From nascent to mature soot light absorption during agglomeration and surface growth

Similar documents
Dynamics of Soot Mobility Size during Agglomeration & Surface Growth

Modeling of Mature Soot Dynamics and Optical Properties

Confirmation of paper submission

Report on the Short Term Scientific Mission (STSM) conducted on the frame of the COST Action CM

Analysis of Flame-Formed Organic. Photoionization Measurements

I. Measurements of soot - Laser induced incandescence, LII. spectroscopy, LIBS

C. Saggese, N. E. Sanchez, A. Callejas, A. Millera, R. Bilbao, M. U. Alzueta, A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi

Kinetics of Nascent Soot Oxidation in a Flow Reactor

Modeling and measurements of size distributions in premixed ethylene and benzene flames

Deconvolution of soot particle size distributions

EFFECTS OF ETHANOL ADDITION ON SOOT PARTICLES DYNAMIC EVOLUTION IN ETHYLENE/AIR LAMINAR PREMIXED FLAME

Investigation of soot morphology and particle size distribution in a turbulent nonpremixed flame via Monte Carlo simulations

Toward Abatement of Soot Emissions: Tracking Nucleation in Flames

Particle Dynamics: Brownian Diffusion

ON THE RELEVANCE OF SURFACE GROWTH IN SOOT FORMATION IN PREMIXED FLAMES

Investigation of the transition from lightly sooting towards heavily sooting co-flow ethylene diffusion flames

An Investigation of Precursors of Combustion Generated Soot Particles in Premixed Ethylene Flames Based on Laser-Induced Fluorescence

Comprehensive Laser-induced Incandescence (LII) modeling for soot particle sizing

Numerical Investigation on 1,3-Butadiene/Propyne Co-pyrolysis and Insight into Synergistic Effect on Aromatic Hydrocarbon Formation

Soot formation in turbulent non premixed flames

Oxidation of C 3 and n-c 4 aldehydes at low temperatures

FLAME-GENERATED CARBON PARTICLES: NEW INSIGHTS ON PARTICLE INCEPTION AND CHARACTERIZATION

Numerical investigation of soot formation and radiative heat transfer in ethylene microgravity laminar boundary layer diffusion flames.

MEASUREMENTS AND MODELING OF CARBON AND HYDROCARBON SPECIES EVOLUTION AT SOOT INCEPTION IN PREMIXED FLAMES

Laser induced incandescence investigation of radial soot distribution in atmospheric premixed sooting flames

6 th international Workshop and Meeting on Laser-Induced Incandescence

Multifunctional plasmonic nanoparticles for biomedical applications

Computational Thermal Sciences, vol. 1, pp. xxx xxx, 2009 MODELING OF A TURBULENT ETHYLENE/AIR JET FLAME USING HYBRID FINITE VOLUME/MONTE CARLO METHOD

Chemical Kinetics of Combustion Processes

Constancy of soot refractive index absorption function: Implications for optical measurements of nanoparticles

In a high-temperature environment, such as the exit of the hot-air duct in the current counterflow

USING THE DDA (DISCRETE DIPOLE APPROXIMATION) METHOD IN DETERMINING THE EXTINCTION CROSS SECTION OF BLACK CARBON

Workshop on Synchrotron Tools for Studies of Combustion and Energy conversion

The characterization of MnO nanostructures synthesized using the chemical bath deposition method

Characterization of dimers of soot and non-soot

The Proceedings of the Second International Sooting Flame (ISF) Workshop

Supplementary Information

Flame Chemistry and Diagnostics

PAH Sequences Analysis by Fast Fourier Transform of combustion products mass spectra

The affinity of Si N and Si C bonding in amorphous silicon carbon nitride (a-sicn) thin film

Confirmation of paper submission

Aerosols and climate. Rob Wood, Atmospheric Sciences

Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

International Journal of Pure and Applied Sciences and Technology

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

Unsteady Flamelet Modeling of Soot Formation in Turbulent Diffusion Flames

Nongray Soot and Gas-Phase Radiation Modeling in Luminous Turbulent Nonpremixed Jet Flames

^<IT Scientific. Publishing. Combustion Generated Fine Carbonaceous Particles. Proceedings of an International Workshop.

Stefan-Boltzmann law for the Earth as a black body (or perfect radiator) gives:

EFFECT OF N-BUTANOL ADDITION ON SOOT FORMATION OF N- HEPTANE IN A MICRO FLOW REACTOR WITH A CONTROLLED TEMPERATURE PROFILE

Basic Study on the Generation of RF Plasmas in Premixed Oxy-combustion with Methane

Numerical Modelling of the Growth of Nanoparticles

Modelling Carbon Black

Urban background aerosols: Negative correlations of particle modes and fragmentation mechanism

Strong light matter coupling in two-dimensional atomic crystals

COMPARISON OF SYNERGISTIC EFFECT OF ETHYLENE-PROPANE AND ETHYLENE-DME ON SOOT FORMATION OF ETHYLENE-AIR FLAME

Partial Energy Level Diagrams

Synthesis and characterization of silica titania core shell particles

Melanie S. Hammer 1, Randall V. Martin 1,2, Aaron van Donkelaar 1, Virginie Buchard 3,4, Omar Torres 3, David A. Ridley 5, Robert J.D.

Three-dimensional (3-D) radiative transfer codes are mainly used in cloud studies (e.g., LES models) and vegetation studies.

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells

Efficient Engine CFD with Detailed Chemistry

Direct Soot Formation

A wide range kinetic modelling study of laminar flame speeds of reference fuels and their mixtures

New sequential combustion technologies for heavy-duty gas turbines

Hierarchical approach

Effect of aging on cloud nucleating properties of atmospheric aerosols

Soot Property Reconstruction from Flame Emission Spectrometry

Combustion Generated Pollutants

Super-adiabatic flame temperatures in premixed methane-oxygen flames

Effects of Ultraviolet Light on Silver Nanoparticle Mobility and Dissolution

Radiation Induced Reduction: A Effect and Clean Route to

Atmospheric Remote Sensing in the Terahertz Region

Aerosols and Climate

Efficient Synthesis of Ethanol from CH 4 and Syngas on

The Development and Validation of a Simplified Soot Model for use in Soot Emissions Prediction in Natural Gas Fuelled Engine Simulations

Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications)

NANO-TiO 2 PARTICLES PRODUCED IN A VAPOUR-FED AEROSOL FLAME REACTOR

ADVANCED PLACEMENT CHEMISTRY CHAPTERS 7, 8 AND 9 REVIEW QUESTIONS

Chemical Characterization of Airplane Soot Particles and Surrogates Using Laser Desorption Ionization and Secondary Ion Mass Spectrometry

Study of absorption and re-emission processes in a ternary liquid scintillation system *

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

A novel AgIO 4 semiconductor with ultrahigh activity in photodegradation of organic dyes: insights into the photosensitization mechanism

Study of Carbon Black Production with Optimized Feed to Predict Product Particle Size

PHOTOVOLTAICS Fundamentals

Gas Phase Kinetics of Volatiles from Biomass Pyrolysis. Note I: Ketene, Acetic Acid, and Acetaldehyde

Chapter 6. Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications

Thermal NO Predictions in Glass Furnaces: A Subgrid Scale Validation Study

A Theoretical Study of Oxidation of Phenoxy and Benzyl Radicals by HO 2

Detailed Modelling of CO 2 Addition Effects on the Evolution of Particle Size Distribution Functions in Premixed Ethylene Flames.

CALCULATION OF THE UPPER EXPLOSION LIMIT OF METHANE-AIR MIXTURES AT ELEVATED PRESSURES AND TEMPERATURES

Kinetic modelling of Biofuels: Pyrolysis and Auto-Ignition of Aldehydes

Effect of Solvents on the Morphological and Optical Properties

Understanding Soot Particle Growth Chemistry and Particle Sizing Using a Novel Soot Growth and Formation Model

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Parameter estimation and statistical analysis of a new model for silicon nanoparticle synthesis

flame synthesis of inorganic nanoparticles

Accounting for the effects of nonideal minor structures on the optical properties of black carbon aerosols

Kinetic analysis of the thermal release of pyrene from commercial Carbon Black nanoparticles using a distributed activation energy model

ATOC 3500/CHEM 3152 Week 9, March 8, 2016

Transcription:

From nascent to mature soot light absorption during agglomeration and surface growth Georgios A. Kelesidis, Sotiris E. Pratsinis Particle Technology Laboratory, ETH Zürich, Switzerland Platzhalter Logo/Schriftzug (Anpassung im Folienmaster: Menü «Ansicht» «Folienmaster») gkelesidis@ptl.mavt.ethz.ch 27.05.206

Soot impact on global warming Radiative forcing, ΔF []: Light absorbed by earth - // reflected to space Narrower ΔF accounting for: Evolving structure // composition Condensation 2.29 W/m 2 High uncertainty! 25 % of total ΔF 0.7 W/m 2 O 2 OH Agglomeration Oxidation Net anthropogenic forcing Soot (direct) Surface Growth & Aggregation C 2 H 2 Inception [] Bond, T. C.; Doherty, S. J.; Fahey, D., et al. J Geophys Res 203, 8, 5380-5552.

Soot Dynamics by Discrete Element Modeling (DEM) i) Initial configuration after inception has largely ended. T = 830 K d m,o = 2 nm N tot,o = 4.5 0 6 m -3 [,2] ii) Discrete Element Modeling (DEM) of Particle Motion and Coagulation [3] t iii) Surface Growth (SG) by HACA mechanism [4-6]: H 2 H C 2 H 2 Soot r HACA [4] β C2H2 [6] [] Abid AD, Heinz N, Tolmachoff ED, Phares DJ, Campbell CS, Wang H. (2008) Combust. Flame 54, 775. [2] Camacho J, Liu C, Gu C, Lin H, Huang Z, Tang Q, You X, Saggese C, Li Y, Jung H, Deng L, Wlokas I, Wang H. (205) Combust. Flame 62, 380. [3] Goudeli E, Eggersdorfer ML, Pratsinis SE. (205) Langmuir 3,320. [4] Appel J, Bockhorn H, Frenklach M. (2000) Combust. Flame 2, 22. [5] Saggese C, Ferrario S, Camacho J, Cuoci A, Frassoldati A, Ranzi E, Wang H, Faravelli T. Wang H. (205) Combust. Flame 62, 3356. [6] Kelesidis GA, Goudeli E, Pratsinis SE. (207) Proc. Combust. Inst. 36, 29. Mass Balance for each C 2 H 2 reaction: d d 6 6 3 3 p, new p, old soot soot m2c

Soot Size Distribution, HAB =.2 cm 0 Experiments: Microscopy [] DEM, this work: Coalescence with SG, ഥd m =.6 nm dn / dlog(d m ) / N tot 0. SMPS [2] 25 % smaller ഥd m Agglomeration, ഥd m = 56.6 nm Agglomeration with SG, ഥd m = 5.4 nm 0.0 0 00 Mobility Diameter, d m, nm [] Schenk M, Lieb S, Vieker H, Beyer A, Golzhauser A,Wang H, Kohse-Hoinghaus K. (203) PhysChemPhys 4, 3248. 4 times larger ഥd m [2] Camacho J, Liu C, Gu C, Lin H, Huang Z, Tang Q, You X, Saggese C, Li Y, Jung H, Deng L, Wlokas I, Wang H. (205) Combust. Flame 62, 380.

Median mobility diameter, d ҧ m, nm Soot Dynamics by DEM 20 Aggregation 0.5 ഥd m Agglomeration Surface Growth 4 7 <n p > = 0 20 40 80 Residence time, t, ms 60

Discrete Dipole Approximation (DDA) Input: Structure of DEMderived agglomerate Refractive index, RI MAC Used to calculate radiative forcing! 3Qabs 2d v Averaging of MAC: over 00 agglomerates per time step. over 343 orientations. Good statistics. Computational efficiency.

Average Mass Absorption Cross-section, <MAC>, m 2 /g c m 8 From nascent to mature soot MAC Residence time, t, ms 0 28 40 55 77 6 4 Premixed flames [] 2 λ = 532 nm 0 2.5 5 7.5 0 [] S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Appl. Phys. B 6 (204) 33-323. Average number of primary particles, <n p >

Average Mass Absorption Cross-section, <MAC>, m 2 /g c m 8 6 From nascent to mature soot MAC Residence time, t, ms 0 28 40 55 77 Morphology is not enough! Need of evolving composition & RI! 40 % 4 2 λ = 532 nm Premixed flames [] This work, DEM-DDA: RI.66 0.76 i [2] 0 2.5 5 7.5 0 [] S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Appl. Phys. B 6 (204) 33-323. [2] J. Yon, A. Bescond, F. Liu, J. Quant. Spectrosc. Radiat. Transf. 62 (205) 97-206. Average number of primary particles, <n p >

Median mobility diameter, d ҧ m, nm Evolution of soot composition 20 Aggregation.5 ഥd m 0 Agglomeration Surface Growth <n p > = E g 4 Composition (H/C) is proportional to optical band gap, E g []: h.8e Eg, mature 2 * * 8dm me mh 0 rd 2 2 0 20 40 80 Residence time, t, ms 60 [] A.V. Singh, C. Liu, K. Wan, H. Wang, 0th U.S. National Combustion Meeting: Environmental Aspects of Combustion (207) -6. 7 m

Median mobility diameter, d ҧ m, nm Optical band gap, E g, ev Evolution of soot composition 20 Aggregation.5 ഥd m 0 Agglomeration E g 0.6 0.4 Surface Growth <n p > = E g 4 Composition (H/C) is proportional to optical band gap, E g []: h.8e Eg, mature 2 * * 8d m m d 2 2 m e h 0 r m 0 0 20 40 60 80 Residence time, t, ms [] A.V. Singh, C. Liu, K. Wan, H. Wang, 0th U.S. National Combustion Meeting: Environmental Aspects of Combustion (207) -6. 7 0.2

Median mobility diameter, d ҧ m, nm Hydrogen to Carbon ratio, H/C Evolution of soot composition 20 Agglomeration 0.6 0 Aggregation.5 4 7 ഥd m 0.4 Surface Growth <n p > = H/C ~ E g [] H/C 0.2 0 0 20 40 60 80 [] Minutolo, P.; Gambi, G.; D'Alessio, A. Proc. Combust. Inst. 996, 26, 95-957 Residence time, t, ms

Real part of RI Imaginary part of RI 2 Evolution of refractive index, RI RI Linear interpolation between nascent [] and mature RI [2] as function of E g : (.77 0. 43 E ) (.07. 23E ) i g g 0.8.8 0.6.6 0.42 0.35 0.33 0.4 E g = 0.6 λ = 532 nm.4 0.2 0 20 40 60 80 [] F. Moulin, M. Devel, S. Picaud, J. Quant. Spectrosc. Radiat. Transf. 09 (2008) 79-80. [2] Yon, J.; Bescond, A.; Liu, F. J Quant Spectrosc Radiat Transfer 205, 62, 97-206. Residence time, t, ms

Real part of RI Imaginary part of RI 2 Evolution of refractive index, RI RI Linear interpolation between nascent [] and mature RI [2]: (.77 0. 43 E ) (.07. 23E ) i g g 0.8.8 Imaginary 0.6.6 0.42 0.35 0.33 Real 0.4 E g = 0.6 λ = 532 nm.4 0.2 0 20 40 60 80 [] F. Moulin, M. Devel, S. Picaud, J. Quant. Spectrosc. Radiat. Transf. 09 (2008) 79-80. [2] Yon, J.; Bescond, A.; Liu, F. J Quant Spectrosc Radiat Transfer 205, 62, 97-206. Residence time, t, ms

Average Mass Absorption Cross-section, <MAC>, m 2 /g c m 8 From nascent to mature soot MAC Residence time, t, ms 0 28 40 55 77 6 4 2 λ = 532 nm Premixed flames [] This work, DEM-DDA: RI.66 0.76 i [2] RI (.77 0.43 E ) (.07.23 E ) i 0 2.5 5 7.5 0 [] S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Appl. Phys. B 6 (204) 33-323. [2] J. Yon, A. Bescond, F. Liu, J. Quant. Spectrosc. Radiat. Transf. 62 (205) 97-206. Average number of primary particles, <n p > g g

Average Mass Absorption Cross-section, <MAC>, m 2 /g c m 8 From nascent to mature soot MAC Residence time, t, ms 0 28 40 55 77 6 4 2 λ = 532 nm Premixed flames [] This work, DEM-DDA: RI.66 0.76 i [2] RI (.77 0.43 E ) (.07.23 E ) i 0 2.5 5 7.5 0 [] S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Appl. Phys. B 6 (204) 33-323. [2] J. Yon, A. Bescond, F. Liu, J. Quant. Spectrosc. Radiat. Transf. 62 (205) 97-206. Average number of primary particles, <n p > g g

Narrowing soot global warming estimations DEM-DDA accounts for the detailed soot morphology AND composition, narrowing the uncertainty of F! Platzhalter Logo/Schriftzug (Anpassung im Folienmaster: Menü «Ansicht» «Folienmaster») gkelesidis@ptl.mavt.ethz.ch 27.05.206 6 [] Bond, T. C.; Doherty, S. J.; Fahey, D., et al. J Geophys Res 203, 8, 5380-5552.

Narrowing soot global warming estimations DEM-DDA accounts for the detailed soot morphology AND composition, narrowing the uncertainty of F! Platzhalter Logo/Schriftzug (Anpassung im Folienmaster: Menü «Ansicht» «Folienmaster») [] Bond, T. C.; Doherty, S. J.; Fahey, D., et al. J Geophys Res 203, 8, 5380-5552. More during the Poster session! (Today, 5:40) gkelesidis@ptl.mavt.ethz.ch 27.05.206 7

Conclusions Soot E g decreases exponentially with d m during flame synthesis. Both morphology AND composition needed for MAC! RI (.77 0.43 E ) (.07.23 E ) i g g Accounting for soot morphology and composition may narrow ΔF! Platzhalter Logo/Schriftzug (Anpassung im Folienmaster: Menü «Ansicht» «Folienmaster») gkelesidis@ptl.mavt.ethz.ch 27.05.206 8

Thank you for your attention! Platzhalter Logo/Schriftzug (Anpassung im Folienmaster: Menü «Ansicht» «Folienmaster») gkelesidis@ptl.mavt.ethz.ch 27.05.206 9