Photosynthesis. All Materials Cmassengale

Similar documents
photosynthesis notes Biology Junction Everything you need in Biology Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life

The main form of energy from the sun is in the form of electromagnetic radiation. Visible radiation (white light) used for photosynthesis ROY G.

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources

Photosynthesis

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

1 Which of the following organisms do NOT carry on photosynthesis?

Lesson Overview. Photosynthesis: An Overview. Lesson Overview. 8.2 Photosynthesis: An Overview

Harvesting energy: photosynthesis & cellular respiration part 1

Photosynthesis: Life from Light AP Biology

A + B = C C + D = E E + F = A

Just Like the Guy From Krypton Photosynthesis

Photosynthesis. Dr. Bertolotti

Photosynthesis. From Sunlight to Sugar

Where It Starts: Photosynthesis. Chapter 5

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised:

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy.

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Chapter 4 Photosynthesis

Photosynthesis: Using Light to Make Food

PHOTOSYNTHESIS Autotrophs Heterotrophs ENERGY

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2

ATP. Pentose Sugar (ribose) 3 phosphate groups. adenine. Does this structure look familiar?

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to

Endosymbiotic Theory. p

PHOTOSYNTHESIS. blshpbsu

Energy & Photosynthesis

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2

AP Biology

AP Biology

Section 2 The Calvin Cycle

Photosynthesis (Outline)

Photosynthesis and Cellular Respiration

Photosynthesis and Life

Photosynthesis. light

Chapter 10 Photosynthesis. Photosynthesis

Complete the notes on photosynthesis in the spaces below.

Pearson Biology Chapter 8 Class Notes

Ch. 6 & 7 Photosynthesis & Cellular Respiration

Photosynthesis. Chapter 8, Section #2. SC.912.L.18.7 Identify the reactants, products, and basic functions of photosynthesis.

THE BASICS OF PHOTOSYNTHESIS

Chapter 10 Photosynthesis

Photosynthesis: Using Light to Make Food

Chloroplasts and Mitochondria

Energy and Life. Lesson Overview. Lesson Overview. 8.1 Energy and Life

Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis:

Chapter 8: Cellular Energy

Photosynthesis. Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars).

Energy Transfer. Photosynthesis

Photosynthesis: Life from Light and Air

Chloroplasts and Mitochondria

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs

PHOTOSYNTHESIS Chapter 6

AN OVERVIEW OF PHOTOSYNTHESIS. Copyright 2009 Pearson Education, Inc.

Chapter 8: Photosynthesis

Lecture 9: Photosynthesis

AP Biology. Chloroplasts: sites of photosynthesis in plants

Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes

Unit 1 Matter & Energy for Life. Biology Photosynthesis

Chloroplasts and Mitochondria

Chapter 8.1. How Organisms Obtain Energy

Chemical Energy and ATP. Autotrophs and Heterotrophs. Living things need to survive.

Photosynthesis Overview

Biology Chapter 8: The Process of Photosynthesis. Ms. Nguyen

Photosynthesis. Energy & Life

Autotrophs and Heterotrophs

ATP, Cellular Respiration and Photosynthesis

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll:

Energy can be transformed from one form to another

How do cells obtain energy from food molecules? Unit 5: Cellular Respiration and Photosynthesis. It is an extremely simple cellular process.

PHOTOSYNTHESIS. Botany Department B.N.D. College

Where It Starts - Photosynthesis

light-dependent reactions (i.e., light reactions)

Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Overview. Photosynthesis

Photosynthesis Overview

DAY 1 Photosynthesis. - Chemical reaction - Compared to respiration

The conversion of usable sunlight energy into chemical energy is associated with the action of the green pigment chlorophyll.

pigments AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions Visible light is part of electromagnetic spectrum

Chapter 8 Notes Photosynthesis

Chapter 10 Photosynthesis

Ch. 10- Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air

PHOTOSYNTHESIS CHAPTER 7. Where It Starts - Photosynthesis

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

Outcome: Explain the process of photosynthesis.

Name 7 Photosynthesis: Using Light To Make Food Test Date Study Guide You must know: How photosystems convert solar energy to chemical energy.

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work)

Chapter 7: Photosynthesis

Photosynthesis. Plant Anatomy. Plant Anatomy. Plant Anatomy 1/14/2015. Stems. Leaves

CHAPTER 8 PHOTOSYNTHESIS

Chapter 7 Capturing Solar Energy: Photosynthesis. Chapter 7: Photosynthesis. What is Photosynthesis?

Photosynthesis (Outline)

Chapter 7 PHOTOSYNTHESIS

Chapter 10. Photosynthesis

Biology: Life on Earth

Sunday, August 25, 2013 PHOTOSYNTHESIS

Photosynthesis: An Overview. Lesson Overview. Lesson Overview. 8.2 Photosynthesis: An Overview

Overview of Photosynthesis

Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast

Transcription:

Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life A. All organisms require energy B. Some organisms (autotrophs) obtain energy directly from the sun and store it in organic compounds (glucose) during a process called photosynthesis 6CO 2 + 6H 2 O + energy --> 6O 2 + C 6 H 12 O 6 II. Energy for Life Processes A. Energy is the ability to do work B. Work for a cell includes growth & repair, active transport across cell membranes, reproduction, synthesis of cellular products, etc. C. Work is the ability to change or move matter against other forces (W = F x D) D. Autotrophs or producers convert sunlight, CO 2, and H 2 O into glucose (their food) E. Plants, algae, and blue-green bacteria, some prokaryotes, are producers or autotrophs F. Only 10% of the Earth s 40 million species are autotrophs G. Other autotrophs use inorganic compounds instead of sunlight to make food; process known as chemosynthesis H. Producers make food for themselves and heterotrophs or consumers that cannot make food for themselves I. Heterotrophs include animals, fungi, & some bacteria, & protists

III. Biochemical Pathways A. Photosynthesis and cellular respiration are biochemical pathways B. Biochemical pathways are a series of reactions where the product of one reaction is the reactant of the next C. Only autotrophs are capable of photosynthesis D. Both autotrophs & heterotrophs perform cellular respiration to release energy to do work E. In photosynthesis, CO 2 (carbon dioxide) and H 2 O (water) are combined to form C 6 H 12 O 6 (glucose) & O 2 (oxygen) 6CO 2 + 6H 2 O + energy -- > 6O 2 + C 6 H 12 O 6 F. In cellular respiration, O 2 (oxygen) is used to burn C 6 H 12 O 6 (glucose) & release CO 2 (carbon dioxide), H 2 O (water), and energy G. Usable energy released in cellular respiration is called adenosine triphosphate or ATP

IV. Light Absorption in Chloroplasts A. Chloroplasts in plant & algal cells absorb light energy from the sun during the light dependent reactions B. Photosynthetic cells may have thousands of chloroplasts C. Chloroplasts are double membrane organelles with the an inner membrane folded into disc-shaped sacs called thylakoids D. Thylakoids, containing chlorophyll and other accessory pigments, are in stacks called granum (grana, plural) E. Grana are connected to each other & surrounded by a gel-like material called stroma F. Light-capturing pigments in the grana are organized into photosystems V. Pigments A. Light travels as waves & packets called photons B. Wavelength of light is the distance between 2 consecutive peaks or troughs C. Sunlight or white light is made of different wavelengths or colors carrying different amounts of energy D. A prism separates white light into 7 colors (red, orange, yellow, green, blue, indigo, & violet) ROY G. BIV

E. These colors are called the visible spectrum F. When light strikes an object, it is absorbed, transmitted, or reflected G. When all colors are absorbed, the object appears black H. When all colors are reflected, the object appears white I. If only one color is reflected (green), the object appears that color (e.g. Chlorophyll) VI. Pigments in the Chloroplasts A. Thylakoids contain a variety of pigments ( green red, orange, yellow...) B. Chlorophyll (C 55 H 70 MgN 4 O 6 ) is the most common pigment in plants & algae C. Chlorophyll a & chlorophyll b are the 2 most common types of chlorophyll in autotrophs D. Chlorophyll absorbs only red, blue, & violet light E. Chlorophyll b absorbs colors or light energy NOT absorbed by chlorophyll a F. The light energy absorbed by chlorophyll b is transferred to chlorophyll a in the light reactions

G. Carotenoids are accessory pigments in the thylakoids & include yellow, orange, & red VII. Overview of Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2 A. Photosynthesis is not a simple one step reaction but a biochemical pathway involving many steps B. This complex reaction can be broken down into two reaction systems --- light dependent & light independent or dark reactions Light Reaction: H 2 O O 2 + ATP + NADPH 2 Water is split, giving off oxygen. This system depends on sunlight for activation energy. Light is absorbed by chlorophyll a which "excites" the electrons in the chlorophyll molecule. Electrons are passed through a series of carriers and adenosine triphosphate or ATP (energy) is produced. Takes place in the thylakoids.

Dark Reaction: ATP + NADPH 2 + CO 2 C 6 H 12 O 6 Carbon dioxide is split, providing carbon to make sugars. The ultimate product is glucose. While this system depends on the products from the light reactions, it does not directly require light energy. Includes the Calvin Cycle. Takes place in the stroma. VIII. Calvin Cycle A. Carbon atoms from CO2 are bonded or "fixed" into organic compounds during a process called carbon fixation B. The energy stored in ATP and NADPH during the Light Reactions is used in the Calvin cycle C. The Calvin cycle has 3 main steps occurring within the stroma of the Chloroplast STEP 1 CO2 diffuses into the stroma from surrounding cytosol An enzyme combines a CO2 molecule with a five-carbon carbohydrate called RuBP The six-carbon molecule produced then splits immediately into a pair of three-carbon molecules known as PGA

STEP 2 Each PGA molecule receives a phosphate group from a molecule of ATP This compound then receives a proton from NADPH and releases a phosphate group producing PGAL These reactions produce ADP, NADP+, and phosphate which are used again in the Light Reactions. STEP 3 Most PGAL is converted back to RuBP to keep the Calvin cycle going Some PGAL leaves the Calvin Cycle and is used to make other organic compounds including amino acids, lipids, and carbohydrates PGAL serves as the starting material for the synthesis of glucose and fructose Glucose and fructose make the disaccharide sucrose, which travels in solution to other parts of the plant (e.g., fruit, roots)

Glucose is also the monomer used in the synthesis of the polysaccharides starch and cellulose D. Each turn of the Calvin cycle fixes One CO2 molecule so it takes six turns to make one molecule of glucose IX. Photosystems & Electron Transport Chain A. Only 1 in 250 chlorophyll molecules (chlorophyll a) actually converts light energy into usable energy B. These molecules are called reaction-center chlorophyll C. The other molecules (chlorophyll b, c, & d and carotenoids) absorb light energy and deliver it to the reactioncenter molecule D. These chlorophyll molecules are known as antenna pigments E. A unit of several hundred antenna pigment molecules plus a reaction center is called a photosynthetic unit or photosystem F. There are 2 types of photosystems --- Photosystem I & Photosystem II G. Light is absorbed by the antenna pigments of photosystems II and I H. The absorbed energy is transferred to the reaction center pigment, P 680 in photosystem II, P 700 in photosystem I

I. P 680 in Photosystem II loses an electron and becomes positively charged so it can now split water & release electrons (2H2O 4H+ + 4e- + O2) J. Electrons from water are transferred to the cytochrome complex of Photosystem I K. These excited electrons activate P 700 in photosystem I which helps reduce NADP + to NADPH L. NADPH is used in the Calvin cycle M. Electrons from Photosystem II replace the electrons that leave chlorophyll molecules in Photosystem I X. Chemiosmosis (KEM-ee-ahz-MOH-suhs) A. Synthesis or making of ATP (energy) B. Depends on the concentration gradient of protons ( H+) across the thylakoid membrane C. Protons (H+) are produced from the splitting of water in Photosystem II D. Concentration of Protons is HIGHER in the thylakoid than in the stroma E. Enzyme, ATP synthetase in the thylakoid membrane, makes ATP by adding a phosphate group to ADP

XI. Alternate Pathways A. The Calvin cycle is the most common pathway used by autotrophs called C 3 Plants B. Plants in hot, dry climates use alternate pathways to fix carbon & then transfer it to the Calvin cycle C. Stomata are small openings on the underside of leaves for gas exchange (O 2 & CO 2 ) D. Guard cells on each side of the stoma help open & close the stomata E. Plants also lose H 2 O through stoma so they are closed during the hottest part of the day F. C 4 plants fix CO 2 into 4-Carbon Compounds during the hottest part of the day when their stomata are partially closed G. C 4 plants include corn, sugar cane and crabgrass H. CAM plants include cactus & pineapples

I. CAM plants open their stomata at night and close during the day so CO 2 is fixed at night J. During the day, the CO 2 is released from these compounds and enters the Calvin Cycle XII. Factors Determining the Rate of Photosynthesis A. Light intensity - As light intensity increases, the rate of photosynthesis initially increases and then levels off to a plateau B. Temperature - Only the dark, not the light reactions are temperature dependent because of the enzymes they use (25 o C to 37 o C) C. Length of day D. Increasing the amount of carbon dioxide available improves the photosynthesis rate E. Level of air pollution