sin(2θ ) t 1 χ o o o

Similar documents
Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Lecture 18 - Beyond the Standard Model

Search for physics beyond the Standard Model at LEP 2

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Search for SUperSYmmetry SUSY

Beyond the SM: SUSY. Marina Cobal University of Udine

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

SUSY at Accelerators (other than the LHC)

SUPERSYMMETRY AT THE LHC

SUSY at Accelerators (other than the LHC)

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Non-Standard Higgs Decays

Slepton, Charginos and Neutralinos at the LHC

SUSY Phenomenology & Experimental searches

Ricerca di nuova fisica a HERA

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Higgs Signals and Implications for MSSM

Composite gluino at the LHC

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Split SUSY and the LHC

Phenomenology of new neutral gauge bosons in an extended MSSM

Searching for sneutrinos at the bottom of the MSSM spectrum

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Universal Extra Dimensions

SUSY-particle production at Hadron Colliders

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

SUSY searches at LHC and HL-LHC perspectives

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Properties of the Higgs Boson, and its interpretation in Supersymmetry

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

Search for Resonant Slepton Production with the DØ-Experiment

Search for Supersymmetry at LHC

Introduction to Supersymmetry

Natural SUSY and the LHC

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

LHC Studies on the Electroweak Sector of MSSM

Fourth Generation and Dark Matter

arxiv:hep-ex/ v1 15 Jun 2006

Searches for Physics Beyond the Standard Model at the Tevatron

A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment

Detecting Higgs Bosons within Supersymmetric Models

arxiv:hep-ex/ v1 30 Sep 1997

The Physics of Heavy Z-prime Gauge Bosons

Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

Supersymmetric Origin of Matter (both the bright and the dark)

Basics of Higgs Physics

General Gauge Mediation Phenomenology

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University

Chapter 4 Supersymmetry

Searches for Supersymmetry at ATLAS

arxiv:hep-ph/ v1 17 Apr 2000

Lectures on Supersymmetry III

Stop NLSPs. David Shih Rutgers University. Based on: Kats & DS ( ) Kats, Meade, Reece & DS ( )

Search for R-parity violating Supersymmetry. III Phys. Inst. A, RWTH Aachen

Search for Charginos and Neutralinos with the DØ Detector

Dark Matter Implications for SUSY

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

What the LHC Will Teach Us About Low Energy Supersymmetry

The hierarchy problem. (On the origin of the Higgs potential)

The Higgs discovery - a portal to new physics

Simplified models in collider searches for dark matter. Stefan Vogl

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Full electroweak one loop corrections to

Beyond the MSSM (BMSSM)

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking

Yukawa and Gauge-Yukawa Unification

Search for squarks and gluinos with the ATLAS detector. Jeanette Lorenz (LMU München)

Physics at the Tevatron. Lecture IV

Supersymmetry at the LHC: Searches, Discovery Windows, and Expected Signatures

Higgs Searches at CMS

Where is SUSY? Institut für Experimentelle Kernphysik

arxiv:hep-ph/ v1 31 May 1997

X COLLIDER PHYSICS : BASIC CONCEPTS

P. Sphicas/SSI2001. Standard Model Higgs

12 Mar 2004, KTH, Stockholm. Peter Skands Dept. of Theoretical High Energy Physics, Lund University LHC

ATLAS Discovery Potential of the Standard Model Higgs Boson

Discovery potential for SUGRA/SUSY at CMS

Szuperszimmetria keresése az LHC-nál

Is SUSY still alive? Dmitri Kazakov JINR

(Non-minimal) SUSY Phenomenology of the minimal R-symmetric SUSY model

Searches for New Phenomena with Lepton Final States at the Tevatron

SUSY searches with ATLAS What did we learn with few fb -1?

CMS Searches for SUSY in Hadronic Final States

Search for Supersymmetry at CMS in all-hadronic final states

Identifying the NMSSM by combined LHC-ILC analyses

Electroweak Physics and Searches for New Physics at HERA

) = 0 GeV. Preliminary. Combined. CL s observed 95% C.L. limit. CL s median expected limit ATLAS EPS L dt = 4.71 fb, = 1 fb.

Probing SUSY Dark Matter at the LHC

Supersymmetry Basics. J. Hewett SSI J. Hewett

The Standard Model and Beyond

Supersymmetry at the ILC

Notes on EDMs. Matt Reece. October 20, 2013

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration

Transcription:

Production of Supersymmetric Particles at High-Energy Colliders Tilman Plehn { Search for the MSSM { Production of Neutralinos/Charginos { Stop Mixing { Production of Stops { R Parity violating Squarks { Conclusions and Outlook

Introduction to the MSSM Supersymmetric extension of Standard Model:? fermion{boson mapping! stable scalar masses m m g ~ M M EW + g log EW P? unication of gauge couplings! prediction of weak mixing angle? possible extension to supergravity and string models Particle Content: spin charge d.o.f. light quark q L ; q R / /3, /3 + squark ~q L ; ~q R /3, /3 + 5 avors top quark t L ; t R / /3 + top squark ~t L ; ~t R /3 + mixing gluon G n! d.o.f. gluino ~g / Majorana gauge bosons ; Z +3 Higgs bosons h o ; H o ; A o 3 neutralinos ~ o i / 4 Majorana gauge bosons W 3 Higgs bosons H charginos ~ i / 4 Dirac

Supersymmetry Breaking Mass dierence between supersymmetric partners! soft SUSY breaking leaves masses stable: L soft = (m ) ijc i C j At a given scale: (m =) j j j + h:c: 6 A ijkc i C j C k + BH H + h:c: { scalar masses m for squarks and sleptons; chosen real { gaugino masses m = { trilinear couplings A ijk ; conserving R charge { complex Higgs mass parameter B Universality at unication scale and ew. symmetry breaking:! 4 / free parameters m ; m = ; A ; tan ; sign() t sin(θ ) q 5 3 9 8 7 6 5 3 3 m o m/ g 3 m o m/ -.75 -.8 -.85 -.9 -.95 6 4 8 6 4 3 m o m/ o χ 3 m o m/ 8 7 6 5 3 3 5 5 5 3 m o m/ + χ 3 m o m/

Mass Spectrum 5 45 35 3 5 5 5 m[gev] /5/3/4/+ h o χ o χ o χ o 3 χ o 4 χ + + χ g t t q A t µ B ~ W ~ Typical features:? light gauginos [m ~ B ; m ~ W jj; m Z inducing mixing] m ~B m Z s w c m Z s w s m ~W m Z c w c m z c w s B @ m Z s w c m Z c w c m Z s w s m Z c w s C A? heavy gluino [gauge coupling unication] m ~B :4 m =? light mixing stop [m t in o-diagonal terms] @ m Q + m t + 3 s w m Z c m t (A t + cot ) m t (A t + cot ) m U + m t + 3 s wm Zc m ~W :8 m = m ~g :6 m = A? heavy squark [approximate solution] m ~q & :85m ~g

Tevatron Searches squarks/gluinos ~q! q ~ j; q ~ + j! jets + =E T [+] + ~g! qq ~ j; q q ~ +! jets + =E j T [+] + gluinos ~g! q q ~ +! jets + =E j T + ` + 5 45 35 3 5 5 5 CDF Preliminary! like-sign leptons 5 5 5 3 35 45 5 neutralinos/charginos ~ + ~! ` ~ ``~! ``` + =E T + ± χ σ Br(χ 3l + X) (pb) CDF Preliminary L dt = 7 pb - Baer et al., PRD 47, 739 (993) tan β =, µ = - GeV/c Isajet 7. + CTEQ 3l 95% C.L. Upper Limit stops! trileptons - M(q ) = M(g ) M(q ) =. M(g ) M(q ) =.5 M(g ) 5 55 6 65 7 75 8 85 9 95 M(χ ± ) (GeV/c ) 95% Exclusion Limit on t ~ cχ~ o ~t! c~ + 7 6 M t ~ <M χ ~ +m c ~ Θ t = 8! mixing angle in BR χ ~ o (GeV) 5 4 ~ Θ t = 56 3 D? all limits strongly dependent on cascade decays complete set of possible decays necessary M t ~ >M χ ~ +m b +M W 5 6 7 8 9 ~ t supergravity or gauge mediation scenarios only for rst guess

Neutralino/Chargino Production Leading order cross section: q γ,z χ i χ j q d^ dt " qq! ~ i ~ j = 4N c 4 C ss t i t j + u i u j sm i m j (s m Z ) 8 C st t i t j sm i m j u i u j sm i m j (s m Z )(t m ~q ) 8 C st (s m Z )(u m ~q ) + 4 C tu ti t j (t m ~q ) + u i u j (u m ~q ) sm i m j (t m ~q )(u m ~q ) # Neutralino production mechanism { s channel [Drell{Yan like] Z ~ ~ coupling to higgsinos { t; u channel q~q ~ coupling to gauginos Next-to-leading order cross section:? Real/virtual SUSY-QCD corrections! factorization scale dependence bad measure for theoretical error! improvement of error bars : :! K N =! improvement of central value

Regularization and Supersymmetry Dimensional regularization breaks supersymmetry e.g. non-abelian gauge theory [Jack & Jones]: S L[W a ; a ; D] n!4!! preserved Ward Z identity contains S L = h d n x [J S W + j S + j D S D + S L]i! Dimensional Regularization can be rendered consistent with SUSY Yukawa coupling in supersymmetric limit: Y (qqh) = Y (~q~qh) + g 6 C(r) = Y (q~q h) ~ + 3g 3 C(r) dierent behavior of scalar and fermion masses Y mg m q = + g 6 C(r) m ~q! g MS g(qqh) = g(~q~qh) = g(q~q ~ h) + g 3 C(r) q q? dierence removed by nite 'renormalization' [Martin & Vaughn]? check by comparison of Green's functions with dimensional reduction

On-Shell Singularities N ~~ production includes G F s: gq! ~q i! q j i gq! ~q i BR(~q! q j ) pair production associated production via g q (M ) q χ jo () Possible inclusion of nite widths: { double counting of pair and associated production { breaking of gauge invariance of without { dependence on unknown physical widths () Splitting into on-shell and o-shell squark: d dm = (gq! ~q i) m ~q ~q = (M m ~q ) + m ~q ~q BR (~q! q j ) + O! (gq! ~q i ) BR (~q! q j ) (M m ~q ) + O { cross section in narrow widths approximation M m ~q M m ~q? divergences removed from? treatment compatible with experimental Monte-Carlos

Production Cross Sections Only ~ ~ and ~ ~+ visible at the Tevatron Whole set of processes at the LHC [ higgsino cross sections suppressed ] 57 45 89 3 74 37 m(χ + ) σ tot [pb]: pp χ iχ j S = TeV N - χ o χ o χ o χ ± χ + χ - -3 χ o χ o m [GeV] -4 3 55 78 4 63 m(χ o ) 6 3 47 9 33 75 38 m(χ o ) 57 45 89 3 74 37 m(χ + ) σ tot [pb]: pp χ iχ j S = 4 TeV - χ o χ o N χ o χ + χ o χ - χ o χ o. χ + χ m [GeV] -3 3 55 78 4 63 m(χ o ) 6 3 47 9 33 75 38 m(χ o ) N scale dependence good measure for theoretical uncertainty σ[pb]: pp χ o χ + +X s=4 TeV N N σ[pb]: pp χ o χ + +X s= TeV -..4 4 µ/m(χ ) General [mass independent] K factor for all LHC processes, but huge eects due to destructive interference 3 3 ~ ~ ~ ~ ~ 3 ~ ~ ~ ~ ~ ~ 4 ~ ~ 4 ~ ~ 3 ~ 3 ~ 4 ~ + ~ 3 ~ 3 ~ ~ + ~ 4 ~ 4 ~ + ~ K LHC ~ ~+ ~ ~ 3 ~+ ~ ~+ ~ ~+ ~ 4 ~+ ~ 3 ~+ ~ ~ ~+ ~ ~ ~ 4 ~+ ~ ~ 3 ~ ~ ~ ~ ~ ~ 4 ~ ~ 3 ~ ~ 4 K LHC

Stop Production Leading order cross section: qq=gg! ~t ~t ~t ~t [~t ~t ~t ~t ] t j q ^ [qq! ~t j ~ t j ] = s s ^ [gg! ~t j ~ t j ] = s s 7 3 (! 5 3m 48 + ~tj + 4s m ~ tj 3s + m4 ~tj 6s! log ) + { diagonal cross section function of nal state mass { factor =(n f ) compared to light-avor squarks { t; u channel gluino exchange missing compared to light-avor squarks { non-diagonal production via one loop amplitude; calculated for decoupled gluinos! suppressed ^ = 4 s sin (4 ~ ) 56s 37 54 m ~ t C (s; m ~t ) (~t! ~t ) t t Next-to-leading order cross section? cross section strongly dependent on renormalization/factorization scale! large theoretical uncertainty? N dependence on additional mixing and mass parameters?

MSSM Stop Mixing stop mass matrix diagonalized by ~ N contribution ij = ji : t j t i t g g Mixing absorbed into wave function renormalization: ~t ; = Z = ~t ; = Z = D R( ~ ) = Z = D h R( ~ ) ~t R;Li R( ~ ~ ) ~t R;L with = T [CP ] written as propagator diagonalization: D ren (Q ) Z = D R( ~ ~ ) Q M LR Re (Q ) R( ~ ~ ) Z =! ~ (Q ) = Re (Q )=(m ~ t m ~ t )! ~ (Q ) ~ (Q ) / cos(~ ) m ~ t m ~ t Re h i B(Q ; m ~g ; m t ) B(Q ; m ~g ; m t ) D T Virtual stop state! complex continuation Running mixing angle: t t j t? symmetry ~t $ ~t restored? possible measurements in decays -.5? numerical dierence between schemes small Bartl et al., Djouadi et al. -. θ ~ (Q)/θ ~ (m ) t 6 8 Q [GeV]

Production Cross Section N cross section almost independent of additional parameters! ~t and ~t the same! no dependence on SUSY scenario [however: cascade decays] 75 5 5 75 5 5 75 3 m(t ) [GeV] pp t t + X t t - σ tot [pb] S = TeV - -3 t t N : µ=m(t ) µ=[m(t )/, m(t )] : µ=m(t ) m(t ) [GeV] -4 3 35 35 375 45 45 475 5 55 75 5 5 75 5 5 75 3 4 m(t ) [GeV] 3 pp t t + X σ tot [pb] S = 4 TeV t t t t N : µ=m(t ) µ=[m(t )/, m(t )] : µ=m(t ) m(t ) [GeV] - 3 35 35 375 45 45 475 5 55 Tevatron K factor strongly mass dependent due to fraction of incoming quarks/gluons Scale dependence strongly reduced in N! improvement of mass bounds not only for K >.9.8.7 LHC σ ij /σ: pp/pp t t +X gg qq.6.5.4.3 Tevatron gg.. qq 8 4 6 8 m(t ) [GeV] 9 σ[pb]: pp t t +X s=4 TeV 8 7 6 N 5 4 3 N σ[pb]: pp t t +X s= TeV..4 4 µ/m(t ) σ tot [pb]: pp t t + X s= TeV - N: µ=[m(t )/, m(t )] : µ=[m(t )/, m(t )] - 75 5 5 75 5 5 75 3 m(t ) [GeV]

Addendum: R Parity violating Squarks Soft SUSY breaking! three-scalar interaction! leptoquark-like supereld couplings LQD! R = ( ) 3B+L+S conservation Broken R parity: eq! ~q HERA production q q=gg! ~q~q Tevatron production.4.35.3 K[eq q +X] d { soft breaking coupling parameter free [running] { SU(3) gauge couplings xed as for stop! QCD corrections to HERA process and Tevatron cross section xed -.5. u.5 s = 3 GeV. µ = m(q ) s.5 CTEQ3M 5 6 7 8 9 3 4 5 m(q ) [GeV] σ[pb]: pp q +q +X s= TeV N : µ=m(q ) µ=[m(q )/, m(q )] : µ=m(q ) Combined analysis of BR(~q! eq): - 3 4 5 6 7 8 9 3 m(q )[GeV] m ~q = GeV e + d! ~c e + d! ~t e + s! ~t HERA: p BR :7 :5 :5 :33 :5 :5 APV:. :55. :55 LEP:. :6 BR & : :4 BR & : :4 BR & :5 : Tevatron: BR BR. :5 :7 BR. :5 :7 BR. :5 :7! heavy gauginos! heavy gauginos

Conclusions and Outlook Processes in next-to-leading order SUSY QCD: Stop cross sections at hadron colliders Neutralino/Chargino cross sections at hadron colliders Results:? QCD corrections to stop cross sections between % and +5%? QCD corrections to neutralino/chargino cross sections around +3% [up to interference eects]? Scale dependence small in N Conclusions & Outlook:? N stop cross sections only mildly dependent on mixing angle and internal masses? Corrections to neutralino/chargino cross section non-negligiable and dependent on scenario =) N analyses at upgraded Tevatron and LHC

σ tot [pb]: pp g g, q q, t t, χ o + χ - S = TeV m(χ o ) = GeV m(t ) = 3 GeV m(q ) = 38 GeV m(g ) = 45 GeV q q - χ o χ + t t g g -3 N 5 5 3 35 45 5 m [GeV] 3 σ tot [pb]: pp g g, q q, t t, χ o χ +, ẽ + L ẽ L N q q g g t t S = 4 TeV χ o + χ m(χ o ) = GeV m(ẽ L ) = 55 GeV m(t ) = 3 GeV m(q ) = 38 GeV - ẽ L ẽ L m(g ) = 45 GeV m [GeV] 5 5 3 35 45 5

5 CDF Preliminary 45 35 3 5 5 5 5 5 5 3 35 45 5

3l + X) (pb) ± χ σ Br(χ CDF Preliminary L dt = 7 pb - Baer et al., PRD 47, 739 (993) tan β =, µ = - GeV/c Isajet 7. + CTEQ 3l 95% C.L. Upper Limit - M(q ) = M(g ) M(q ) =. M(g ) M(q ) =.5 M(g ) 5 55 6 65 7 75 8 85 9 95 M(χ ± ) (GeV/c )

M neutralino (GeV/c ) 8 7 6 5 4 3 Search for Scalar Top BR (t c + χ ) = % Θ stop = for LEP D/ 7.4 pb - ) M(t )=M(c)+M(χ LEP (ALEPH) CDF 95% CL excluded M(t )=M(b)+M(W)+M(χ 4 6 8 4 M stop (GeV/c ) CDF Preliminary 88 pb - )

57 45 89 3 74 37 m(χ + ) σ tot [pb]: pp χ iχ j S = TeV - χ o o χ χ o ± χ χ + χ N - -3 χ o o χ -4 m [GeV] 3 55 78 4 63 6 3 47 9 33 75 38 m(χ o ) m(χ o ) 45 89 3 74 37 57 m(χ + ) σ tot [pb]: pp χ iχ j S = 4 TeV - χ o o χ N χ o + χ χ o χ - χ o o χ. χ + χ -3 m [GeV] 3 55 78 4 63 6 3 47 9 33 75 38 m(χ o ) m(χ o )

N σ[pb]: pp χ o χ + +X s=4 TeV N σ[pb]: pp χ o χ + +X s= TeV -..4 4 µ/m(χ )

75 5 5 75 5 5 75 3 m(t ) [GeV] - pp t t + X σ tot [pb] S = TeV t t - -3-4 N : µ=m(t ) µ=[m(t )/, m(t )] : µ=m(t ) m(t ) [GeV] 3 35 35 375 45 45 475 5 55 t t 4 75 5 5 75 5 5 75 3 m(t ) [GeV] 3 pp t t + X σ tot [pb] S = 4 TeV t t - N : µ=m(t ) µ=[m(t )/, m(t )] : µ=m(t ) m(t ) [GeV] 3 35 35 375 45 45 475 5 55 t t

.9.8.7.6.5.4.3.. LHC σ ij /σ: pp/pp t t +X Tevatron gg qq gg qq 8 4 6 8 m(t ) [GeV]

9 8 7 6 5 4 3 σ[pb]: pp t t +X s= TeV σ[pb]: pp t t +X s=4 TeV N N..4 4 µ/m(t ) σ tot [pb]: pp t t + X s= TeV - - N: µ=[m(t )/, m(t )] : µ=[m(t )/, m(t )] 75 5 5 75 5 5 75 3 m(t ) [GeV]

.4.35.3.5. K[eq q +X] d u.5..5 s = 3 GeV µ = m(q ) CTEQ3M s 5 6 7 8 9 3 4 5 m(q ) [GeV] - σ[pb]: pp q +q +X s= TeV N : : µ=m(q ) µ=[m(q )/, m(q )] µ=m(q ) - 3 4 5 6 7 8 9 3 m(q )[GeV]