab. UCLA Higgs Workshop March 22, 2013

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Sreerup Raychaudhuri TIFR

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

SUPERSYMETRY FOR ASTROPHYSICISTS

Supersymmetry, Dark Matter, and Neutrinos

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Double Higgs production via gluon fusion (gg hh) in composite models

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Fundamental Symmetries - 2

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

Naturalizing SUSY with the relaxion and the inflaton

Where are we heading? Nathan Seiberg IAS 2016

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Perspectives Flavor Physics beyond the Standard Model

Where are we heading?

Gauge-Higgs Unification on Flat Space Revised

Composite Higgs Overview

U(1) Gauge Extensions of the Standard Model

Introduction to the Standard Model of particle physics

The Strong Interaction and LHC phenomenology

Dynamical supersymmetry breaking, with Flavor

Non-Minimal SUSY Computation of observables and fit to exp

Kaluza-Klein Dark Matter

The Standard Model Part. II

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

Composite Higgs/ Extra Dimensions

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland)

TeV Scale Seesaw with Loop Induced

Left-Right Symmetric Models with Peccei-Quinn Symmetry

T -Parity in Little Higgs Models a

Patrick Kirchgaeßer 07. Januar 2016

Higgs Portal to New Physics

Transcription:

Conformal Extensions of the Standard Model Manfred Lindner 1

The SM: A true Success Story èsm is a renormalizable QFT like QED w/o hierarchy problem ècutoff L has no meaning è triviality, vacuum stability L(GeV) 126 GeV < m H < 174 GeV SM does not exist w/o embeding - U(1) copling, Higgs self-coupling l Landau pole ML 86 126 GeV is here! è l(m pl ) ~ 0 - EW-SB radiative - log cancellations - gauge/fermion/scalar triviality allowed vacuum stavility ln(µ) è RGE arguments seem to work è we need some embedding çè no BSM physics observed! è just a SM Higgs L 2

A special Value of l at M planck? ML 86 Holthausen, ML Lim (2011) Different conceivable special conditions: downward flow of RG trajectories è IR QFP è random l flows to m H > 150 GeV è m H ~ 126 GeV flows to tiny values at M Planck 3

Is the Higgs Potential at M Planck flat? Holthausen, ML, Lim (2011) Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia stable difference 1à2 loop 2-loop a s error metastable Notes: - remarkable relation between weak scale, m t, couplings and M Planck ßà precision - strong cancellations between Higgs and top loops à very sensitive to exact value and error of m H, m t, a s = 0.1184(7) à currently 1.8s in m t - other physics: DM, m n axions, Planck scale thresholds SM+ çè l = 0 è top mass errors: data çè LO-MC è translation of m pole à MS bar è be cautious about claiming that metastability is established è and we need to include DM, neutrino masses, 4

Absolute, Meta-, and Thermal Stability ML, H. Patel, B. Radovcic + thermal stability = stability against thermal fluctuations in early Univ.+ sizable neutrino Yukawa couplings - absolute stability - T=0 quantum mechanical tunneling metastability (yellow and orange) - instability orange = instability due to thermal transitions in the early Universe with T max = 10 18 GeV è reduced metastability regions è neutrino Yukawas make things worse 5

Is there a Message? l(m Planck ) ~ 0? è flat potential at M planck è flat Mexican hat (<1%) at the Planck scale why? Unrelated: M planck, M weak, gauge, Higgs and Yukawa couplings è if in addition µ 2 = 0 è V(M Planck ) ~ 0? (Remember: µ is the only single scale of the SM) note also that l(m Planck ) ~ 0 implies big log cancellations conformal (or shift) symmetry as solution to the HP è combined conformal & EW symmetry breaking è realizations; implications for neutrino masses and DM 6

The naïve Hierarchy Problem Loops è Higgs mass depends on cutoff scale L H H δm H 2 = 2 Λ 32π 2 V 2 ( 6M 2 W + 3M 2 Z + 3M 2 2 H 12M ) t ~ O(L 2 /4p 2 ) m H < 200 GeV requires L ~ TeVè new physics at TeV scale ***OR*** one must explain: How can m H be O(100 GeV) if L is huge? BUT: What does L mean? For SM? Renormalizable embeddings? 7

L çè new Physics Renormalizable QFTs with two scalars j, F with masses m, M and a hierarchy m << M These scalars must interact since j + j and F + F are singlets è l mix (j + j)(f + F) must exist in addition to j 4 and F 4 (= portal) Quantum corrections ~M 2 drive both masses to the (heavy) scale è vastly different scalar scales are generically unstable Since SM Higgs exists è problem: embedding with a 2 nd scalar - gauge extensions à must be broken - GUTs à must be broken - even for SUSY GUTS à doublet-triplet splitting... - also for fashinable Higgs-portal scenarios... Options: - no 2 nd Higgs - some symmetry: SUSY,...? 8

Conformal Symmetry as Protective Symmetry - Exact (unbroken) CS è absence of L 2 and ln(l) divergences è no preferred scale and therefore no scale dependence - Conformal Anomaly (CA): Quantum effects explicitly break CS existence of CA à CS preserving regularization does not exist - dimensional regularization is close to CS and gives only ln(l) - cutoff reg. è L 2 terms; violates CS badly à Ward Identity Bardeen: maybe CS still forbids L 2 divergences è CS breaking ßà b-functions ßà ln(l) divergences è anomaly induced spontaneous EWSB NOTE: asymmetric logic! The fact that dimensional regularization kills a L 2 dependence is well known. Argument goes the other way! 9

Looking at it in different Ways Basics of QFT: Renormalization ßà commutator - [F(X),P(y)] ~ d 3 (x-y) è delta funtion è distribution - freedom to define d*d è renormalization çè counterterms - along come technicalities: lattice, L, Pauli-Villars, MS-bar, Reminder: Technicalities do not establish physical existence! è Symmetries are essential! Question: Is gauge symmetry spoiled by discovering massive gauge bosons? è NO ßà Higgs mechanism è non-linear realization of the underlying symmetry è important consequence: naïve power counting is wrong Gauge invariance è only log sensitivity 10

Non-linear Realization of Conformal Symmetry If conformal symmetry is realized in a non-linear way: è protective relic of conformal symmetry è only log sensitivity ßà conformal anomaly No hierarchy problem, even though there is the the conformal anomaly - only logs ßà b-functions Dimensional transmutation by log running like in QCD è scalars can condense and set scales like fermions è e.g. massless scalar QCD è use this in Coleman Weinberg effective potential calculations ßà most attractive channels (MAC) ßà b-functions 11

Implementing the idea 12

Why the minimalistic SM does not work Minimalistic version: à SM- SM + choose µ= 0 ßà CS Coleman Weinberg: effective potential è CS breaking (dimensional transmutation) è induces for m t < 79 GeV a Higgs mass m H = 8.9 GeV This would conceptually realize the idea, but: Higgs too light and the idea does not work for m t > 79 GeV Reason for m H << v: V eff flat around minimum ßà m H ~ loop factor ~ 1/16p 2 AND: We need neutrino masses, dark matter, 13

Realizing the Idea via Higgs Portals SM scalar F plus some new scalar j (or more scalars) CS à no scalar mass terms the scalars interact è l mix (j + j)(f + F) must exist è a condensate of <j + j> produces l mix <j + j>(f + F) = µ 2 (F + F) è effective mass term for F CS anomalous à breaking à only ln(l) è implies a TeV-ish condensate for j to obtain <F> = 246 GeV Model building possibilities / phenomenological aspects: - j could be an effective field of some hidden sector DSB - further particles could exist in hidden sector; e.g. confining - extra hidden U(1) potentially problematic ßà U(1) mixing - avoid Yukawas which couple visible and hidden sector à phenomenology safe due to Higgs portal, but there is TeV-ish new physics! 14

Rather minimalistic: SM + QCD Scalar S J. Kubo, K.S. Lim, ML New scalar representation S à QCD gap equation: C 2 (L) increases with larger representations ßà condensation for smaller values of running a è q=3 S=15 L QCD L S 15

Phenomenology 16

Realizing this Idea: Left-Right Extension M. Holthausen, ML, M. Schmidt Radiative SB in conformal LR-extension of SM (use isomorphism SU(2) SU(2) ~ Spin(4) à representations) è the usual fermions, one bi-doublet, two doublets è a Z 4 symmetry è no scalar mass terms ßà CS 17

è Most general gauge and scale invariant potential respecting Z4 è calculate V eff è Gildner-Weinberg formalism (RG improvement of flat directions) - anomaly breaks CS - spontaneous breaking of parity, Z 4, LR and EW symmetry - m H << v ; typically suppressed by 1-2 orders of magnitude Reason: V eff flat around minimum ßà m H ~ loop factor ~ 1/16p 2 à generic feature à predictions - everything works nicely v èrequires moderate parameter adjustment for the separation of the LR and EW scale PGB? 18

SM hidden SU(3) H Gauge Sector Holthausen, Kubo, Lim, ML hidden SU(3) H : gauge fields ; ψ = 3 H with SU(3) F ; S = real singlet scalar SM coupled by S via a Higgs portal: no scalar mass terms use similarity to QCD, use NJL approximation, c-ral symmetry breaking in hidden sector: SU(3) L xsu(3) R à SU(3) V è generation of TeV scale è transferred into the SM sector through the singlet S è dark pions are PGBs: naturally stable è DM 19

Realizing the Idea: Specific Realizations SM + extra singlet: F, j Nicolai, Meissner, Farzinnia, He, Ren, Foot, Kobakhidze, Volkas, SM + extra SU(N) with new N-plet in a hidden sector Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML, (Hambye, Strumia), SM embedded into larger symmetry (CW-type LR) Holthausen, ML, M. Schmidt SM + QCD colored scalar which condenses at TeV scale Kubo, Lim, ML Since the SM-only version does not work è observable effects: - Higgs coupling to other scalars (singlet, hidden sector, ) - dark matter candidates ßà hidden sectors & Higgs portals - consequences for neutrino masses 20

Comments / Expectations / Questions New (hidden) sector çè DM, neutrino masses,! Question: Isn t the Planck-Scale spoiling things? è non-linear realization è conformal gravity ideas: see e.g. A. Salvio and A. Strumia,? K. Hamada, è some mechanism to generate M Planck by dimensional transmutation Are M planck and M weak connected? Question: What about inflation? see e.g. K. Kannike, A. Racioppi, M. Raidal, V. Khoze What about unification à no or M planck = M GUT UV: ultimate solution should be asymptotically safe (UV-FPs) à see talk by others; UV-FPs ßà conformal? Here: FP=0 >0...? Justifying classical scale invariance è cancel the conformal anomaly è nature of space time & observables 21

Conformal Symmetry & Neutrino Masses ML, S. Schmidt and J.Smirnov No explicit scale è no explicit (Dirac or Majorana) mass term à only Yukawa couplings generic scales Enlarge the Standard Model field spectrum like in 0706.1829 - R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas Consider direct product groups: SM HS Two scales: CS breaking scale at O(TeV) + induced EW scale Important consequence for fermion mass terms: è spectrum of Yukawa couplings TeV or EW scale è interesting consequences ßà Majorana mass terms are no longer expected at the generic L-breaking scale à anywhere 22

Examples Yukawa seesaw: SM + n R + singlet è generically expect a TeV seesaw BUT: y M might be tiny è wide range of sterile masses è including pseudo-dirac case è suppressed 0nbb Radiative masses èpseudo-dirac case 23 or The punch line: all usual neutrino mass terms can be generated à suitable scalars à no explicit masses all via Yukawa couplings à different numerical expectations

Another Example: Inverse Seesaw SU(3)c SU(2)L U(1)Y U(1)X P. Humbert, ML, J. Smirnov è light ev active neutrino(s) è two pseudo-dirac neutrinos; m~tev è sterile state with µ kev ètiny non-unitarty of PMNS matrix ètiny lepton universality violation èsuppressed 0nbb decay ç! èlepton flavour violation ètri-lepton production could show up at the LHC èkev neutrinos as warm dark matter à 24

3 0 N _ ( ν L ν c ) R Implications for Neutrino Mass Spectra _! # " 3x3 matrix 3xN NxN ML m D m D MR $! &# %" c ν L ν R $ & % Usually: M L tiny or 0, M R heavy à see-saw & variants light sterile: F-symmetries... Now: M L, M R may have any value: è diagonalization: 3+N EV è 3x3 active almost unitary M L =0, m D = M W, M R singular M L = M R = 0 M L = M R = e M R =high: see-saw singular-ss Dirac pseudo Dirac active sterile M. Lindner, MPIK - 25

Conformal Symmetry & Dark Matter Different quite natural options: 1) A kev sterile neutrino is in all cases easily possible 2) New particles which are fundamental or composite DM candidates: - hidden sector pseudo-goldstone-bosons - stable color neutral bound states from new QCD representations è some look like WIMPs è others are extremely weakly coupled (via Higgs portal) è or even coupled to QCD (with threshold suppression) 26

Summary Ø SM works perfectly; (so far) no signs of new physics Ø The standard hierarchy problem suggests TeV scale physics which did (so far ) not show up Ø The old problem: the hierarchy problem l(m Planck ) = 0? çè precise value for m t è is there a message? è Embedings into QFTs with classical conformal symmetry - SM: Coleman Weinberg effective potential excluded - extended versions à work! à implications for Higgs couplings, dark matter, à implications for neutrino masses è testable consequences @ LHC, dark matter, neutrinos 28